4 research outputs found

    Feng-Rao decoding of primary codes

    Get PDF
    We show that the Feng-Rao bound for dual codes and a similar bound by Andersen and Geil [H.E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), pp. 92-123] for primary codes are consequences of each other. This implies that the Feng-Rao decoding algorithm can be applied to decode primary codes up to half their designed minimum distance. The technique applies to any linear code for which information on well-behaving pairs is available. Consequently we are able to decode efficiently a large class of codes for which no non-trivial decoding algorithm was previously known. Among those are important families of multivariate polynomial codes. Matsumoto and Miura in [R. Matsumoto and S. Miura, On the Feng-Rao bound for the L-construction of algebraic geometry codes, IEICE Trans. Fundamentals, E83-A (2000), pp. 926-930] (See also [P. Beelen and T. H{\o}holdt, The decoding of algebraic geometry codes, in Advances in algebraic geometry codes, pp. 49-98]) derived from the Feng-Rao bound a bound for primary one-point algebraic geometric codes and showed how to decode up to what is guaranteed by their bound. The exposition by Matsumoto and Miura requires the use of differentials which was not needed in [Andersen and Geil 2008]. Nevertheless we demonstrate a very strong connection between Matsumoto and Miura's bound and Andersen and Geil's bound when applied to primary one-point algebraic geometric codes.Comment: elsarticle.cls, 23 pages, no figure. Version 3 added citations to the works by I.M. Duursma and R. Pellikaa

    List Decoding Algorithms based on Groebner Bases for General One-Point AG Codes

    Full text link
    We generalize the list decoding algorithm for Hermitian codes proposed by Lee and O'Sullivan based on Gr\"obner bases to general one-point AG codes, under an assumption weaker than one used by Beelen and Brander. By using the same principle, we also generalize the unique decoding algorithm for one-point AG codes over the Miura-Kamiya CabC_{ab} curves proposed by Lee, Bras-Amor\'os and O'Sullivan to general one-point AG codes, without any assumption. Finally we extend the latter unique decoding algorithm to list decoding, modify it so that it can be used with the Feng-Rao improved code construction, prove equality between its error correcting capability and half the minimum distance lower bound by Andersen and Geil that has not been done in the original proposal, and remove the unnecessary computational steps so that it can run faster.Comment: IEEEtran.cls, 5 pages, no figure. To appear in Proc. 2012 IEEE International Symposium on Information Theory, July 1-6, 2012, Boston, MA, USA. Version 4 corrected wrong description of the work by Lee, Bras-Amor\'os and O'Sullivan, and added four reference

    On the evaluation codes given by simple d-sequences

    Get PDF
    Plane valuations at infinity are classified in five types. Valuations in one of them determine weight functions which take values on semigroups of Z2. These semigroups are generated by δ-sequences in Z2. We introduce simple δ-sequences in Z2 and study the evaluation codes of maximal length that they define. These codes are geometric and come from order domains. We give a bound on their minimum distance which improves the Andersen–Geil one. We also give coset bounds for the involved codes
    corecore