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Abstract

Based on Minkowski’s work on critical lattices of 3-dimensional convex bodies we present an efficient algorithm
for computing the density of a densest lattice packing of an arbitrary 3-polytope. As an application we calculate
densest lattice packings of all regular and Archimedean polyto@#300 Elsevier Science B.V. All rights reserved.
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1. Introduction

Throughout this papeR? denotes the/-dimensional Euclidean space with origin 0, Euclidean norm
| - |I, inner product(-, -) and unit spheres?~*. K denotes the set of all convex bodi&sc R? with
nonempty interior intk) and ¢ denotes the subset & consisting of all bodies which are centrally
symmetric with respect to the origin. For a 3étC R? we denote by val\) its volume with respect to its
affine hull aff(M). Furthermore, con\M), lin(M) denotes the convex hull, linear hull df, respectively.
The boundary oK e K¢ is denoted by beK).

By a lattice A  R? with basisB = {b', ..., b}, whereb?, ..., b? € R? are linearly independent, we
understand the set

A={Zlbl+"'+zdbdi Zl,...,ZdEZ}=BZd.

The determinant det of A is the volume of the parallelepiped spanneddy..., 5%, i.e., detd =
|detB|. A lattice A is called a packing lattice fok € K¢ if x + K andy + K do not overlap for
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Table 1
Body Author
Regular octahedron Minkowski [20], 1904
Truncated cubes; for@ A < 3: Whitworth [29], 1948
{x eR3: |x;] <1, |x1+x2+ x3] <A}
(x eR3: (x2+x3)Y2 + |x3) < 1) Whitworth [30], 1951
Frustrum of a sphere; for@ A < 1: Chalk [5], 1950

{x eR3: x2 4 x5+ x5 < 1, |x3| < A}

Tetrahedron and cubeoctahedron Hoylman [16], 1970

x,y € A, x # y. There always exists a packing lattige (K) with minimal determinant. Such a lattice
is called a densest packing lattice and the quantity

. _Vol(K)
(k)= detA*(K)

is called the lattice packing density &f or the density of a densest lattice packingkafThere is a large
amount of literature on packings. Some books, which give a good description of the background of our
work, are [10,14,23,33] as well as the Diploma thesis [15]. For a more general survey on the theory of
packings we refer to [11] and the references within.

The lattice packing problem for a general bodykifi is very hard. In fact, foe > 4 the only exact
results are on space fillers (cf. [18,27]) for whi€h K) = 1 and on the unit balB? wheres*(B?) is
known ford < 8 (see, e.g., [7,34]). In contrast for a fixed boKye K? there are several techniques
to solve the problem (see, e.g., [14, p. 241]) and there exists also an algorithm, due to Mount and
Silverman [22], that determingg (P) for a centrally symmetria-gon in time Qn).

However, already in 3-space the situation is rather more complicated. Apart from the 3-dimensional
space-fillers (for a classification see [14, p. 164]) and from cylinders based on a convex disk, in which
case it can be shown that the problem is equivalent to the determination of the lattice packing density of
the convex disk (cf. [23, p. 13]), densest lattice packings are only known for the bodigswhich are
listed in Table 1.

It is worth to mention that the family of frustrums of a sphere includes the 3-ball as a limiting case, for
which the packing density was determined already by Gauss [12].

All the computations o8*(K) for the bodies in Table 1 may be regarded as an application of a general
method developed by Minkowski [20] which characterizes densest packing lattices of a 3-dimensional
convex body by certain properties (see also [14, p. 340]). However, this method was considered as
rather impractical and in 1964 Rogers [23] wroteespite considerable theoretical advances in the
Geometry of Numbers since Minkowski’s time, the problem of determining the valt&offor a given
convex3-dimensional bodyk remains a formidable taskindeed the only change in the list of known
densest lattice packings since the publication of Rogers’ book is the addition of the tetrahedron and
cubeoctahedron. And even in 1990 Gruber mentioned the determinati®i f of a 3-dimensional
convex body as one of the important open problems in Geometry of Numbers [13].
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Here we use Minkowski's work as a starting point for the construction of a practicable algorithm to
compute the packing density of an arbitrary polytop&#We proceed as follows. In Section 2 we adapt
Minkowski’s work to our purposes. Moreover we discuss in this section the principal applicability of his
work in higher dimensions.

Having adapted Minkowski’'s method we still have to solve two problems to obtain a practicable
algorithm. First we have to determine the local minima of a polynomial of degree three in three variables.
Somewhat surprisingly there appears to be no general purpose algorithm of numerical analysis which
suits our needs. Thus we develop an ad hoc method for our problem. This will be done in Section 4.
Before doing this we deal in Section 3 with a more geometric problem. It turns out that by the methods of
Section 2 we have essentially to look at every choice of 7 facets of the polytope. This leaves us with more
or less(3) cases for a polytope with facets and in every step we have to solve a nonlinear minimization
problem. This limits the applicability of the algorithm to polytopes with few facets. Thus we develop
in Section 3 some methods to reduce the number of cases. While we do not give an exact worst case
analysis it should be possible to reduce the number of cases to possibly as few?/as i@ typical cases
by showing that optimal packings must lead to feasible points of some related simple linear optimization
problems. This will be done in Section 3. It should however be mentioned that in our program we do not
fully exploit this reduction as an implementation would become rather complex. As an application of our
work we present in Section 5 optimal lattice packings for all regular and Archimedean polytopes.

2. Necessary conditions for optimal lattices

In this section we state without proof Minkowski results. In fact, we have summarized the relevant facts
in Theorem 2.1. We have included some more results, as we discuss at the end of the section, whethe
the algorithm could be extended to higher dimensions. Further we have changed and modernized the
notation. We remark that a good part of Minkowski theory is exposed in [14,33], though in both books
Theorem 2.1 is stated in a slightly weaker form.

ForK; e K¢, x; eR,i =1,2, we denote by, K1 + AK5 the set{Ax! 4+ ox?: xt e Ky, x? € K»).
Minkowski observed that

Ais a packing lattice oK <= A is a packing lattice o%(K — K). (2.2)

Since the difference bod%/(l( — K) belongs to the clasg?, in the following we assume that all bodies
are centrally symmetric.

A lattice A is called admissible foK e K¢, if int K N A = {0}. It is well known and easy to see that
A is admissible if and only if 24 is a packing lattice. The value

A(K) = min{detA: A admissible forK'}

is called the critical determinant df and an admissible latticd satisfying A(K) = detA is called
a critical lattice. Thuss*(K) = vol(K)/(2? A(K)) and the problems of constructing a densest packing
lattice and a critical lattice are equivalent.

While we naturally do not know a basis of a critical lattice beforehand, we shall see that we have a
great amount of information on the behaviour of certain lattice points with fixed coordinates with respect
to such a basis. For a basis= {b, ..., b’} of R? and a pointr € RY we denote bytp = (x1, ..., %)}
the vector given bycg = >, x;b.
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The construction of critical lattices is based on the connection of lattice crosspolytopes and primitive
vectors. As usual, a set of lattice vectéts. . ., b* of alatticeA c R is calledprimitiveiff this set can be
extended to a basis of the lattide Let A C R be a lattice and lgt*, .. ., b* € A be linearly independent.

The crosspolytopeC = conv{£b?, ..., £b*} is called alattice crosspolytopeff A N int(C) = {0}. If

we even haved N bd(C) = (b, ..., £b*} then it is called dree lattice crosspolytopeClearly, the
convex hull of every primitive seb', ..., b* forms a free lattice crosspolytope and every free lattice
crosspolytope is a lattice crosspolytope, while the converse is not true. A complete characterization of
(free) lattice crosspolytopes of dimension up to three is given in Lemma 2.1.

Lemma 2.1 (Minkowski, 1904).Let A be a lattice inR3.
() For k =1the vertices of any lattice crosspolytope are primitive.

(i) For k = 2 the vertices of any free lattice crosspolytope are primitive, while for the non-free lattice
crosspolytopeg there exists a basig of the lattice such that = conV{(1, 0, 0)3, (1,2, 0)3}.

(i) For k = 3 there are two types of free lattice crosspolytopes. One has primitive vertices
(crosspolytope of the first typgthe other has the verticé4, 0, 0) 3, (0, 1, 0), (1, 1, 2) 3 for a basis
B (crosspolytope of the second typEpr every non-free lattice crosspolytogethere exists a basis
B such thatC = con{(1, 0, 0), (0, 1,0)p, p}, wherep is element of the s¢t0, 1, 2)z, (1,1, 2)3,
(1,2,2)3,(1,1,3)5,(1,2,3)5,(2,2,3)5, (1.2, 4, (2,3, 4) }.

Using free lattice crosspolytopes we can identify critical lattices for ekery/C3. To this end we use
the following abbreviation: For a bas= {b*, b2, b3} of R? let

Z/{f]i = {(1’ 0’ O)B’ (0’ 1’ O)B’ (0’ 0’ 1)3’ (0’ 1’ _1)35(_1’ 0’ 1)3’ (1’ _15 O)B}a
Uz = {(1,0,0)5,(0,1,0)5, (0,0, 1), (0,1, 1), (1,0, 1), (1, 1,0) }, (2.2)
ug = {(l, O, O)B’ (O, 1, O)B’ (O, O, l)B’ (O, 1, l)B’ (l, O, l)B’ (l’ l’ O)Bs (1s 1s 1)3}

Lemma 2.2 (Minkowski, 1904).Let K € k3. Then there exists a critical latticel with basisB such
that one of the following cases holds

(1) Ui cbd(K) and K contains no lattice crosspolytope of the second type,

(2) U2 cbd(K)and(L,1,1)5 ¢ K,

(3) U3 C bd(K).

While the distinction between cases (2) and (3) may look artificial, we shall see that it leads to rather
different cases in the actual computation of a critical lattice. For any lattice with Basisich satisfies
a condition of the previous lemma we can easily check its admissibility:

Lemma 2.3 (Minkowski, 1904).Let K € K3 and A be a lattice with basis3. ThenA is admissible, if
one of the following conditions is satisfied

(1) U} cbd(K)and(—1,1, )5, (1, =1, D)5, (1, 1, 1) ¢ intK,

(2) U2 cbd(K) and(1,1, 1) ¢intK.

Proof. The second statement follows immediately from Minkowski’'s characterizations of lattice
crosspolytopes (cf. [33, Lemma 4.9;]R whereas item (1) is contained in a more implicitly way in
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his paper. However, from the work of Minkowski we know (cf. [33, Lemma 49, that in the first case,
i.e., U} C bd(K), the latticeA is admissible if

(al) 0,£1,+1)p ¢ K, (a2) (L £L+1),¢ K, (a3) (2 £l +1),¢K, (2.3)

as well as all points arising from permutations of the coordinates of the above points are not contained
in K. Therefore, in order to prove (1) we have to show that the péyts, 1) 5, (1,1, 1), (2, £1, +1)p
and the corresponding permutations are not containdd ifo this end letf : R® — R~ be the distance
function of K, i.e., f(x) = min{A: A € Rypandx € AK}. ThenK = {x € R®% f(x) < 1} and since
K € K3 the functionf describes a norm oR3. Sincel/; C bd(K) we find
f(0,1,1)p) > f((0,0,2)p) — f((0, -1, 1)p) =1,
F((L,L,Dp) > f(3,0,05) - f((L,-1,03) - f((1,0,-1)p) =1,
f((zs 11 _l)B) = f((z’ 0’ O)B) - f((os _1, l)B) = 1,
f((zs _1, l)B) = f((z’ 0’ O)B) - f((os 11 _l)B) = 1,
f((z’ _15 _1)3) 2 f((z’ _25 0)3) - f((o’ _15 1)3) - 1
Obviously, the same inequalities hold for the points given by all permutations of the coordinates of the
points of the left hand side and thus

f((z’ l’ l)B) = f((z’ 2’ O)B) - f((o’ l’ _1)3) = 1 U

We call the sets(3, j = 1, 2, 3 (cf. (2.2))test setof the first, second or third kind, respectively.

Now suppose thaB = {b*, b2, b3} is a basis of a critical latticet of K and letids = {u}, ..., uk},
k =6 o0rk =7, be one the three test sets such thatC bd(K) (cf. Lemma 2.2). LeH; beanysupporting
hyperplane ok containinguiB, i=1,...,k, and let

Sty = {W €R¥% uy € Hi, 1< <k} (2.4)
On this space we consider the function
le,...,Hk :SHl,...,Hk —R given by le,...,Hk(W) = | det(W)| (25)

If we assume for a moment thiay = A Nbd(K) then
B is alocal minimum offy,  p (W), W €Su,  m,. (2.6)

Otherwise there exists & € Sy, g, in a sufficiently small neighborhood @ such that| det W)| <
detA and K N (WZH\{0} C {u},, ..., ut,}. However, this set of vectors is contained in the supporting
hyperplanesHs, ..., H, for any elementW e S(Ha, ..., Hy). Thus the latticewZ¢ is admissible and
henceA cannot be critical.

In general the situation is much more complicated/gs) bd(K) may just be a proper subset of
ANbd(K). But by a close examination of all possible cases Minkowski found the following theorem.

Theorem 2.1 (Minkowski, 1904).Let K € K3. Then there exists a critical latticd of K with basisB
such thatod(K) N A contains a test séfé ={u},...,uk} foraj e {1, 2, 3}, such that for any choice of
supporting hyperplane#; of K containingu’,, 1<i < k, one of the following} cases holds

I. j=21and(2.6)holds,

II. j =2and(2.6)holds,
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lll. j =3and(2.6)holds,

IV. j = 3 and there are scalarsii, A, A6 > 0, A3 € R, such that for the outer normal vectors
vt v?, v3, 08 of the hyperplanegt,, H,, Hs, Hg, respectively, holdga) A1v* 4 Aov2 4 A3v3 = Agv®,
and (b) the hyperplaneHs with outer normal vecton v! + A,v? containing u$ is a supporting
hyperplane ofk and(2.6) holds with Hg replaced byHs.

At this point we should remark that in case | Minkowski gave a somewhat stronger condition, but our
form appears to be more suitable for automatic computation.

Of course, given an arbitrary convex bo&ywe do not know how to exploit Theorem 2.1, but if we
consider only polytopes then for the supporting hyperpladesm Theorem 2.1 we may always choose
the supporting hyperplanes of the facets of the polytope. As a polytope has only finitely many facets we
obtain the following frame of an algorithm for the computation of a critical lattice of a polytope.

Algorithm 2.1. Let P € K.
e For each of the cases I-IV of Theorem 2.1 do
— For every choice of facets with supporting planedy, ..., H, of P (k = 6 in the first two cases
andk = 7 in the latter ones) do
S1. Determin&Sy, . u,.
S2. Find the local minimaM\ g, . p, Of fu, . m (cf. (2.6)).
S3. For eachM € My, ., check whethet - Z¢ is an admissible lattice, i.eM satisfies the
criterion (1) of Lemma 2.3 in the first case and criterion (2) in the remaining cases.
e Among all calculated admissible lattices find one with minimal determinant. The corresponding lattice
is a critical lattice ofP.

It turns out that at this point we are left with two problems. First there appears to be no general purpose
algorithm to find all local minima of a function likgy, ., as we have to do in step S2. Moreover, a
priori we cannot assume that the local minima of this function are isolated points. In general, they may
form a manifold and we have the problem to parameterize such a manifold in order to carry out step S3.
In Section 4 we shall show how one can overcome these problems. Another problem is just the number
of steps of the algorithm. In a straightforward implementation, we have to consider every choice of 6
and 7 facets of the polytope and hence we have aﬁpuiteps. Of course, this limits the algorithm to
polytopes having only few facets. Hence in order to get an efficient algorithm we have to reduce the
number of steps. This can be done very effectively by some considerations given in Section 3.

We close the section with some remarks on the extension of the algorithm to higher dimensions. While
Minkowski settles his work in 3-space, the ideas principally work in higher dimensions as well. In fact
there has been an enumeration of lattice crosspolytopes in dimension 4 [2—4,17,21,31] and dimension &
[28]. Beside this classification we have to determine the number of different test sets. For the cardinality
of a test set we have the general natural lower bound(@f+ 1)/2 given in [26]. There is no obvious
upper bound for their cardinality, but the results in dimension two and three suggest the upper bound of
one half of the maximal number of lattice points contained in the boundary of a lattice point free strictly
convex set. Due to a result of Minkowski this number is bounded“y 2. Finally, we have to take
into account the additional lattice points (not contained in the test sets) lying in the boundary, which are
responsible for the split of test sets of the third kind into two separate cases in dimension 3. Thus even
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in dimension 4 there should be a large number of cases which have to be considered separately and thel
has been no attempt to give an enumeration of these cases.

Further in each case we have to consider all possible choices of facets and even though we coulc
apply the results of the next section it appears to be computationally difficult to choose at least 10 out
of n facets. Moreover, even in dimension 4 we have to solve a minimization problem for polynomials
of degree 4 with up to six variables. Again it appears to be not an easy task to find all local minima
reliably and quickly. Thus without introduction of new ideas we have the impression that the algorithm
is practically restricted to 3-space.

3. Necessary conditions for test sets

In the following let P € K3 be a centrally symmetric polytope withfacetsF; and letH; = aff(F;),
1<i <n.By H;* we denote the halfspace bounded Bycontaining P and letH,” = R3\ H," U H;.
We always assume that we haviatice descriptionof the polytope, i.e., we know the face lattice Bf
specified by its Hasse diagram and the vertices and edgRqdf [25]). In particular, for each facet;
we have a listV (F;) of its edge-neighbors, i.e.,

We remark that such a lattice description can be computed from the descrptiofi)’_; H," in time
O(nlogn) [6]. Regarding the combinatorics of polytopes we refer to the books [19,32].

As pointed out in the last section one crucial point of Algorithm 2.1 is the number of choices of
facets (or hyperplane#;) which have to be considered for each case of the algorithm. In this section
we show how one can reduce this number. However, since it turns out that the most time consuming
step of Algorithm 2.1 is step S2, we are also looking for ways to reduce the number of executions of
step S2 as well. An exact worst case analysis of the complexity of the resulting algorithm appears to be
not completely straightforward. But we show that for some rather natural classes of polytopes with
facets we can eliminate “most” possible choices of facets in tiee)Cand we have to carry out only
O(n®?) times the steps S1-S3.

Of course, using the central symmetry of the polytope and the arbitrariness of the order of the basis
of a lattice we can reduce the number of possible choices of hyperpkngsthe first two cases to
% (3) and to 2 55 () choices in the remaining cases. This does not really help and so one could try to
make further use of the symmetries of a given polytope, as Minkowski did in his study of the octahedron,
where he managed to reduce the number of cases to 1 (!). Thus he did not need to carry out one step S
However, for polytopes with little symmetry this would not be of great help and therefore we use a
different approach.

With respect to step S3 of Algorithm 2.1 we are only interested in a selection of hypergtanes
1<i <k (say), such that

Sy, N{W € R¥®: Uy, Cbd(P)} #1, (3.1)

whereldy, is a test set of the first, second or third kind corresponding to the case we are studying. If
Uw = {ul,, ..., u%,} then (3.1) just says that the poim}, should not only lie in the hyperplang;, but
in the facetF;. Hence (3.1) can be reformulated as the condition that
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Sty = {W e R¥3: ul, € H; andul, € H;* for all F;, eN(F), 1<i <k} #0. (3.2)

.....

.....

of hyperplaned;. For instance: Letr = —1 if we are dealing with case 1 and tet= 1 otherwise. Then
the vectors of a test set satisfy the relations

”%v +ou€‘,:u$’v, u%v—l—ouf‘,:uév, u%v—l—oua,:u“;’v. (3.3)
If we have fixed a facef; with hyperplaneH; = {x € R3: (a})Tx = b1}, say, for the vectorj,, then
by the first relation of (3.3) we get(a')"u%, < 0. Otherwise the sum of these two vectors would be
separated by#; from the polytope, but the sunf, has to lie in a facet. This trivial observation already
reduces the possible choices @ to almostz /2 and obviously we can apply the same argumentation to
the other hyperplanes. However, as we shall see at the end of the section, a detailed analysis of the lineg
dependencies will give a much better reduction for certain classes of polytopes.

Of course, the determination of the emptiness of (3.2) would reduce the number of executions of

step S2, but we still have to consider all possible choices. Hence we have the problem to find a “fast”

.....

use of (3.3). Let

G={(F, F;, F): (Fi +0F)) N F #0}. (3.4)
Obviously,

Sttty 29 = (Fy, Fiy, Fip), (Fip, Fig, Fy), (Fiy, Fiy, Fig) €G,

and to test whether a tupl;, F;, Fy) belongs taj is just a feasibility problem of Linear Programming,
namely:
(F,F,F)eG < {(w'w?)eR¥>* w'eH, w'eH, for F, e N(F),
w? € H;, w’ € Hj for F; e N(F)),
w4 ow? € Hy, wl—i—crwzer“lL for F, e N(Fp)} # 0. (3.5
The construction of the sét by enumeration clearly involves the consideration ¢&%) possibilities.
While in the numerical examples given in the last section the most time consuming part of the algorithm
was the solution of (3.2), the series of examples at the end of the section indicates that for large polytopes

the determination ofj could be the hardest part. Therefore we show now how the geometry of the
polytope can be used to do this effectively. To this end let

G(F)={F;: (Fi+oF;)Nnbd(P)#0¥}, 1<i<n.
With this notation we have the following lemma.
Lemma 3.1. Let F; be a facet ofP and letF;” = Ur,ear Fj- The setF” is edge-connected, i.e., any

two pointsx, y € F” can be connected by a continuous path containe#i-invithout crossing a vertex
of P.
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Proof. For a fixed pointv € F; let Z(v) = bd(P) N o (bd(P) — v) = bd(P) N (bd(P) — ov). Then we
haveZ(v) ={ye PN (P —ov): y+ uv, u € R, is a supporting line o N (P — ov)} and thusZ (v) is
the shadow boundary @ N (P — ov) in directionv. Hence two points of (v) can be connected by a
continuous path. Now let

T(w)V = U F;.

{FjZ FjﬂI(U)?é[Z)}

Then, by construction, the sétv)" is edge-connected and so it is the unign. . Iw'=F’ O

Once we have found one element of the GéF;), the lemma says that we can determine the other
elements by recursively checking the neighbors of the elements which were already found and since

we may use Lemma 3.1 in order to construct thegsé order to present an algorithm for computiigs

well as the set§ (F;) we need one more notation: Fow € R3, I <u, let B(,u) ={x e R% [ < x <u)

be the box parallel to the coordinate axes with lower veirtard upper vertex and for a facetF; let
B(l', u') be the minimal box containing;, which can be computed from the coordinates of the vertices
of F; intime O(n). A necessary condition faiF; 4+ o F;) N Fy, # ¥ is given by

o o i J i j k ok —
(B(,u') + 0B, u')) 0 B(H,ut) = BEHT w0 Fu)NBE w0y 70, o =1, (3.7)
B! —u/,u' —1)YNBI*, ub) #0, o=-1,
which can easily be checked since
B(l,uyNB(l,u)#¥ < I<uandl<u. (3.8)

Therefore, if we want to find for a given paki;, F; all facetsF, with (F;, F;, F;) € G we just have to
consider the facets corresponding to boBg', u*) satisfying (3.7). For polytopes with many facets
“most” facets will be “far away” fromF; 4+ F; and thus (3.7) won'’t be fulfilled for “most” facets.

The next lemma says how we can find one facet lying in &$£t) with the help of these boxes.

Lemma 3.2. Letv(P) = max{#N (F;): 1<i <n}, let B(P) be the maximal number of box®8s, u*)
intersecting a box of the fornB (I’ + u') + o B(l/ +u’), 1 <i, j < n, and letn(P) be the maximal
number of facets oP having a nonempty intersection with a fixed hyperplane containing the origin.
Then a facef; lying in a setG(F;) can be found in tim®(n + n(P) log?(n) + n(P)B(P)v(P)).

Proof. Let v € F; and letH be any hyperplane containingand the origin. Then there exists a facet
F; € G(F;) having a nonempty intersection witth N P. Using the edges oP we can easily determine
all facets{Fj,, ..., F;}, i < n(P), with this property. Since the polytope hagnp edges this can be
carried out in time @z). For eachy; the boxesB (%, u"), k < B(P), intersecting B(I', u') +o B(l/, u’'))
can be determined in time @g?(n) + B(P)) by well-known methods from computational geometry
about range searching (cf. [1]). For each possible chéice;,, F;, we use (3.5) to verify whether
(F;, F;,, F) € G and thusF;, € G(F;). Now each (3.5) is a feasibility problem of Linear Programming
with O(v(P)) constraints in dimension 6 and this can be solved with(®)) arithmetic operations
(cf.[24, p. 199]). O
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Using the last lemma we have the following algorithm for computing thejsaeind the setsj(F;),
1<i<n.

Algorithm 3.1 (ComputingG (F;) andg).
Input: A polytope P € K3 given by the supporting hyperplanés, 1 <i < n, of its facetsF;, as well as
a lattice description of.
Output: G andG(F;), 1<i <n.
e Let U = ¢ and determine the boxal’, u’), 1<i <n.
e For each facef; do
G1. Find a facef; € G(F;). LetU; =@ andN = {F;}.
G2. WhileN £ ¢ do
G3. For Fj, € N determine all facetsFy,,..., F;, such that(B(I',u') + o B(l’/*,u’t)) N
B(%, u*y + ¢ (cf. (3.7), (3.8)).
G4. Use (3.5) to determine dlF;, Fj,, Fy,) € G, k; € {k1, ..., k,}, and add them to the s&t.
G5. LetU; = U; U{F;} andN = (N UN (F;))\U;, if there exists &F;, F;,, Fy,) € G, otherwise
let N = N\Fj,.

Lemma 3.3. Let y (P) = max{#G(F;): 1<i < n}, and letv(P), n(P), B(P) as in Lemma3.2 Then
Algorithm 3.1 determinesj andG(F;), 1 <i < n, intime

O(n®+nlog?(n) (n(P) + y (PYV(P)B(P)) +nB(P)v(P)(n(P) +y (P)v(P))).

Proof. By Lemma 3.1 the algorithm finds allF;, F;, Fy) € G and at the end we hav&/ = G.
Furthermore, at the end of each loop G2 thelgetoincides withG (F;).

To find a first facetF; € G(F;) we need by Lemma 3.2 at mostio+ n(P) log?(n) + n(P)B(P)v(P))
operations. For the estimation of the steps G3 and G4 we can proceed as in the proof of Lemma 3.2.
The boxes in step G3 can be found in timdd@?(n) + B(P)) and in step G4 we have to solve at most
B(P) feasibility problems (cf. (3.5)) with at most(P) constraints in dimension 6 which can be done
with O(v(P)) arithmetic operations. Finally, we observe that for each fac#te loop G2 is executed at
mosty (P)v(P) times. O

Remarks.

(i) The bound on the running time given in the last lemma is useless for a worst-case analysis, because
there exist polytopes such that each of the numbery, B(P), v (P), v(P) is of order Qn). In this
case Lemma 3.3 would give an)-algorithm and of course, one can determine the Geg( F;)
by a trivial O(n*)-algorithm. Nevertheless we shall see in Theorem 3.1 that this lemma gives an
O(n?) bound for a rather natural class of polytopes.

(i) As we haveF; € G(F;) < F; € G(F;) we may use the facets belonging to a §eF;) as starting
facets in step G1. It is not hard to see that we can determine all starting facets except the first one in
this way. However, for simplification we do not exploit this fact.

Altogether the previous observations lead to the following refinement of Algorithm 2.1.
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Algorithm 3.2.
Input: A polytope P € K3 given by the supporting hyperplanés, 1 <i < n, of its facetsF;, as well as
a lattice description of.
Output: A densest packing lattice.
e Foreach of the cases I-IV of Theorem 2.1 do
I11. Compute the set§(F;) andgG with Algorithm 3.1.
— For three facet#),, F,, F, satisfyingF,, € G(F;,) andFj, € G(F;;) N G(F,,) do
— For every choice of facetg,, 4 <i <k, with (Fy,, F,, Fi,), (Fi,, Fi, F1,), (Fiy, Fiy, Fig) €G

do

SO. If Sp,....m, # 9 (cf. (3.2)) do

S1. DetermlneS‘H, ,,,,, Hy,

S2. Find the local mlnlmaMHI oy, OF [ m,

S3. For eachtM € My, . H, check whether - Z¢ is an admissible lattice, i.eM
satisfies the criterion (1) of Lemma 2.3 in the first case and criterion (2) in the
remaining cases.

e Among all calculated admissible lattices find one with minimal determinant. The corresponding lattice
is a critical lattice ofP.

It seems to be a nontrivial problem to give a “nontrivial” worst case analysis of the algorithm for an
arbitrary polytope. In the following we want to demonstrate, by a rather natural series of polytopes, the
improvement of Algorithm 3.2 compared with the brute force method (see Algorithm 2.1) which involves
the examination of2(n”) steps SO-S3.

For a facetF of a polytopeP we denote byR(F) its circumradius and by(F) its inradius with
respect to its affine hull. For a real> 0 we say that the facets &f are ofc-uniform shape, if

min{r(F): F facet of P} > c¢-max{R(F): F facet of P}.

Theorem 3.1. Let{P,},.cn be a series of polytopeB,, ICS such that

() all P, have facets of-uniform shape for some fixegdand

(i) {P™} converges to th8-dimensional unit ball with respect to the Hausdorff metric.

Let f,, be the number of facets of the polytapg. Then the number of all choices of facets which will be
examined by AlgorithrB.2in the stepsS0-S3s of sizeO( £/2) and these possible choices of facets can
be determined in tim®(£2).

Proof. We project bdP,) by the radial projectiorp onto the unit spheres? and we carry out all
calculations ons?. It can easily be checked that our asymptotical estimates remain correct. The facets
of P, will be denoted byF", 1<i < f,, and in the following we shall denote lay certain positive
constants. First we observe that the uniformity of our sequence implies that for the spherical diameter
d(p(F!")) and the spherical ared(p (F/")) of the facets holds

2 S <A((EM) <

N Ay

Next we note that for a point € S° we have
{(yes? y+xeSs?={yeS% (x,y) =-1/2}. (3.10)

4

I

(3.9)
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Now let F", FY be two facets ofP,, such that(F" + oF") N bd(P,) # ¥ and letx € F". We find
by (3.9), (3.10) that

" bd ,,,:— <—= 3.
F,c{ye (P 5 = 2= < (o). o) < +m} (3.12)

As the spherical area of the set on the right is boundedspy/ f,, we find by (3.9) that for fixedr”
there are at most @/ f,,) facesF}" such that(F}" + o F}") N bd(P,,) # ¥. For two facesF;" and F}"

we haveR (F/" + o F") < R(F") + R(F") <1/ fm- Proceedlng as before we see that there can be at
most 1) faces ofP which mtersec(F’" + o F}"). Altogether we have found that

#G=0(f%%) and #H(F")=0(/fn). (3.12)
Next we ask for the efficiency of Algorithm 3.1 to determine these setsBIt!, u™) be a minimal
box containing F.’” By the above estimate for the circumradius of two facgfs, F;" we have
0 —utt —ul "I =O(1//T) for each coordinaté. Agaln using the area bound (3.9) we see
that there are at most(@) facetsF™ with u}"* > 17" + 17"/ (oru}™* > 17" —uf"’) andi} <ufy' +uy’

(or "* <u"' — 13" ) (cf. (3.8)). Hence the numbgh(P) of Lemma 3.3 is of order (). Next we note
that on account of our assumptions the maximal numibgp of neighbors of a given facet is constant, if
fm is large enough. Moreover, by (3.11) we also see that the nupileris of order,/ f,, and therefore
Algorithm 3.1 determines the sétas well as the se@(F/") in time O( f?2) (cf. Lemma 3.3).

Since we have already proven th&#™) = O(/ f,,) and that for two given facetg)!, F}) there are
only O(1) many facets;" with (F;7, F)', F') € G, it remains to show that@ (F};') N G(F}))) = O(1)
for F) € G(F]!) (cf. Algorithm 3.2). Letx’ € G(F"). Then we have (cf. (3.11))

G e S p) <G+ e and
m m . Z_i i - 65 | —

The radial projection of the latter set is a spherical parallelogram with “edge lengf\ 4, ). Hence
its spherical area is Q/f,,) and together with (3.9) this showsG F;") N G(F))) = O(1). O

Remark. Obviously, in the cases II-1V the sef§F;), G coincide. Furthermore, singé; — F;) N Fy =
(F; + (—F)) N F, and—F, is a facet ofP it suffices to determing (F;), G only for one case.

4. Determination of the local minima

In this section we concentrate on the steps S1-S3 of Algorithm 3.2. To this eRidet be a
centrally symmetric polytope with facets given by the inequalities

P={xeR% (a) x<b, 1<i<n}, (4.1)

wherea’ € R® andb; € R.q. Let H; = {x € R (a')"x = b;} be the supporting hyperplane of the facet

F;. Since the cases |-V of the algorithm can be treated “ more or less” in the same way, in the following
we shall focus only on case | and at the end of the section we shall discuss the necessary changes ar
adoptions for the other cases.
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For six hyperplanest;;, 1< j < 6, the setSy, . n, (see step S1 and (2.4)) is given by all
W = (wl, w?, w?) e R¥*3 satisfying

(ail)T 0 0 bil
0 (a?)? 0 w1 b;,
0 0 (a7 b;
0 (aiA)T _(ai4)T wi = bij (42)
—@)" 0 @)’ |\ bis
(@)’  —(@®)’ 0 big
We denote the matrix on the left;, .. € R%® and with suitable matrice§;, _ Miﬁwiﬁ, 1<j<
9 —rank(4;, .. ;) we may write
erank(A,-l,_.,,-G) )
SHil’-"»HiG - {W © RSXS: W= Cilw-»ie + Z )‘j ’ Mijl,...,ie’ )‘j € R} (43)
j=1

We remark that the matrices;,
systems of linear equations.

M ,, can easily be determined by any program for solving

~-»i6’ 11,..0,1

#, (W) (cf. (2.5)) has no local minimum

..........

W € SHil ..... Hi6 W|th inl ..... H'B(W) > O

Proof. Since the vectora/ correspond to facets defining hyperplanes the ve¢térs0, 0)7, (0, a’2, 0)T,
(a's, —a's,0)T € R® are linearly independent. Otherwise we can assumerthata’* = +a'2 and we get
(a'®)T(w! — w?) = b;, F b;, # b;, = b;;. Hence the vectorf’s, a4, a’s} are linearly dependent, because
otherwise rankA,, _ ;) = 6. In the same way we find thdt', a’s, a's} and {a’2, a’, a’s} are linearly
dependent. Thus we can find three nontrivial vectdrs?, v3 € R3\ {0} such that

e lin{a'®, a™, aiS}L, v2e lin{a™,a’s, aie}l, v3e lin{a'2, a", aiﬁ}l,
where linU+ denotes the orthogonal complement oflin Now let W = (w?, w?, w?) € SHy,...H,

i6
with det(W) # 0, and let us assume tha¥ is a local minimum. By the choice of’ we have

g,y v) = det(w! + 10t w? + p?, w3+ vd)
=detW) + A det(vl, w?, w3) + 1 det(wl, v2, w3) +v det(wl, w?, v3)
+ apdet(v, v2, w) + pvdetw?, v?, v3) + av det(vt, w? v°)
+ Ay det(vl, v2, vs).
It is easy to see that this function has a local extremunz®, 0) if and only if it is constant, i.e.,
g(h, i, v) = det(W). In particular we have dét!, w?, w®) = detw?, v?, w®) = det(v?, v?, w?) = 0.
Sincew?, w?, w® are linearly independent this implies thétor v? belongs to lifw3}, and in the same

way we find that? or v lies in lin{w?} andv? or v belongs to lifw?}. However, since’ e R3\ {0} this
yields the contradictiondet(v?, v, v®)| = |detW)|. O

Since we are only interested in local miniriia of the functionsfH,.l,_._,Hi6 with inl,_._,Hie(W) > 0,
in the following we assume that raf;, ;) = 6. Instead of searching for the local minima of
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Tty (W) = det(W)| it is more practical to look for all local extrema of the function @&y, which

.....

Pir, s (X, ¥, 2) = deY(Cyy 6+ x - Mill,...,ie +ty- Mi ..... is T2 Mi ..... o) (4.4)

..........

i,...i IS @ polynomial in 3 variableér, y, z), where each monomial has total degree 3 at most. In what
follows we are mainly interested in general properties of such a polynomial, and therefore we shall write
p instead ofp;, ;.. Sop can be written as

.....

i ]k
px.y,2) = > aji-x'y 2,
0<i, j. k<3, i+j+k<3

for some scalarg; ; , € R. The canonical first step in order to find the local extrema is to calculate the
setV(Vp) where the gradien?p vanishes, i.e.,

V(Vp) = {(x,y,2) € R® Vp(x, y,2) =0}.
Thus we are interested in the common roots of the partial derivatives

0
= b = x4+ (3. 2) X+ (. 2),

ox
R
b2 = oy X + Ly, 2) - x + 920y, 2), (45
_%
Pa = 5_ = xa¥ +1(y.2) - x +s(y,2),

wherey; € R, ; = xi2y + xi.32 + Xi.00 xi,; € R, anda; = xi.2.09? + xi,1.192 + xi.0222+ Xi.1.0y + Xi,012 +
X000 Xijx €R, 1<i <3. Asyp is a polynomial of total degree of at most13(Vyp) has the following
nice property.

Lemma4.2. Let m € V(Vp) be a local extremum of the functignand letC c V(Vp) be a(path)
connected component containing Thenaff(C) C V(Vp).

Proof. Letn € C, m # n. Since there exists a path from to n in C and since the gradient vanishes
onC we havep(m) = p(n). Forr e Rlets(t) =m +t - (n —m). The functionp(s(¢)) is an univariate
polynomial inz of degree at most three wit(s(0)) = p(s(1)) and the derivative vanishes at 0 and 1.
Thusp(s(z)) = p(m) for all r € R. Sincem is assumed to be a local extremum there exist& €0, 1)

such thats(7) is a local extremum, too. Hence we have found three points on the (ihevhere the
gradient ofp vanishes. Since all partial derivatives are polynomials of total degree at most two we have
shown thatVp(s(r)) =0forallr e R. O

The last lemma tells us that in order to locate all possible local extrenpaito$uffices to find all
isolated affine subspace$ Vp =0, i.e.,

Vait(Vp) = {C C V(Vp): C = aff(C) and there exists no connected
component{ C V(Vp) with C G U}. (4.6)

To our surprise we have not found any efficient algorithm for the determination of the@met, or,
in general, for the determination of the local extrema of the polynomi@herefore we have developed
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an ad hoc method for our purposes which is based on resultants of polynomials and Lemma 4.2. For a
detailed treatment of resultants we refer to [8,9]. Here we just collect some of their basic properties.
To this end we denote for a polynomiat R[xq, ..., x,] by ded¥) its total degree and by déjgx;) we
denote the degree of the variahleif we considerf as a polynomial oveR[x1, ..., x;_1, Xj41, ..., Xq]-
For a polynomial or a system of polynomi&lsc R[xy, ..., x;] we denote by (Z) = {x e R": f(x) =0
for all § € Z}. Furthermore, leV,x(Z) be the set of all isolated affine subspaces/¢l) in the sense
of (4.6) and let

VI(T) = {C e Var(D): dimC) = j}, j=0,....d.

The elements ob% will be calledisolated roots Since in general is seems to be a hard problem to
determine exactly the s&t«(Z) we only look for an approximation of this set. This means we want to
determine a set

Vait(T) consisting of finitely many affine subspdate V(Z) and Va(Z) C Vart (T). 4.7

Now let §/ € R[x1,...,x4], j = 1,2, be two polynomials and with respect to the coefficient ring
Rlxo, ..., xz] we write

m;
fr(x1, .00, xq) =Zfi,jxll’
i=0
with f; ; € Rlxa, ..., x4], mj = deq§/, x1) and letmy, m» > 1. Theresultantof f andg with respect
to x1 will be denoted by regt, {2, x1) € R[xy, ..., x;] and it is given by the determinant of the Sylvester
matrix of {* and§? with respect tox,, i.e.,

S Jma,2
fp—11 - Sma—1.2
: Smi1 : Jnz,2
reg(f, 2, x1) = det Foiotn : Fopet2 | (4.8)
fo1 : :
: fo2 :
fo1 fo2

where the columns correspondingftof? are repeateeh,-times,m;-times, respectively. The definition
can be extended to the case + m, > 1 by setting reg?, {2, x;) = f/ if m; =0.

Lemma 4.3 [8, p. 150].
(i) Let(uq,us, ..., us) € R? be acommon root gft andf?. Thenres(f, §2, x1)(uo, ..., ug) = 0.
(i) Letu = (up,...,uy) € R~1 such thatres(t, {2, x1)(u) = 0 but f,,, 1(u) #00Or f,,, 2(u) #0. Then
there exists a; € C such thatj'(uy, u) = f?(u1, u) = 0.
(iii) res(f%, 2, x1) = 0 if and only if{* and {> have a common factqy € R[x1, ..., x;] with deq(g, x1)
> 1.

In general we would like to use resultants in the following way. hgtp, andp, be the partial
derivatives of the polynomigl (see (4.5)). First we compute the two resultants sesresp1, p2, x) €
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R[y, z], res s = redp,, p3, x) € R[y, z] and then the resultant res; = res(res,», res s, y) € Rlz].
Next we determine the real roots of 1gg, and for each root we determine the common roots of
res »(y,z) =0 and ress(y,z) = 0. So we get a couple of common roots ofi;rgand reg ;. Again we
put each pair of those common roots iptQ p», ps and solve the three polynomials with respect to

Now, as we shall see, if regs # 0 (and thus all resultants are nontrivial), then we can compute
V(Vp) by this method. However, in general some of the resultants may vanish and hence we have to
find common factors of the polynomials (cf. Lemma 4.3(iii)). According to Lemma 4.2 we are mainly
interested in factors corresponding to affine subspaces. Therefore we call a polyneiR[at, . .., x,]
linearif deg(l) =1, i.e.,

d
(=lo+ ) li-xi, LieR.

Remark 4.1. Letf=>", fixi,[=Io+ Zﬁlzlli X; € R[x1, ..., x4l with f; e R[xp,...,x4],l; e Rand
fm, 11 #0. Thenl is a factor off if and only if f((l1x1 — 1)/ l1, x2, ..., x4) =0.

Proof. Obviously, if [ is factor ofj then the statement holds. Without loss of generalityjlet 1 and
[=[—x; and letg = >/, ¢; x! be the polynomial whose coefficients are recursively defined by

Gm-1=fn and g = fiy1—qipal, i=m—2,...,0. (4.9

Multlpllcatlon of landq yields(-q=§— fo+[-qo. Sincefo, [-go € Rlxo, ..., x4, (=1, x2, ..., x9) =
f(—[, x2,...,x5) =0we must have- fo+[-go=0. O

Hence thed — 1)-dimensional affine subspaces, where a polynomial vanishes are given by the linear
factors, and visa versa. Therefore for aBetf polynomials inR[x4, ..., x,] let

WY T) = {C c V(Z): C =aff(C) and dimC) =d — 1}.

On account of Remark 4.1 we can easily determine all linear factors and/tHas(j) of a given
polynomial by the following procedure.

Algorithm 4.1 (Determining a linear factor of a polynomigl
e For each variable; do (without loss of generality let = 1)
F1. Writef asf = >/, fi xi with f; € R[xp, ..., x4].
If my=£0do
F2. Findd affinely independent poinig, ..., u¢*! e R¥~! such thaf(xy, u’) #0,2<i <d + 1.
F3. For 2<i <d + 1 determine the real roots; of the univariate polynomialgxy, u’) = 0. Let
Zo={x1eR: f(xl,O,...,O):O}.
F4. Foreachzy,...,z411) € Zo X --- X Z4,1 dO
F5. Determine the solution = (lp, lo, ..., 1;)T € R? of the linear systent(1, Wl =z,
2<i<d+1.
F6. Letl= —lo +x1— Zfzz L - x;. If f(x1 — 1, x2, ..., x4) = 0 thenl is a linear factor and the
remalnderf = f/lis given by the polynomiad = >/, ¢; x} defined in (4.9).
e If for all solutions! = (lg, I, . .., 1;)" € R¢ the corresponding linear polynomiais not a factor off
thenf posseses no linear factors.
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Lemma4.4. Letf € R[xy, ..., x4], f # 0. Then Algorithm4.1finds a linear facto € R[xq, ..., x;] of f
and determines the polynomigld, if f has a linear factor at all.

Proof. Let [ =1y + Zle l;x; be a linear factor of and let us assume without loss of generality that
[1=-1. Letl = lo+lxp+ - +lixg € Rlxo, ..., x4l andl = (lg, I, . . ., ld)T. By Remark 4.1 we have
f(T, x, . .., x4) = 0 and for the pointa’ we get 0= f(I(u’), u') = f((1, u' )I, u’) and hencel, u’ )l € Z;,
i=2,...,d+ 1. By the choice of the vectorg each linear system has a unique solution.

Finally, we remark that thed — 1)-linearly independent pointg’ can be found quite easily. If the
leading coefficient off with respect tax; is constant, then we sat = ¢~ e R, 2<i <d, and
u?tt =0, wheree’ denotes théth unit vector. Otherwise we perturb these points a bit.

Since each polynomial can be written as a unique product of irreducible polynomials we can apply the
above algorithm iteratively to the computed remainders in order to determine all linear factors of a given
polynomial. Obviously, we can also use Algorithm 4.1 to find a common linear factor of two or more
polynomials. Hence we have the following corollary.

Corollary 4.1. LetZ be a set of polynomial§ € R[x1, ..., x4], i € I. Then there exists an algorithm
which computes all common linear factors of the polynonfialse 7, and the setW¢~(7).

For special polynomials we have a simple test to decide whether one polynomial is a factor of another
one.

Remark 4.2. Let f=>"0 fi - X7 € Rlxq, ..., xq), § =08 - x1 " €Rlxy,...,xq], m >n > 1,
fi» & € Rlxp, ..., x4] andge € R\{0}. Then there exists an algorithm which decides whegtisra factor
of f and determines the polynomigl= {/g if g is a factor off.

Proof. Without loss of generality lego = 1. By definitiong is a factor off if and only if there exists
a polynomialh = 70" h; - x{'™"", h; € Rxa, ..., x4], such thatg - h = §. Hence by comparing the
coefficients we get

min{k,n}

fk: Z gj'hk—j, k:O,...,m.
j=max0,n—m+k}

Since go = 1 the firstm — n identities determine uniquely the coefficierts, j =0, ...,m —n, and
the remaining identities can be used as a verification wheghierreally a factor off, i.e., whether

b=7/g. O

Next we describe algorithms how we can find all the isolated affine subspaces for some very special
polynomials in two variables.

Lemma4.5. Letf= fo- x>+ f1-x + fo € Rlx, y] with f; e R[y] anddeq f;) <i. Then there exists an
algorithm which compute¥a(f).

Proof. SinceV(f) is a conic section, the set of all isolated affine subspac&gfdfconsists either of one
or of two lines or of an isolated root or it is empty. Using well-known formula for conic sections one can
determine all of them. O
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Lemma 4.6. Let§ € R[x, y] with degf) < 4 andf # 0. Then there exists an algorithm which computes
a setVq¢(f) in the sense q#4.7).

Proof. Letf= Zj‘zoﬁ x4, fi e R[y] and degf;) <i. On account of Corollary 4.1 we determine all
linear factors off and the se¥W(f) containingV%(f). Hence it remains to determine the isolated roots,
ie., Vaoﬁ(f). Since none of the isolated roots lies in a 1-dimensional subspare'@h, we can divide

f by the linear factors corresponding to the element®\3{§). Therefore, in the following we assume
thatf has no linear factors. Ifis an univariate polynomial iw, say, having a real roat, then—x + x
would be a linear factor of. Thus if f is an univariate polynomial we Sé}aﬁ(f) = W(f). Hence let
dedf, x) > dedf, y) > 1.

If (x,y) is an isolated root theW{(x,y) = 0 and thus we can look for all isolated roots of the set
{(x,y) e R% f(x,y) = f.(x, y) = 0}, wheref, denotes the partial derivative pivith respect tay, i.e.,
fo=32 07 -x3" with f; e R[y], deq f;) <i. Now let res=reg{, f,, x) € R[y] be the resultant of
these two polynomials. If reg 0 then we determin& (re9 and afterwardsVy = {(x, y): f =, =0,

y € V(re9}. Observe, that for any fixed € V(re9 the polynomialf(x,y) cannot vanish, because
otherwise it contains a linear factor (see Remark 4.1). In this case \ﬁeﬁe)tz Wo UWL(§).

It remains to consider the case re9 and therefore we may assume @geg) > 2. By Lemma 4.3
we know thatf andf, have a common factagr which has positive degree in Moreover, it is not hard
to see that re$, f,) = 0 implies thatf is divisible by someéh?, h € R[x, y] with degh, x) > 1. Hence, if
dedf, x) < 3 thenf can be written as a product of polynomiglswvith dedgf, x) = 1 which shows thaf
has no isolated roots.

So let degf, x) = 4. Then the common factgrof f, f. has degree 1, 2 or 3 with respect to the variable
x. If deg(g, x) = 1 then it is a linear factor, because the leading coefficignis a constant. Also, if
dedqyg, x) = 3 thenf/g € R[x, y] is a linear factor off. Hence de(, x) = 2 and it can be written as
g= Ziz:ogixz_" with g; € R[y], deqg;) <i. Thusf,/g is a linear factor and we can determigéy
the following procedure. For each linear factaf §, let g, = §,/[. Then we have to test whethgris a
factor off. This can be done with the algorithm described in Remark 4.2. So we can assume that we have
found the factorg of f with degg) = 2. Letg = f/g. Then the problem is reduced to the determination
of the isolated roots of the two polynomiajsandg, which can be solved by Lemma 4.5. Hence we set
Vair() = V3s(8) U V%@ UWH(H). O

Lemma4.7. Letf, g € R[x, y] with f, g # 0 andded(f) < 4, degg) < 3. Then there exists an algorithm
which computes a sét(f, g) in the sense of4.7).

Proof. We proceed as in the proof of the last lemma. First we determine all common linear factors of
these two polynomials and the sét'(, g) containingV(f, g) (cf. Corollary 4.1). Then we divide the
polynomials by these common linear factors and it remains to find the isolatedVifjofsg). To this
end we may assume that dggr), dedf, y) > 1.

Let res=redf, g, x) € R[y]. If res# 0 then we determin@(res, Wo = {(x,y): f=f. =0, y €
V(res} and we sef/aﬁ(f) =W UW2(§). Therefore we can assume re$. Since de¢y) < 3 we know
that if the polynomialg is not irreducible then it has a linear factipisay. Using Algorithm 4.1 we can
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determine such a linear factbas well as the remaind@r= g/[. Next we split our system in two systems,
namely

1. f=§=0
and
I, f=I1=0.

Sincel is a linear factor andy and f are assumed to be free of common linear factors the second
system can be solved by substituting one variablg iria [. Since dedg) < degg) we can apply
recursively the previous argumentation to the sysignirhus, ifg is not irreducible we se¥qx(f, g) =
V3i(T1) UVe(T2) UG, 9).

If g isirreducible, and since res0, the polynomialy has to be a factor gt Hence the determination
of V%], g) is reduced to the calculation of the isolated rootg divith the algorithm of Lemma 4.6 we

can find a seVai(g) C V(g) containingVa(g) and we seVag(f, g) = Vai(g) UWL(F, g). O

Lemma4.8.For j=1,...,3letf/ = f -x2+ f{ -x+ f} €eR[x,y.z], f/ € R[y, z], withdeq f/) <i.
Let f2 =0, f2#0, res, = resf’, {2, x), regs = regj?, >, x) and letres, # 0 or resz # 0.
Then for eachL e Var(f, 12, §°) there exists anM € Vagr(res 2, res 3) U Wi(res », res 3) such that
LC{(x,y,2) €R% (y,2) € M}.

Proof. Without loss of generality let res # 0 and letL € Va(5L, 2, f3). By L™ we denote the
orthogonal projection of. onto the plang(x, y, z) € R x = 0}. Obviously,L™ is an affine subspace
and by the definition of resultants we havergs, z) = res3(y,z) = 0 for all (y,z) € L™. Since
res » # 0 we have dimiL™) € {0, 1}. If dim(L™) = 1, thenL”™ itself corresponds to a common linear
factor of reg, and ress and thusL™ € W(res ,, res s). Therefore letL™ = {(y°, z°)} and soL is
either an isolated 1-dimensional subspace or an isolated ragtfbfi?, 13). If (y°, z%) is contained in
an 1-dimensional subspace Wt (res ,, res 3) the statement is certainly true. Thus we may assume that
[(y°, z%) # 0 for every common linear factdrof reg , and res 3 and we have to show thaf = (9, 7%

is an isolated root ol u(res », res 3). Suppose the contrary and let = (y1, z}) € V(res », res 3)
such that there exists a pafth C V(res », res ), P = {u': t € [0, 1]}, connectingu® and u'. Then

P # conv{u®, u'}, because otherwise &, u'} C V(res », res 3) is a 1-dimensional set containing.
Hence we can assumg?(u’) # 0, ¢ € (0,1), and by Lemma 4.3(ii) there exigt, b’ € C such that
fia’,u') = §2(a',u') = 0= f2(b',u') = §3(b',u'), t € (0,1). Since f& =0 and f2(u') # 0 we get
a' = b' e R. However this shows that is not an isolated affine subspacelif?, 2, 1°). O

Of course the last lemma also implies the following corollary.

Corollary 4.2. For j=1,2let§i = fJ -x2+ f{ -x + fJ € Rlx, y.z], f/ € R[y, z], withdeq f/) <.
Let f2 =0, f2+# 0 and letreg ; = resf, {2, x) # 0. Then for eachL € Vag(f*, 2 there exists an
M € Vag(res o) U Wl(res ,) such thatl c {(x, y,z) e R (y,z) € M}.

Proof. We setf2 = £ and apply Lemma 4.8. 0

Using Corollary 4.1 and the previous lemmas we can make the resultant approach practicable.
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Theorem 4.1. Let p(x, y, z) be a polynomial with total degree at ma3t Let V(Vp) = {(x,y,2) €
R3: Vp = 0}. There exists an algorithm computing a 3&k(Vp) in the sense oi.7).

Proof. First we note that after some scaling, subtractions, and renumbering we may assu&hat
is given by the following systerfi of polynomial equations (see (4.5)):

p1 = [{-x+q1=0,
p3 = /c-x2+[3-x+q3=0,

wherekx € {0, 1}, [; € R[y, z] are linear polynomials angt € R[y, z] with ded(g;) < 2. We may further
assume that de€p,) < degp,) < dedgps). Depending on the number of non-trivial polynomials and the
number of variables iT we have to distinguish several cases. Obviously, if all polynomials in (4.10)
vanish then we havi(Vp) = R® and we have to do nothing.
(0) 7 consists of one or two or three polynomials in only one variable.
Then we can determing(Vp) by any algorithm computing the roots of an univariate polynomial.
(1,2) 7 consists of one polynomial in two variables.
Without loss of generality 16¢(Z) = {(x, y, z) € R% q3(y,2) =0} =R x V(q3), with V(g3) C R?.
Via the algorithm of Lemma 4.5 we can determiéqs) and we setV(Z) = {R x C: C €
Vait(43) }-
(2,2) 7 consists of two polynomials in two variables.
Without loss of generality let

V(@) = {(x,y,2) € R qa(y,2) = q3(y,2) =0} =R x V(d2, q3).

Using the Algorithm of Lemma 4.7 we can determine a4glqs, q3) C R? (cf. (4.7)) and we set
Vat(Z) = {R x C: C € Var(q2, 93)}-

(3,2) 7 consists of three polynomials in two variables.
Without loss of generality let

V(@) ={(x,y.2) €R* q1(y, 2) =2y, 2) = d3(y,2) =0} =R x V(qu1. d2, 93).

We may assume that both variables occur in all three polynomials and that the polynomials
are linearly independent. Otherwise we can reduce this case to one of the previous ones. First,
by Corollary 4.1 we determine all common linear factors and the/g&tq1, g2, g3) containing
v;ﬁ(ql, g2, q3) and hence we may assume thatq,, gz have no common linear factors and both
variables occur in the polynomials. Next we compute the resultapg reses(qz, qs3, y) € R[z].

If res, 3 # 0 then we determin@V = {(y,2): q1 =q2 =q3 =0, z € V(res 3)}. Observe that for

a fixedz not all three polynomialg; can vanish, because otherwise they have a common linear
factor. In this case we s&ki(Z) = {R x C: C € W(qy, q2, q3) UW).

It remains to consider the case zgs= 0. Sincegs,, q3 are assumed to be linearly independent and
since degq;) < 2 the common factor (cf. Lemma 4.3(iii)) has to be a linear polynomialvhich

can be determined via Algorithm 4.1. Then we consider the two systems

Il: ql - Oa [2,3 == 0’
Zo: q:.=0, q2/l23=0, q3/lo3=0.
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Both systems are free of common linear factors and since both systems contain linear polynomials
we can easily determing(Z;) andV(Z,) by substitution. We set

Vat(Z) = {R x C: C € W1, 42, 43) U V(Z1) UV(Z) }.

e In the remaining cases we first determine the)$&8(Z) and therefore we may always assume
that the given partial derivatives have no common linear factors.

(1,3) Z consists of one polynomial in three variables.
(@) LetV(Z) = {(x,y,z) € R® [3-x + g3 =0}. Then we may assunig# 0 and the dimension of
any affine subspace 3f(7) is 2. Therefore we s&t(Z) = W3(Z).
(b) Let V() ={(x,y,2) e R §=x’+13-x +q3=0}. Let g =3 - [3/4 — q3 € R[y, z]. For
every (x*, y*, z*) € V(Z) we havex* = —[3(y*, z")/2 £ \/q(y*, z*) and hencey(y*,z*) > 0. If
q(y*, z*) > 0 then we can always find a neighborhobdof (y*, z*) such thatj(y, z) > 0 for all
(y,z) € U and (x*, y*, z*) belongs to a 2-dimensional connected componenf@f. Hence we
may set (cf. Lemma 4.5)

Var @) =W DU | {(~k(.2)/2.y.2): (v.2)€C}.
CeVarr(q)

(2,3) 7 consists of two polynomials in three variables.
Then we may assume without loss of generality that the variablecurs in both polynomials.
(a) Let

V@) ={(x,y,200€R¥ p1=l1-x+q1=0, pp=L-x+q, =0}

with [; # 0, [, # 0 and we can assume that, p, are linearly independent. Let rese Ry, z]

be the resultant of these two polynomials with respect.t&ince the polynomials are linearly
independent, deg,), degp,) < 2, and since we have assumed that they have no common linear
factors the resultant res cannot vanish. By definition reg € R[y, z] is a polynomial of total
degree at most 3. By Lemma 4.6 we can find a%e(re&»z) containingV(res ) and for each

Ce ﬁaﬁ(resl,z) we consider the system

Ze: pix,y,20=0, pa(x,y,2)=0, (y,2)€eC.

SinceC is a 0- or 1-dimensional affine subspadg, is a system of at most two polynomials
in at most two variables. Hence by the previous cases we can determin®’g@eb c V(Z¢)
containingVax(Z¢) and we set

Var D) =WADU | Var(Zo).
Ce\jaﬁ(fesl,z)

On account of Corollary 4.2 we haWéi(Z) C Var(Z).
(b) Let

V(I)z{(xay’Z)ER3: pl=[l'~x+ql=0’ p2=-x2+[2'-x+q2=0}

with [; # 0. Then we can proceed as in the case above. The only difference is that the total degree
of res , is at most 4.
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(3,3) Z consists of three polynomials in three variables.
Then we may assume without loss of generality that the variabdecurs in at least two of
the polynomials,l; # 0 (cf. (4.10)) and that each of the three polynomials contains at least two
variables. Now we compute res= res(p1, p», x) and reg 3 = regp, p3, x).
(a)res,=0.
By Lemma 4.3 we know that; andp, have a common factor with positive degreexinThuspy,
p, are either linearly dependent or they have a common linear factor. If they are linearly dependent
we can proceed as in case (2,3)(b). Sd ke a common linear factor and et = p1 /[, p> = p2/L.
Observep,, p, are linear polynomials. Next we consider the two systems

T (=0, p3=0,
T: p1=0, p,=0, p3=0.

SinceVa(Z) C Var(Z1) U Vag(Zo) it suffices to consideVax(Z;). Since both systems contain linear
polynomials we can reduce them to systems in at most 2 variables which can be handled by one of
the methods described in one of the previous cases.

(b) res 3 =0. It is not hard to see that also in this case we can split our system in two systems
containing linear polynomials and we can proceed as before.

(c) res» # 0 and res3z # 0. Since deges ») < 3 and de@res 3) < 4 we can use the algorithm

of Lemma 4.7 in order to determine a sﬁ%&(re&»z, res 3) containingVag(res », res 3). Now, for

eachC € Var(res 2, res s) let

Ze: pi(x,y,2)=0 i=1,...,3 (y,z)eC.

Since( is a 0- or 1-dimensional affine subspdateis a system of at most three polynomials in
at most two variables. Hence by the previous cases we can determind’g @t containing
Vart(Ze) and we set

Vair(2) = W) U U  vao.

CeVat(res, 2,re9 3)

On account of Lemma 4.8 we haV¥g(Z) C ?aﬁ(I). O

Remark. Up to now we have only discussed polynomials arising in case | of Algorithm 3.2. Case Il can
be treated completely similar to case I. In the cases Ill and IV we have seven hyperplanes determining
the functionfy, ... m,, butitis easy to see that Lemma 4.1 keeps true. Hence also in these cases we just
have to examine the isolated affine subspaces of polynomials of total degree at most three. Indeed, with
some extra effort one can show that in the cases Ill and 1V it suffices to consider matrices,) with
rank(A;, . ;) = 7. However, we note that in case IV we have to replace the 6th hyperpiariey the
hyperplaneH,, given in Theorem 2.1. The hyperplai#&, can easily be constructed, if it exists at all.

Altogether, using the notation of Algorithm 3.2 we have the following result.
Corollary 4.3. There exists an algorithm which computes a ¥gt H, consisting of finitely many

affine subspacedq, ..., A, of SHll ,,,,, H, such thatle1 Hy, is constant on any affine subspadgeand
each local minimum olel,_._,H,k is contained in one of the spacds.

.....
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Observe, we do not determine the local minivfuﬂH,1 ,,,,, Hy, of the functioan,1 Hy,» but just a set
of affine subspaces containing this set. It remains to check whether such an affine sutbspdce
the corollary contains an admissible lattice. To this end we use the criteria of Minkowski as given
in Lemma 2.3, i.e., we are only interested in admissible lattices having a WasisA; such that the
conditions of Lemma 2.3 are satisfied.

.....

Lemma 4.9. There exists an algorithm which finds for any affine subspﬁeeVHllelk a basisW of
an admissible latticgin the sense of Lemma.3) or asserts that no such lattice exists.

Proof. For simplification we assume that, = H;, 1 <i < k. Withr =dim A, r € {0, 3}, we may write
A= {W e RS W:C+ZA,~M1},
i=1

for suitable matrice<, M; € R®<3. Now for r > 1 and forx = (A1,...,A,) € R" let W(A) = C +
Yi_iAiM;. If r =0 we setW (i) = C. According to Lemma 2.3 and Theorem 2.1 we have to find a
A € R” such that

Uy C bdP, (4.11)

with j =1incase |l,j = 2in case ll, and = 3 in the cases lll and IV. Furthermore, in the cases | and Il
we have the additional restrictions

Case I (-1, 1, Dwa), 1, -1, Dww, (L1, -Dwa) ¢ P,
Casell: (1,1, ¢ P.

(4.12)

Let us denote by”WW 1 <i <k, the vectors of the test slaf;’;,(x). This means we have=6if j <2, and

k =7 otherwise. Observe, by construction we know that all veaiQrs, lie in supporting hyperplanes
of the polytope. Therefore, if = 0 we can verify (4.11) and (4.12) by just checking the facet defining
inequalities of the polytope for the corresponding po'm";gx), etc. Thus in the following we assume

r > 1. Then we define a set by (cf. notation at the beginning of this section)

A={reR": Uj,;, Cbd(P)} = {1 eR" Uy, € H forall Fiy e N(F'), 1<i <k}. (4.13)

Using standard methods from Linear Programming we can easily decide wheth@ror we can find a
point A* € A. If A= @ then the affine subspace does not contain an admissible lattice. Soded. In

the cases Ill and IV or iV (1*) also satisfies (4.12) in the cases | and Il, we are done and we have found
an admissible lattice. So let us assume that we are in case LAl and W (1*) violates (4.12). The
most simple way to decide whether there exisisa A satisfying (4.12) is the following. In case | we
consider for, j,1 € {1,...,n} the sets

Aiji={reR:reAand(-1,1, Dyu € H,
(1, —1, 1)W(A) eH:, (1, 1, _1)W(k) € Hli}. (414)
Incase llwe setfor Ki<n

Ai={reR:reAand(d, 1, Dy e H}. (4.15)
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Obviously, in the case | (case Il) there exists an admissible lattice in the affine subsjifaaed only

if there existi, j,l € {1,...,n} (i € {1,...,n}) such thatA; ;; # ¥ (A; # ¥). Again, using tools from
Linear Programming we can either findi& in one of setsA4,; ;; (A;), and thus an admissible lattice
W (1*), or we know thatA contains no admissible latticesm

Remark. Instead of considering the® (n) feasibility problems in (4.14) ((4.15)) one can argue as
follows. First let us assume that we are in case | and Wi&tL*) violates one of the restrictions
in (4.12). Then we claim that we do not have to consider this case further: Of course, iAgagh
violates (4.12) for alk € A satisfying (4.11) then this is trivial. Hence suppose that there existsad
satisfying (4.12) such tha¥ (1°)Z2 is a critical lattice ofP. Then there exists a € con{A°, 1*} C A
such that one of the points of (4.12) with respect@u) lies in the boundary oP and the other points
are not contained in the interior . By definition, W (1)Z2 is a critical lattice ofP, too. Without loss of
generality let(1, 1, —1)y,, € bdP and(1, -1, Dy, (=1, 1, Dy, ¢ int P. Furthermore, lef; be a
supporting hyperplane of a facet Bfcontaining(1, 1, —1)w,,. Now letw’ (x) be theith column vector
of W(w) and letW (i) be the matrix with columns’*(u) — w3(w), w?(n) and—w?(n) + w(w). Then
W () is just another basis of the lattid8(x)Z2 and we get

(100w = (L1, Dy 0,1, 0w = (0,1, 0,
(0,0, Dwy = (0,1, Dy 1 =1 0w = (1.0, Dy,
(1,0, ~Dwe = (1.0,07,, (O, =1, Dw = (0.0, Dz,
1L =Dwgo = (1,1, 0057,

Thus the test séij,, plus the additional pointl, 1, —1)w ) is equivalent to the test sa%(m. Since

W (w)Z?2 is a critical lattice ofP it follows from the work of Minkowski (cf. [20, p. 27]) that we shall
find a basis of this lattice in case Ill. In case Il we can apply the argumentation and this means that in all
cases it is sufficient to determine only one point of the4et

To sum it up, we finally have the following algorithm for determining a densest lattice packing of a
3-dimensional polytope e K3 (cf. Algorithm 3.2).

Algorithm 4.2 (Densest lattice packing of a 3-polytope).
Input: A polytope P € K2 given by the supporting hyperplanés, 1 <i < m, or by its vertices.
Output: A densest packing lattice af.
e Find the supporting hyperplané, 1< i < n, of the facetsF; of the polytopeP, = (P — P) € K3
(cf. (2.1)) and compute the lattice descriptionRyf With respect taP, do
e For each of the cases I-IV of Theorem 2.1 do
I1. Compute the set§(F;) andG with Algorithm 3.1.
— For three facet#),, F,, F, satisfyingF,, € G(F;,) andFj, € G(F;) N G(F,,) do
— For every choice of facetg,, 4 <i <k, with (F,, F,, Fi,), (Fi,, Fis, F1,), (Fiy, Fiy, Fig) €G
do
RO. If Sy, .., #9 (cf. (3.2)) do
R1. DetermineS‘Hl1 ,,,,, Hy, (cf. (4.3)).
If rank(A;, . ;) > 6 (cf. Lemma 4.1 and the remark after Theorem 4.1) do

.....
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R2. Determine a seVy, . m, consisting of finitely many affine subspaces
Aq,..., A, of SHzlw-»sz such thatlel,_._,H,k is constant on any affine subspace
A; and each local minimum ofH,1 Hy, is contained in one of the spacas
(cf. Corollary 4.3).

R3. For each affine subspack e VH,I,_._,H,k find a basisW such thatW - Z¢
satisfies the criterion (1) of Lemma 2.3 in the first case and criterion (2) in
the remaining cases, or asserts that such lattice does not exist (cf. Lemma 4.9).

e Among all calculated admissible lattices find one with minimal determinant. The corresponding lattice
is a critical lattice ofP; and a densest packing lattice Bf

.....

5. Densest lattice packings of the regular and Archimedean polytopes

In this section we present densest packing lattitesf all regular and Archimedean polytopes. Since
a densest packing lattice depends on the representation of the polytope, and in order to make the result
more transparent, we shall also give the coordinates of our representations of the polytopes used for
the algorithm. For a polytop® let f = (fo, f1, f2) be its f-vector, i.e.,f; is the number of-faces.
Futhermore we shall use the following abbrevations.d.et(1/2)(1+ +/5) and letDs be the fcc-lattice
with basis(1,1,0)", (1,0, )T, (0,1, 1)". Finally, let P be the so called rhombic triacontahedron given

by

1 1
Pro={x €B% ol <1 |+ T+ T <1
1 1 1 1
%x1+T—; )Cz-i-éx:g <1, t—; X1+EX2+£X3 <l} (5.1

For the identification of the polytopes we shall use the Wythoff symbols.
e Tetrahedron3|23, f = (4, 6, 4) (cf. [16]).

Po={xeR® x;+xp+x3< ], —x1—x2+x3< ], —x1+x2—x3< 1, xp —xp—x3 <1},
A*(Pt) == 2((15 _%a _%)Ta (_%’ 1’ _%>T’ (_%a _%’ 1)T>ZS’

§*(P) = £~ 0.367346938

e Cubeg 3|24, f =(8,12,6).
P.={xeR® |x| <1}, A*(Py) = 278, §*(Py) = 1.
e Octahedron4|23, f = (6, 12, 8) (cf. [20]).
Po={x € R® |x1] + |x2| + |x3| < 1},
AP =2(339" 55D (5557

8*(Po) = 13~ 0.947368421



182 U. Betke, M. Henk / Computational Geometry 16 (2000) 157-186

e Dodecahedron3| 25, f = (20, 30, 12).

= {x eR¥ |tx1| + |x2l <1, |txa| +|xs| < 1, |Txa] + |x1| < 1},

2
A (14 1)P) =2D3,  §*(Py) = % ~ 0.904508497

e Icosahedron5|23, f = (12, 30, 20).
= {x € R¥ |x1| + |x2| + Ix3] < 1, |tx1] 4+ |(1/7)xs| < 1
lTx2| + [(1/D)x1] < 1, [rxs| + [(1/7)x2| <1},
A (L+1)P) =2(w'®), w?®), w3(®)Z% where

(-5 -FVOF+H(F+IVET-F-3V5
w(x) = (————JB) +1+3/5 :
(B+2B)x2+ (-2 -8V5)x+L+25
(—5VB-P) P+ (55VB+ )T -3 -5
w?(E) = (B+3vE)T-1-1/5 ,
(~5VE- )7+ (3VE+ §)T- 5B

wi@ = (3v5+3)x-2-+v5, x 0,

andx is the unigue root witlt € (1, 2) of

1086x° + (—1063— 111v/5) x? + (15v/5+ 43) x + 102+ 441/5,

*(py — S(1+7) -
§°(P) = de i), w20 03] 0.836357445

e Cubeoctahedran2 | 34, f = (12 24, 14) (cf. [16]).

Po={xeR¥ xeP.N2 P},

A" (Peo) = A (P, 8" (Peo) = j—g ~ 0.918367346
e Icosidodecahedrgr2 | 35, f = (30, 60, 32).

Pa={xeR%® xe PN Py},

A*((A+1)Py) =2Ds,  §*(Pg) = % ~ 0.864720371
e Rhombic cubeoctahedrpB4| 2, f = (24, 48, 26).

Preo={x € R® |x1] + |x2| < 2, |x1| + |x3] <2, x2] + |x3] < 2,

andx e V2. P.N (4—+/2) Py},

162 —-20
A*(Preo) = 2D3, 8" (Preo) = MT ~ 0.875805666

(5.2)
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Rhombic icosidodecahedrpB5| 2, f = (60, 120 62).

Pig = {x € RSZ

A*(Prig) =2((

5*(Pr|d) 367

8t + 46
+15

xe@Br42) - PeN@r+1)-PN(BA+1))- Py,

r—1 7 9r+4>T <9z+4 r—1 7)T (7 9 +4 11
At +2° 2 4t +2 At +2 41 +2° 2 224t +2 4t + 2

~ 0.804708487

Truncated cubg2 3| 4, f = (24, 36, 14).

A" (Pye) = 2((1,

5*(Ptrc) =

9
5+ 32

x e PN (1+\/§>Po}a
—2,07, 0,1, —)", (—a, 0, )T 78 = M,

~ 0.973747688

Truncated octahedrgr 4| 2, f = (24, 36, 14).

Ptro == {x (S Rg:
A*(Pyro) = 2((1,

x € PN 3P},

0,071,107, (1,1, -7 (P =1

Truncated dodecahedrpf 3| 5, f = (60, 90, 32).

A" (Pyg) = 2D,

Truncated icosahed

c(lt1). pyn 1% P}
x ‘[ . . -
314 !

15t—|—6
(P =7 o7

25| 3, f = (60,90, 32).

~ 0.897787626

Pi={xeR> xel+1)-PN(4/3+1) P4},

A*(Pyi) = A*(L+ 1) P),
e 43/5+125 N
5 (Pr) = 1087 detwic). oG, wicey) ~ 07849877759 (cf. (5.2).

Truncated cubeoctahedrp@ 34|, f = (48,72, 26).

Ptrco= {)C € RS:

Ixa] + [x2] <24 3v2, |x2| + |x3] <2+ 3V2,
x2| + |x3] < 24 3v2 andx € (2v2+1) P.N (3V2+3) P,},

A*(Ptrco)=2((2\/_+l—2\/_—%+a 2\/_4_%_0()1-’

(3
(z+
wherea = £v/33(v/2

W2-34ia,-3V2 4 4 1a,2V2+1),
V2 da b e V24 3 - 1)) Z8,
+1),

5 (Puco) = $5/56 ~ 54/To+ 352 - S8~ 02840373252

)=

183
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e Truncated icosidodecahedrp835|, f = (120 180 62).

Prig={xeR* x € (5t +4) - PieN (6t +3)- PN (5(1+71)) - Py},
A*(EPya) =2d3, 8" (Pyg) = 21 + &~ 0.827213595

e Truncated tetrahedrqr2 3| 3, f = (12,18, 8).

Ptrt={X€R3: XES'Ptm—B'Pt},

AP =232 9T, @ ~4 =) (4

8*(Py) = 82 ~ 0.680921053

’ _2)T)Z3a

wIiN

e Snub cubg|234, f = (24, 60, 38).
Let Py be the snub cube such that the 6 quadrangle facets lie in the hyperptands®: x; = +1},
1<i < 3, and lety* be the unique real solution of + y? + y = 1.

11 1\ "
A*(Po) =2. ((1, 0.0, (0,0.1)". (—, S ——) )
2 y* 2
5*(Ps) = L+ 1y* + 2(v*)* ~ 0.78769996
e Snub dodecahedron2 35, f = (60, 150, 92).

Let Psq be the snub dodecahedron such that the 12 pentagonal facets lie in the supporting hyperplane:
of the facets of the dodecahedr@h+ 1) Pg.

VOl (Psg)
6

A*(Psq) = 2Ds, 8*(Psg) = ~ 0.788640117

Theorem 5.1. The above list contains the densities of a densest lattice packing of all regular and
Archimedean polytopes.

Proof. Algorithm 4.2. O

Remarks.

() In order to get exact values for the densities as given in the above list we first use a numerical
implementation of Algorithm 4.2, by which we determine an optimal seledtion .., F;, of facets
corresponding to a critical lattice. Then for this special choice of factes we carry out the steps R1-R3
with the symbolic computer algebra system Maple V Release 5.

(b) The last three polytopeByt, Pse, Psq @re not centrally symmetric and thus one has to calculate the
difference bodies first. The difference bodyRf is a polytope with 74 facets, where§(sPsd — Psg)
has already 182 facets. We also have computed the densest packing lattice of the dual polytopes o
the Archimedean polytopes, the so called Catalan polytopes. Thereby we had to determine packing
lattices of polytopes with more than 380 facets. The CPU time for the determination of the densest
packing lattices of all regular and Archimedean polytopes is about 5.5 hours on a PC with a 266 Mhz
Pentium Il processor.
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