22,323 research outputs found

    Recognising Multidimensional Euclidean Preferences

    Full text link
    Euclidean preferences are a widely studied preference model, in which decision makers and alternatives are embedded in d-dimensional Euclidean space. Decision makers prefer those alternatives closer to them. This model, also known as multidimensional unfolding, has applications in economics, psychometrics, marketing, and many other fields. We study the problem of deciding whether a given preference profile is d-Euclidean. For the one-dimensional case, polynomial-time algorithms are known. We show that, in contrast, for every other fixed dimension d > 1, the recognition problem is equivalent to the existential theory of the reals (ETR), and so in particular NP-hard. We further show that some Euclidean preference profiles require exponentially many bits in order to specify any Euclidean embedding, and prove that the domain of d-Euclidean preferences does not admit a finite forbidden minor characterisation for any d > 1. We also study dichotomous preferencesand the behaviour of other metrics, and survey a variety of related work.Comment: 17 page

    Statistical hyperbolicity in groups

    Full text link
    In this paper, we introduce a geometric statistic called the "sprawl" of a group with respect to a generating set, based on the average distance in the word metric between pairs of words of equal length. The sprawl quantifies a certain obstruction to hyperbolicity. Group presentations with maximum sprawl (i.e., without this obstruction) are called statistically hyperbolic. We first relate sprawl to curvature and show that nonelementary hyperbolic groups are statistically hyperbolic, then give some results for products, for Diestel-Leader graphs and lamplighter groups. In free abelian groups, the word metrics asymptotically approach norms induced by convex polytopes, causing the study of sprawl to reduce to a problem in convex geometry. We present an algorithm that computes sprawl exactly for any generating set, thus quantifying the failure of various presentations of Z^d to be hyperbolic. This leads to a conjecture about the extreme values, with a connection to the classic Mahler conjecture.Comment: 14 pages, 5 figures. This is split off from the paper "The geometry of spheres in free abelian groups.

    A theorem of Hrushovski-Solecki-Vershik applied to uniform and coarse embeddings of the Urysohn metric space

    Get PDF
    A theorem proved by Hrushovski for graphs and extended by Solecki and Vershik (independently from each other) to metric spaces leads to a stronger version of ultrahomogeneity of the infinite random graph RR, the universal Urysohn metric space \Ur, and other related objects. We show how the result can be used to average out uniform and coarse embeddings of \Ur (and its various counterparts) into normed spaces. Sometimes this leads to new embeddings of the same kind that are metric transforms and besides extend to affine representations of various isometry groups. As an application of this technique, we show that \Ur admits neither a uniform nor a coarse embedding into a uniformly convex Banach space.Comment: 23 pages, LaTeX 2e with Elsevier macros, a significant revision taking into account anonymous referee's comments, with the proof of the main result simplified and another long proof moved to the appendi

    Non-Euclidean geometry in nature

    Full text link
    I describe the manifestation of the non-Euclidean geometry in the behavior of collective observables of some complex physical systems. Specifically, I consider the formation of equilibrium shapes of plants and statistics of sparse random graphs. For these systems I discuss the following interlinked questions: (i) the optimal embedding of plants leaves in the three-dimensional space, (ii) the spectral statistics of sparse random matrix ensembles.Comment: 52 pages, 21 figures, last section is rewritten, a reference to chaotic Hamiltonian systems is adde

    Perfect Transfer of Arbitrary States in Quantum Spin Networks

    Get PDF
    We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to NN-qubit spin networks of identical qubit couplings, we show that 2log3N2\log_3 N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done in PRL 92, 187902.Comment: 12 pages, 3 figures with updated reference

    Sandpile probabilities on triangular and hexagonal lattices

    Full text link
    We consider the Abelian sandpile model on triangular and hexagonal lattices. We compute several height probabilities on the full plane and on half-planes, and discuss some properties of the universality of the model.Comment: 26 pages, 12 figures. v2 and v3: minor correction

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete
    corecore