8 research outputs found

    Inversion, Iteration, and the Art of Dual Wielding

    Full text link
    The humble †\dagger ("dagger") is used to denote two different operations in category theory: Taking the adjoint of a morphism (in dagger categories) and finding the least fixed point of a functional (in categories enriched in domains). While these two operations are usually considered separately from one another, the emergence of reversible notions of computation shows the need to consider how the two ought to interact. In the present paper, we wield both of these daggers at once and consider dagger categories enriched in domains. We develop a notion of a monotone dagger structure as a dagger structure that is well behaved with respect to the enrichment, and show that such a structure leads to pleasant inversion properties of the fixed points that arise as a result. Notably, such a structure guarantees the existence of fixed point adjoints, which we show are intimately related to the conjugates arising from a canonical involutive monoidal structure in the enrichment. Finally, we relate the results to applications in the design and semantics of reversible programming languages.Comment: Accepted for RC 201

    Axioms for the category of sets and relations

    Full text link
    We provide axioms for the dagger category of sets and relations that recall recent axioms for the dagger category of Hilbert spaces and bounded operators.Comment: 14 pages; corrected proof of Corollary 1.

    Traced Monads and Hopf Monads

    Full text link
    A traced monad is a monad on a traced symmetric monoidal category that lifts the traced symmetric monoidal structure to its Eilenberg-Moore category. A long-standing question has been trying to provide a characterization of traced monads without explicitly mentioning the Eilenberg-Moore category. On the other hand, a symmetric Hopf monad is a symmetric bimonad whose fusion operators are invertible. For compact closed categories, symmetric Hopf monads are precisely the kind of monads that lift the compact closed structure to their Eilenberg-Moore categories. Since compact closed categories and traced symmetric monoidal categories are closely related, it is a natural question to ask what is the relationship between Hopf monads and traced monads. In this paper, we introduce trace-coherent Hopf monads on traced monoidal categories, which can be characterised without mentioning the Eilenberg-Moore category. The main theorem of this paper is that a symmetric Hopf monad is a traced monad if and only if it is a trace-coherent Hopf monad. We provide many examples of trace-coherent Hopf monads, such as those induced by cocommutative Hopf algebras or any symmetric Hopf monad on a compact closed category. We also explain how for traced Cartesian monoidal categories, trace-coherent Hopf monads can be expressed using the Conway operator, while for traced coCartesian monoidal categories, any trace-coherent Hopf monad is an idempotent monad. We also provide separating examples of traced monads that are not Hopf monads, as well as symmetric Hopf monads that are not trace-coherent.Comment: Restructured the paper based on anonymous reviewer's suggestion

    New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic

    Get PDF
    Intuitionistic logic, in which the double negation law not-not-P = P fails, is dominant in categorical logic, notably in topos theory. This paper follows a different direction in which double negation does hold. The algebraic notions of effect algebra/module that emerged in theoretical physics form the cornerstone. It is shown that under mild conditions on a category, its maps of the form X -> 1+1 carry such effect module structure, and can be used as predicates. Predicates are identified in many different situations, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting, idempotents in a ring, and effects (positive elements below the unit) in a C*-algebra or Hilbert space. In quantum foundations the duality between states and effects plays an important role. It appears here in the form of an adjunction, where we use maps 1 -> X as states. For such a state s and a predicate p, the validity probability s |= p is defined, as an abstract Born rule. It captures many forms of (Boolean or probabilistic) validity known from the literature. Measurement from quantum mechanics is formalised categorically in terms of `instruments', using L\"uders rule in the quantum case. These instruments are special maps associated with predicates (more generally, with tests), which perform the act of measurement and may have a side-effect that disturbs the system under observation. This abstract description of side-effects is one of the main achievements of the current approach. It is shown that in the special case of C*-algebras, side-effect appear exclusively in the non-commutative case. Also, these instruments are used for test operators in a dynamic logic that can be used for reasoning about quantum programs/protocols. The paper describes four successive assumptions, towards a categorical axiomatisation of quantitative logic for probabilistic and quantum systems

    A Linear Exponential Comonad in s-finite Transition Kernels and Probabilistic Coherent Spaces

    Full text link
    This paper concerns a stochastic construction of probabilistic coherent spaces by employing novel ingredients (i) linear exponential comonads arising properly in the measure-theory (ii) continuous orthogonality between measures and measurable functions. A linear exponential comonad is constructed over a symmetric monoidal category of transition kernels, relaxing Markov kernels of Panangaden's stochastic relations into s-finite kernels. The model supports an orthogonality in terms of an integral between measures and measurable functions, which can be seen as a continuous extension of Girard-Danos-Ehrhard's linear duality for probabilistic coherent spaces. The orthogonality is formulated by a Hyland-Schalk double glueing construction, into which our measure theoretic monoidal comonad structure is accommodated. As an application to countable measurable spaces, a dagger compact closed category is obtained, whose double glueing gives rise to the familiar category of probabilistic coherent spaces.Comment: 31 page

    On the Resolution Semiring

    Get PDF
    In this thesis, we study a semiring structure with a product based on theresolution rule of logic programming. This mathematical object was introducedinitially in the setting of the geometry of interaction program in order to modelthe cut-elimination procedure of linear logic. It provides us with an algebraicand abstract setting, while being presented in a syntactic and concrete way, inwhich a theoretical study of computation can be carried on.We will review first the interactive interpretation of proof theory withinthis semiring via the categorical axiomatization of the geometry of interactionapproach. This interpretation establishes a way to translate functional programsinto a very simple form of logic programs.Secondly, complexity theory problematics will be considered: while thenilpotency problem in the semiring we study is undecidable in general, it willappear that certain restrictions allow for characterizations of (deterministicand non-deterministic) logarithmic space and (deterministic) polynomial timecomputation

    Unique decomposition categories, Geometry of Interaction and combinatory logic

    No full text
    corecore