12,894 research outputs found

    On the reconstruction of planar lattice-convex sets from the covariogram

    Full text link
    A finite subset KK of Zd\mathbb{Z}^d is said to be lattice-convex if KK is the intersection of Zd\mathbb{Z}^d with a convex set. The covariogram gKg_K of KZdK\subseteq \mathbb{Z}^d is the function associating to each u \in \integer^d the cardinality of K(K+u)K\cap (K+u). Daurat, G\'erard, and Nivat and independently Gardner, Gronchi, and Zong raised the problem on the reconstruction of lattice-convex sets KK from gKg_K. We provide a partial positive answer to this problem by showing that for d=2d=2 and under mild extra assumptions, gKg_K determines KK up to translations and reflections. As a complement to the theorem on reconstruction we also extend the known counterexamples (i.e., planar lattice-convex sets which are not reconstructible, up to translations and reflections) to an infinite family of counterexamples.Comment: accepted in Discrete and Computational Geometr

    Magic numbers in the discrete tomography of cyclotomic model sets

    Full text link
    We report recent progress in the problem of distinguishing convex subsets of cyclotomic model sets Λ\varLambda by (discrete parallel) X-rays in prescribed Λ\varLambda-directions. It turns out that for any of these model sets Λ\varLambda there exists a `magic number' mΛm_{\varLambda} such that any two convex subsets of Λ\varLambda can be distinguished by their X-rays in any set of mΛm_{\varLambda} prescribed Λ\varLambda-directions. In particular, for pentagonal, octagonal, decagonal and dodecagonal model sets, the least possible numbers are in that very order 11, 9, 11 and 13.Comment: 6 pages, 1 figure; based on the results of arXiv:1101.4149 [math.MG]; presented at Aperiodic 2012 (Cairns, Australia

    Densest Lattice Packings of 3-Polytopes

    Get PDF
    Based on Minkowski's work on critical lattices of 3-dimensional convex bodies we present an efficient algorithm for computing the density of a densest lattice packing of an arbitrary 3-polytope. As an application we calculate densest lattice packings of all regular and Archimedean polytopes.Comment: 37 page

    Discrete tomography: Magic numbers for NN-fold symmetry

    Full text link
    We consider the problem of distinguishing convex subsets of nn-cyclotomic model sets Λ\varLambda by (discrete parallel) X-rays in prescribed Λ\varLambda-directions. In this context, a `magic number' mΛm_{\varLambda} has the property that any two convex subsets of Λ\varLambda can be distinguished by their X-rays in any set of mΛm_{\varLambda} prescribed Λ\varLambda-directions. Recent calculations suggest that (with one exception in the case n=4n=4) the least possible magic number for nn-cyclotomic model sets might just be N+1N+1, where N=lcm(n,2)N=\operatorname{lcm}(n,2).Comment: 5 pages, 2 figures; new computer calculations based on the results of arXiv:1101.4149 and arXiv:1211.6318; presented at ICQ 12 (Cracow, Poland

    Lower Bounds for Ground States of Condensed Matter Systems

    Full text link
    Standard variational methods tend to obtain upper bounds on the ground state energy of quantum many-body systems. Here we study a complementary method that determines lower bounds on the ground state energy in a systematic fashion, scales polynomially in the system size and gives direct access to correlation functions. This is achieved by relaxing the positivity constraint on the density matrix and replacing it by positivity constraints on moment matrices, thus yielding a semi-definite programme. Further, the number of free parameters in the optimization problem can be reduced dramatically under the assumption of translational invariance. A novel numerical approach, principally a combination of a projected gradient algorithm with Dykstra's algorithm, for solving the optimization problem in a memory-efficient manner is presented and a proof of convergence for this iterative method is given. Numerical experiments that determine lower bounds on the ground state energies for the Ising and Heisenberg Hamiltonians confirm that the approach can be applied to large systems, especially under the assumption of translational invariance.Comment: 16 pages, 4 figures, replaced with published versio

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    Solution of a uniqueness problem in the discrete tomography of algebraic Delone sets

    Full text link
    We consider algebraic Delone sets Λ\varLambda in the Euclidean plane and address the problem of distinguishing convex subsets of Λ\varLambda by X-rays in prescribed Λ\varLambda-directions, i.e., directions parallel to nonzero interpoint vectors of Λ\varLambda. Here, an X-ray in direction uu of a finite set gives the number of points in the set on each line parallel to uu. It is shown that for any algebraic Delone set Λ\varLambda there are four prescribed Λ\varLambda-directions such that any two convex subsets of Λ\varLambda can be distinguished by the corresponding X-rays. We further prove the existence of a natural number cΛc_{\varLambda} such that any two convex subsets of Λ\varLambda can be distinguished by their X-rays in any set of cΛc_{\varLambda} prescribed Λ\varLambda-directions. In particular, this extends a well-known result of Gardner and Gritzmann on the corresponding problem for planar lattices to nonperiodic cases that are relevant in quasicrystallography.Comment: 21 pages, 1 figur
    corecore