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Abstract

A theorem proved by Hrushovski for graphs and extended by Solecki and Vershik (independently from each other) to metric
spaces leads to a stronger version of ultrahomogeneity of the infinite random graph R, the universal Urysohn metric space U, and
other related objects. We show how the result can be used to average out uniform and coarse embeddings of U (and its various
counterparts) into normed spaces. Sometimes this leads to new embeddings of the same kind that are metric transforms and besides
extend to affine representations of various isometry groups. As an application of this technique, we show that U admits neither a
uniform nor a coarse embedding into a uniformly convex Banach space.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A theorem by Hrushovski [18] states that every finite graph Γ can be embedded (as an induced subgraph) into a
finite graph Γ ′ so that each partial isomorphism of Γ is a restriction of a global automorphism of Γ ′. Solecki [39]
and (independently) Vershik [44] have obtained an analogue of the result for metric spaces: every finite metric space
X is contained in a finite metric space Y in such a way that partial isometries of X become restrictions of global self-
isometries of Y . Solecki has deduced the result from a powerful general theorem of Herwig and Lascar [16], while
Vershik gave a direct construction.

Both theorems are particular cases of a statement where X and Y are drawn from a class of metric spaces whose
distance values belong to a given convex subset S of some additive subsemigroup of real numbers. The Hrushovski
theorem is recovered for the set of values S = {0,1,2}, while the Solecki–Vershik theorem corresponds to the entire
real line. We outline a proof of the result in Section 3; it is also based on the techniques of Herwig and Lascar, but in
a different way from Solecki’s article.
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Let again S ⊆ R be a subset as above. Denote by US a version of the universal Urysohn metric space with distance
values in S, characterized by the following properties: completeness, ultrahomogeneity (every isometry between finite
subspaces is extended to a global self-isometry of the space), and universality for the class of all metric spaces with
distance values in S. For S = {0,1,2} one obtains in this way the infinite random graph R [36,4], while S = R

results in the classical Urysohn metric space U, and S = Z leads to the integer-valued Urysohn space UZ. Now the
Hrushovski–Solecki–Vershik theorem can be viewed as a stronger version of ultrahomogeneity for the space US :
every finite subspace X of US is contained in a finite subspace Y of US in such a way that partial isometries of X are
restrictions of global isometries of US taking Y to itself. Simple examples (such as the unit sphere in a Hilbert space)
show that the property is in general strictly stronger than ultrahomogeneity.

A range of interesting applications of the Hrushovski–Solecki–Vershik property can be found in the original works
[18,39,44]. Here we apply the result to analysis of (non)existence of uniform and coarse embeddings of the Urysohn
metric space into superreflexive Banach spaces.

Let X and Y be two metric spaces, and let f :X → Y be an embedding of X into Y as a uniform subspace. This
property of f is easily seen to be equivalent to the following: for some non-decreasing functions ρ1, ρ2 : R+ → R+
with 0 < ρ1(x) � ρ2(x) for x > 0 and ρ2(x) → 0 as x → 0, one has for every x, y ∈ X

ρ1
(
dX(x, y)

)
� dY

(
f (x), f (y)

)
� ρ2

(
dX(x, y)

)
.

Here the double inequality only needs to hold for values of the distance dX(x, y) in a sufficiently small neighbourhood
of zero.

If, on the contrary, we are interested in the above property holding for values of the distance d(x, y) in a neighbour-
hood of infinity, we arrive at the relatively recent notion of a coarse embedding of X into Y . So is called a function
f :X → Y (not necessarily continuous) such that, for some non-decreasing, unbounded functions ρ1, ρ2 : R+ → R+
with ρ1 � ρ2 one has for every x, y ∈ X

ρ1
(
dX(x, y)

)
� dY

(
f (x), f (y)

)
� ρ2

(
dX(x, y)

)
.

Coarse embeddings are monomorphisms in the coarse category of metric spaces, which we will not define here,
referring to the book [38] instead. In the same book, the reader can find a detailed motivation for the concept (the
Baum–Connes conjecture).

The first example of a metric space admitting no uniform embedding into the Hilbert space �2 was constructed
by Per Enflo [8]. Gromov asked in [11] if every separable metric space can be coarsely embedded into a Hilbert
space. The first counter-example was constructed by Dranishnikov, Gong, Lafforgue, and Yu [7], who have used a
suitable modification of Enflo’s construction. Thus, the two notions are without doubt linked at some fundamental
level, though the full extent of this link is not quite obvious. Notice that initially Gromov even used the same term
“uniform embedding” to denote what is now known as a coarse embedding.

Of particular interest in relation to the Baum–Connes conjecture are coarse embeddings of metric spaces of
bounded geometry (for every R > 0, the cardinality of each ball BR(x), x ∈ X, is uniformly bounded in x by a
finite number), and especially for finitely generated groups equipped with the Cayley distance. As target spaces Y ,
one is typically interested in “nice” Banach spaces (the Hilbert space �2, the spaces �p , p > 1, etc.)

In view of the example of Dranishnikov et al., the standard ultraproduct technique implies immediately that there
exists a locally finite metric space (that is, every ball of finite radius contains finitely many points) non-embeddable
into �2 [7]. The same question for spaces of bounded geometry is more difficult. It was resolved by Gromov [13], who
has noticed that a disjoint sum of graphs forming an expander family and equipped with the path distance gives such
an example of a metric space of bounded geometry. (This construction is treated in detail, e.g., in the book [38].) In
the same paper [13], Gromov has outlined a probabilistic construction of a finitely generated infinite group into which
a disjoint sum of graphs as above can be coarsely embedded and which therefore admits no coarse embedding into �2.

Recent results by Kasparov and Yu [21] have brought interest to a more general version of the same coarse em-
bedding problem, where �2 is replaced with a uniformly convex Banach space. For some remarks on the problem,
see [25].

Recall that a Banach space E is uniformly convex if the function δ : (0,2] → R (the modulus of convexity for E),
defined by

δ(ε) = inf

{
1 −

∥∥∥∥x + y
∥∥∥∥: x, y ∈ E, ‖x‖,‖y‖ � 1, ‖x − y‖ � ε

}
,
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is strictly positive for all ε ∈ (0,2].
The spaces �p , 1 < p < ∞, are uniformly convex. The Hilbert space �2 coarsely embeds into �p for 1 � p � ∞,

and the spaces �p , 1 < p � 2, admit coarse embeddings into each other (Nowak [32,33]). At the same time, �p do not
coarsely embed into �2 for p > 2 (W.B. Johnson and Randrianarivony [19]). (Notice that all the proofs mentioned in
this paragraph are also emulations of analogous results obtained for uniform embeddings much earlier.)

While working on this article, the author became aware of an announcement by Vincent Lafforgue [23] that a
family of expander graphs associated to the groups SL(3) over p-adic fields does not embed into any uniformly
convex Banach space.

Another problem that has stimulated the present investigation is a question of the existence of a metric space
that admits no uniform embedding into a reflexive Banach space. (Cf., e.g., Question 6.5 in [29].) This question was
answered in the negative by Kalton [20].

In the present paper, we show that the universal Urysohn metric space U admits neither uniform nor coarse em-
bedding into a uniformly convex Banach space. Of course, the space U is far from having a bounded geometry, quite
on the contrary. Besides, the results turn out to be outdone not only by Lafforgue’s result mentioned above, but by a
remarkable theorem of Kalton [20]: the space c0 admits neither uniform nor coarse embedding into a reflexive Banach
space. (I have learned about the yet unpublished paper of Kalton from the arXiv preprint [1], which was submitted
after the first version of the present article.)

However, our method of proof is rather different from the existing methods for showing noncoarse embeddability
of various metric spaces. We are using the Hrushovski–Solecki–Vershik property of the Urysohn space as a basis for
an averaging argument, which could be of interest on its own. This is why the present author feels the publication of
this work still has some merit.

2. The Urysohn metric space

The universal Urysohn metric space U is determined uniquely, up to an isometry, by the following description:
U is a complete separable metric space which contains an isometric copy of every separable metric space and is
ultrahomogeneous, that is, every isometry between two finite subspaces of U can be extended to a global self-isometry
of the space U.

Chapter 5 in the author’s book [35] is an introduction to the Urysohn space rather well suited for our needs.
Another highly-recommended introductory source is Melleray’s article [31] written for the present volume. Other
self-contained introductions to the Urysohn space can be found in Gromov’s book [12] and articles by Vershik [42,43]
and Uspenskij [41].

One obtains numerous variations of the Urysohn space by restricting the set of all possible values that the distances
in the metric spaces appearing in the above description of U can assume. Such variations include the integer-valued
Urysohn space UZ and the rational Urysohn space, UQ. One can also consider the bounded Urysohn space of diameter
one, U1, where all distances between two different points take values in the interval [0,1]. It is an easy exercise, to
show that U1 is isometric to the sphere of radius 1/2 taken in U around any point. The space U1 is also known as the
Urysohn sphere.

Recall that Rado’s infinite random graph, R, is defined by the following conditions: it is a simple unoriented graph
that is universal for all countable graphs (that is, contains an isomorphic copy of every countable graph as an induced
subgraph) and ultrahomogeneous in the sense that every isomorphism between two finite induced subgraphs extends
to a global automorphism of R [4]. The Urysohn space U0,1,2 whose distances take only values 0, 1 and 2, is easily
shown to be isometric to the infinite random graph R equipped with the path-distance (where every edge has length 1).

Now we need to recall another notion, due to Uspenskij [41]. Say that a subspace X of a metric space Y is g-
embedded into Y if there is a group homomorphism h : Iso(X) → Iso(Y ), continuous with regard to the topology of
simple convergence on both groups and such that for every isometry i ∈ Iso(X) one has

h(i)|X = i.

In other words, one can simultaneously extend all isometries from X to Y , preserving the algebraic operations and in
a “continuous way”.
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One of the most useful results of the theory of the Urysohn space, due to Uspenskij [40], says that every sepa-
rable metric space can be g-embedded into the Urysohn space U. See also [41,35,31]. The same method (Katětov
extensions) lead to the following observation, also due to Uspenskij.

Theorem 2.1. Every compact metric subspace X of U is g-embedded.

The following result is obtained along the same lines.

Theorem 2.2. Every finite metric subspace of the integer Urysohn space UZ is g-embedded.

Proof. The proof is modelled on Uspenskij’s original argument, as presented, e.g., in our book [35] on pp. 109–111,
114–115. A function f :X → R on a metric space is called a Katětov function if∣∣f (x) − f (y)

∣∣ � dX(x, y) � f (x) + f (y) (1)

for all x, y ∈ X. Such functions are exactly distances from points in metric extensions of X. A 1-Lipschitz function
f as above is controlled by a metric subspace A ⊆ X if f is the largest 1-Lipschitz function on X having a given
restriction to A. The set of all Katětov functions controlled by finite subspaces of X, equipped with the supremum
metric, is denoted E(X), and contains X in a canonical way under the Kuratowski embedding associating to an
x ∈ X the distance function from x. The completion of the union of a recursively built chain of n-fold extensions
En(X) = E(En−1(X)) is isometrically isomorphic to the Urysohn space U.

Denote by EZ(X) the collection of all integer-valued Katětov functions on X controlled by finite subsets, equipped
with the uniform distance d(f,g) = sup{|f (x) − g(x)|: x ∈ X}. This metric space is nontrivial, because it contains,
for instance, all distance functions d(x,−) from points in X. Moreover, the Kuratowski embedding

X � x 	→ d(x,−) ∈ EZ(X)

is easily seen to be an isometric embedding. We will thus identify X with a metric subspace of EZ(X). The union
of an infinite chain of iterated n-fold Katětov extensions of X can be verified to be isometric to UZ (cf. [26]). If G

is a group acting on X by isometries, then the action lifts to the Katětov extension EZ(X) through the left regular
representation, and the Kuratowski embedding is G-equivariant under this lifting. This means that the action of G

goes all the way through to U. �
The space EZ(X) also appears in [26] and [44]. Here is another application of this construction.
From the viewpoint of coarse geometry, all bounded metric spaces, such as U1 or R, are alike: they are coarsely

equivalent to a single point. Two metric spaces X and Y are coarsely equivalent if there is a pair of maps f :X → Y ,
g :Y → X such that the compositions fg, gf are uniformly close to the corresponding identity maps, that is, the
functions dX(gf (x), x) and dY (fg(y), y) are bounded on X and Y , respectively.

The real line R is coarsely equivalent to the subspace Z. As a function f : Z → R, one can take the canonical
embedding, and as a function g : R → Z, the integer part function. This observation generalizes as follows: every
metric space is coarsely equivalent to its subspace forming an ε-net for some ε > 0. As one of the authors of [26]
(Lionel Nguyen Van Thé) has pointed out to the present author, the proof of Proposition 1 (Section 2.1 in [26]) can be
modified so as to establish the following result.

Theorem 2.3 (Jordi López-Abad and Lionel Nguyen Van Thé). The Urysohn space U contains as a 1-net an isometric
copy of the integer Urysohn space UZ.

Corollary 2.4. The Urysohn space U is coarsely equivalent to the integer-valued Urysohn space UZ.

Since the composition of two coarse embeddings is a coarse embedding, and every coarse equivalence is a coarse
embedding, it follows from Corollary 2.4 that for the purpose of considering coarse embeddings, there is no difference
between U and UZ.
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3. The Hrushovski–Solecki–Vershik homogeneity property

Definition 3.1. Let us say that a metric space X has the Hrushovski–Solecki–Vershik property if for every finite
subspace Y of X there exists a finite Z with Y ⊆ Z ⊆ X such that every partial isometry of Y extends to a self-
isometry of Z.

Proposition 3.2. For a complete separable metric space X the Hrushovski–Solecki–Vershik property implies ultraho-
mogeneity.

Proof. Required global isometries of X are built up recursively. Namely, if A and B are two finite metric subspaces
of X, and i :A → B is an isometry, then there exists a finite Y ⊆ X and a self-isometry j0 of Y whose restriction to
A coincides with i. Now enumerate an everywhere dense subset X′ = {xi : i ∈ N+} of X, and choose an increasing
chain

Y = Y0 ⊆ Y1 ⊆ · · · ⊆ Yn ⊆ · · ·
of subspaces of X and their self-isometries jn in such a way that Yn+1 ⊇ Yn ∪ {xn} and jn+1|Yn = jn. The mapping
j defined by the rule j (x) = jn(x) whenever x ∈ Yn is a self-isometry of X′, and it extends by continuity over all
of X. �
Corollary 3.3. A metric space X has the Hrushovski–Solecki–Vershik property if and only if for every finite subspace
Y of X there exists a finite Z with Y ⊆ Z ⊆ X such that every partial isometry of Y extends to a global self-isometry
of X taking Z to itself.

The converse to Proposition 3.2 is not true: the Hrushovski–Solecki–Vershik property does not in general follow
from ultrahomogeneity.

The topology of pointwise convergence on the isometry group Iso(X) of a metric space X coincides with the
compact-open topology and is a group topology. If X is in addition separable and complete, then Iso(X) is a Polish
group. The following belongs to Vershik.

Proposition 3.4. If a separable metric space X has the Hrushovski–Solecki–Vershik property, then the isometry group
Iso(X) contains an everywhere dense locally finite subgroup.

Proof. A dense locally finite subgroup is built recursively, much like in the proof of Proposition 3.2. �
Example 3.5. The Hilbert space �2, as well as all Euclidean spaces �2(n) (including the real line R), are ultrahomo-
geneous [3, Chapter IV, §38, Property 4]. However, each of them fails the Hrushovski–Solecki–Vershik property.

Indeed, let x �= 0 be an element of a Euclidean space E (finite or infinite-dimensional), and let Tx denote the
translation y 	→ y + x. Let Y = {0, x,2x,3x}, A = {0, x,2x}, and let i = Tx |A. Let j be an isometry of some larger
subspace Z ⊇ Y of E extending the partial isometry i. The points j (0) = x, j (x) = 2x and j (2x) form a metric space
isometric to (0, x,2x) and therefore lie on a straight line, and consequently one must have j (2x) = 3x. An inductive
argument shows that Z contains all elements of the form nx and thus is infinite.

A similar argument (using a rotation by an irrational angle along a grand circle instead of a translation along a
straight line) gives the following.

Example 3.6. The unit sphere S of every Hilbert space of positive dimension (including the circle S
1 and the infinite-

dimensional unit sphere S
∞ of �2) does not have the Hrushovski–Solecki–Vershik property.

The sphere S
∞ has a somewhat weaker property: every finite collection of isometries can be simultaneously ap-

proximated in the strong operator topology with elements of a finite subgroup of isometries (Kechris [22], a remark
on p. 186). Notice that the sphere S

∞ is ultrahomogeneous.
The following two results explain the origin of the name that we gave to the property above. The first one is an

equivalent reformulation of a result by Hrushovski [18].
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Theorem 3.7. The infinite random graph (or, equivalently, the Urysohn space U0,1,2) has the Hrushovski–Solecki–
Vershik property.

The second result has been established by Solecki [39] and, independently, by Vershik [44]. The following is an
equivalent reformulation.

Theorem 3.8. The Urysohn metric space U, the rational Urysohn space UQ and the integer Urysohn space UZ all
have the Hrushovski–Solecki–Vershik property.

Solecki’s proof is a corollary of deep results of the paper [16] of Herwig and Lascar, while Vershik’s proof is direct.
In Appendix A we present a deduction of the theorem from results of [16], although in a somewhat different way from
Solecki’s argument.

Hrushovski’s theorem admits a very simple direct combinatorial proof, cf. [16, Section 4.1]. This author has been
unable to find an analogue for finite metric spaces.

4. Averaging distances

Let Xα,α ∈ A, be a family of metric spaces. Choose a point xα in each Xα . Define the set

�∞(Xα, xα,A) =
{
y ∈

∏
α∈A

Xα

∣∣∣ sup
α∈A

d(xα, yα) < ∞
}
.

Now let ξ be an ultrafilter on the index set A. Equip �∞(Xα, xα,A) with the pseudometric

d(y, z) = lim
α→ξ

d(yα, zα).

The metric space ultraproduct along ξ of the family (Xα) centred at (xα) is the metric quotient of the pseudometric
space �∞(Xα, xα,A). If ξ is a free ultrafilter, then the ultraproduct is complete.

In a particular case where every Xα is a normed space and xα = 0, we obtain the familiar concept of the ultraproduct
of a family of normed spaces. In nonstandard analysis, Banach space ultraproducts are known as nonstandard hulls.
For more on them, see [15] and references therein.

However, even in the case where xα �= 0, the construction is of interest.

Proposition 4.1. The ultraproduct of a family of normed spaces Xα centred at an arbitrary family of points (xα)

becomes an affine normed space in a natural way, and for different choices of (xα) all affine normed spaces arising
in this way are pairwise affinely isomorphic and isometric.

Proof. Every linear translation in the product
∏

α∈A Xα preserves the values of the distance limα→ξ d(yα, zα) and
consequently defines an isometry between ultraproducts centered at different points. Since every self-isometry of a
normed space is an affine map, it follows that every isometry between two such ultraproducts transports the affine
structure in a unique way. An alternative way to furnish each ultraproduct with an affine structure is through noticing
that the space �∞(Xα, xα,A) is an affine subspace of the linear space

∏
α∈A Xα , of which the ultraproduct is a quotient

affine space. �
For a normed space E and a set Z, denote by �2(E,Z) the �2-type sum of |Z| copies of E.

Theorem 4.2. Let G be a locally finite group acting by isometries on a metric space X and having a dense orbit.
Suppose that X admits a mapping φ into a normed space E such that for some functions ρ1, ρ2 : R+ → R+ one has

ρ1
(
dX(x, y)

)
�

∥∥φ(x) − φ(y)
∥∥ � ρ2

(
dX(x, y)

)
. (2)

Then there is a map ψ of X into a Banach space ultrapower of �2(E, ξ), satisfying the same inequalities (2) and such
that the action of G on ψ(X) extends to an action of G by affine isometries on the affine span of ψ(X).
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Proof. Denote by Ξ the set Ξ of all finite subgroups of G. For every F ∈ Ξ define a map ψF :X → �2(E,F ) as
follows:

ψF (x)(g) = 1

|F |1/2
ψ

(
g−1x

)
.

Since the distance d = dX is G-invariant, the map ψF satisfies the inequalities (2), e.g., for the right-hand side in-
equality:

∥∥ψF (x) − ψF (y)
∥∥ =

( ∑
g∈F

1

|F |
∥∥ψ

(
g−1x

) − ψ
(
g−1y

)∥∥2
E

)1/2

� 1

|F |1/2

(|F | · ρ2
2

(
d(x, y)

))1/2

= ρ2
(
d(x, y)

)
.

Make �2(E,F ) into an F -module via the left regular representation:
hf (g) = f

(
h−1g

)
, g,h ∈ F.

The map ψF is F -equivariant: for every g ∈ F ,

hψF (x)(g) = ψF (x)
(
h−1g

) = 1

|F |1/2
ψ

(
g−1hx

) = ψF (hx)(g).

Choose an ultrafilter ξ on Ξ with the property that for each F ∈ Ξ the set of all Φ ∈ Ξ containing F is in ξ . Select
a point x∗ ∈ X whose G-orbit is dense in X. Denote by V the ultraproduct of the spaces �2(E,F ), F ∈ Ξ , along the
ultrafilter ξ , centred at the family of points (ψF (x∗))F∈Ξ .

For every h ∈ G, the family (ψF (hx∗))F∈Ξ is at a finite distance from (ψF (x∗))F∈Ξ :

sup
F∈Ξ

∥∥ψF (hx∗) − ψF (x∗)
∥∥ = sup

F∈Ξ

1

|F |1/2

( ∑
g∈F

∥∥ψ
(
g−1hx∗) − ψ

(
g−1x∗)∥∥2

E

)1/2

� sup
F∈Ξ

1

|F |1/2

(|F | · ρ2
(
d
(
g−1hx∗, g−1x∗)2))1/2

= ρ2
(
d(hx∗, x∗)

)
.

This has two consequences. First, since the G-orbit of x∗ is dense in X, the family of mappings (ψF ) determines a
well-defined mapping ψ :X → V (that is, for every x ∈ X the image ψ(x) is a well-defined element of V ). Second,
for every h the translation by h determines an isometry of V , and in this way the group G acts on V by isometries.
making the mapping ψ G-equivariant.

It remains to notice that the space �2(E, ξ) contains all spaces �2(E,F ) as normed subspaces, so a suitable metric
space ultrapower of �2(E, ξ) contains our metric space ultraproduct of �2(E,F ). Finally, each metric ultrapower of
�2(E, ξ) is isometrically affinely isomorphic to the Banach space ultrapower. �

Let us introduce a natural concept: say that a group G of isometries of a metric space X is almost n-transitive if
for every ε > 0 and every isometry i between two subspaces A,B ⊆ X of cardinality n each there is a g ∈ G with the
property that for all a ∈ A one has d(i(a), ga) < ε.

Remark 4.3. Every dense locally finite subgroup of the group of isometries Iso(X) of a separable metric space having
the Hrushovski–Solecki–Vershik property (Proposition 3.4) is almost n-transitive for every n.

Corollary 4.4. Let X be a metric space admitting a locally finite almost 2-transitive group of isometries. Let ψ be
a mapping of X into a normed space E satisfying inequalities (2). Then there is a map ψ of X into a Banach space
ultrapower of �2(E, ξ), satisfying the same inequalities (2) and such that the image ψ(X) is a metric transform of X:
the distance ‖ψ(x) − ψ(y)‖ is a function of d(x, y) alone. Furthermore, the action of the group of isometries of X

extends to a representation by affine isometries on the affine span of ψ(X), making ψ an equivariant map.
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5. Non-existence of uniform embeddings

Uniform convexity is a metric property of a Banach space, which can be lost if a norm is replaced by an equivalent
one. The corresponding property of Banach spaces invariant under isomorphisms is superreflexivity. A Banach space
is superreflexive if every Banach space ultrapower of it is a reflexive Banach space. It can be shown that a Banach
space is superreflexive if and only if it admits an equivalent uniformly convex norm (cf. [10]). In our context, speaking
of superreflexive Banach spaces is more appropriate, because both coarse and uniform structures are invariant under
Banach space isomorphisms.

Theorem 5.1. The universal Urysohn metric space U cannot be embedded, as a uniform subspace, into a superreflex-
ive Banach space.

Proof. Assume, towards a contradiction, that an embedding, φ : U → E, does exist. Choose a dense locally finite
subgroup of Iso(U) (Proposition 3.4). This group is almost n-transitive for each n. By Corollary 4.4, there exist
a mapping, ψ , of U into the Banach space ultrapower V of �2(E), as well as a representation π of G by affine
isometries of the affine span F of ψ(U) in V , making ψ equivariant.

Since the mapping ψ is a uniform isomorphism on its image and in particular a homeomorphism, the topology
of pointwise convergence on X on the group G coincides with the topology of pointwise convergence on ψ(X) and
consequently on the affine span of ψ(X). The action of G on F extends by continuity to an action of all of Iso(U)

on F , and ψ still remains equivariant. Consequently, the affine representation of Iso(U) on F is faithful.
This representation is a continuous homomorphism from G to the group of affine isometries of F , that is, the

semidirect product Iso(F ) � F+. Here Iso(F ) denotes the group of linear isometries, while F+ is the additive group
of F upon which Iso(F ) acts in a canonical way. Let π : Iso(F )�F+ → Iso(F ) be the standard projection (a quotient
homomorphism).

The Polish group Iso(U) is universal [41]. In particular, it contains, as a topological subgroup, the group
Homeo+[0,1] of all homeomorphisms of the unit interval preserving endpoints, equipped with the standard compact-
open topology. We have, therefore, a faithful continuous affine representation of this group in a superreflexive Banach
space.

According to Megrelishvili [28], the only continuous representation of Homeo+[0,1] by linear isometries in a
reflexive Banach space is the trivial (identity) representation. Therefore, the composition of three homomorphisms

Homeo+[0,1] ↪→ Iso(U) → Iso(F ) � F+ π−→ Iso(F )

is a trivial map. This means the image of Homeo+[0,1] is contained, as a topological subgroup, in the kernel of π ,
that is, the Abelian Polish group F+, which is absurd. �
6. Non-existence of coarse embeddings

We will begin by recalling a useful test for a space not to be (super)reflexive. Let ε > 0 and let n be either a natural
number or the symbol ∞. An (n, ε)-tree in a normed space E is a binary tree T of depth n whose nodes are elements
of E such that for every node x its children nodes y and z have the properties: x = (y + z)/2 and ‖y − z‖ � ε.

Theorem 6.1. (See, e.g., [10, p. 295].) If a normed space E contains a uniformly bounded family of (n, ε)-trees for
some ε > 0 and all natural n, then E is not superreflexive. If E contains a bounded (∞, ε)-tree for some ε > 0, then
E is non-reflexive.

Here is a consequence that we will be using.

Corollary 6.2. (Cf. a similar statement in [10, Exercise 9.22, p. 308].) Let a normed space E have the following
property: for some ε > 0 and M > 0 and for every n, the M-ball around zero contains a sequence of closed convex
subsets Ki , i = 1,2, . . . , n, such that K2i ∪ K2i+1 ⊆ Ki and K2i and K2i+1 are at a distance at least ε from each
other for all i. Then E is not superreflexive.
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Proof. For every n one can easily construct a (n, ε)-tree contained in the M-ball of E by recursion, starting with the
leaves and using the fact that the midpoint of two nodes belonging to K2i and K2i+1, respectively, is contained in Ki .
The assumption on the distance between K2i and K2i+1 assures that the two children nodes are always at least ε-apart
from each other. �

We need to recall a classical result by Day.

Theorem 6.3. (See Day [5].) The �p-type direct sum of normed spaces, 1 < p < ∞, is uniformly convex if and only if
they have a common modulus of convexity.

Recall that a normed space E is uniformly smooth [2, Appendix A], [10, Chapter 9] if ‖x +y‖+‖x −y‖ = o(‖y‖)
as ‖y‖ → 0, uniformly for all x in the unit sphere of E. More precisely, the modulus of uniform smoothness, δ, of E

is defined for τ > 0 by

ρ(τ) = sup

{‖x + τh‖ + ‖x − τh‖
2

: ‖x‖ = ‖h‖ = 1

}
.

Now E is uniformly smooth if and only if

lim
τ→0

ρ(τ)

τ
= 0.

An ultraproduct of a family of uniformly smooth normed spaces of the same modulus of smoothness is again
uniformly smooth, which is straightforward. The same is true of the �p-direct sum, 1 < p < ∞. (The result can be
deduced from Day’s theorem by using duality, as there is a correspondence between the moduli of uniform convexity
and of uniform smoothness of E and of E∗.)

Every superreflexive space admits an equivalent norm that is both uniformly convex and uniformly smooth. A space
E is uniformly convex iff E∗ is uniformly smooth, and vice versa. (See [10, Chapter 9].)

Every point x of the unit sphere of a uniformly smooth normed space E is a smooth point, that is, there exists a
unique linear functional j (x) = ϕ ∈ E∗ of norm one such that ϕ(x) = 1. (See, e.g., [2, p. 70].)

Theorem 6.4. The universal Urysohn metric space U, as well as the integer-valued Urysohn space, UZ, do not admit
a coarse embedding into a superreflexive Banach space.

Proof. Assume, towards a contradiction, that a coarse embedding φ : UZ → E exists. Since the space E is super-
reflexive, it admits an equivalent norm that is at the same time uniformly convex and uniformly smooth.

By Corollary 4.4, there exist a coarse embedding ψ of UZ into an ultrapower of �2(E) and a strongly continuous
representation of Iso(UZ) by affine isometries in a closed subspace F spanned by ψ(UZ), such that ψ is an Iso(UZ)-
equivariant mapping. Since �2-sums and ultraproducts preserve uniform convexity and uniform smoothness, and these
properties are inherited by normed subspaces, the norm on the space F is both uniformly convex and uniformly
smooth.

It follows from the same Corollary 4.4 that the coarse embedding ψ is a metric transform:

∀x, y ∈ UZ,
∥∥ψ(x) − ψ(y)

∥∥ = ρ
(
d(x, y)

)
,

where ρ(r) → ∞ as r → ∞. By rescaling the norm of F if necessary, one can assume without loss in generality that
ρ(1) = 1.

Choose an arbitrary point z0 ∈ UZ and denote G = Iso(UZ)z0 the isotropy subgroup of z0 in Iso(UZ). Make the
affine space F into a linear space by setting 0F = ψ(z0). The action of G on F becomes a linear continuous isometric
representation.

Fix a natural number m with ρ(m) � 6, and let x, y ∈ Sm(z0) be such that d(x, y) = m. Then ‖ψ(x) − ψ(y)‖ =
ρ(m) and by the Hahn–Banach theorem, there is a linear functional ϕ ∈ F ∗ of norm 1 such that

ϕ
(
ψ(x) − ψ(y)

) = ρ(m).

Since F is uniformly smooth, such a ϕ is unique (the support functional of ψ(x) − ψ(y)).
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Let x = x0, x1, . . . , xm−1, xm = y be a sequence of elements in Sm(z0) satisfying d(xi, xj ) = |i − j | for all i, j =
0,1, . . . ,m. Any two subsequent values ϕ(ψ(xi)), i = 0,1, . . . ,m, differ by at most 1.

There is an isometry f ∈ G interchanging xj and xn−j for every j . In particular, f flips x and y. The corresponding
linear isometry of E∗ will take ϕ to the support functional of ψ(y)−ψ(x), that is, to −ϕ. This means that ϕ(ψ(xj )) =
−ϕ(ψ(xm−j )) for every j = 0,1,2, . . . ,m, in particular, ϕ(ψ(x)) = −ϕ(ψ(y)). Without loss in generality one can
assume that ϕ(ψ(x)) is negative.

Denote k = max{j = 0,1,2, . . . ,m: ϕ(ψ(xj )) < 0}. Then ϕ(ψ(xk+1)) � 0. Let z and w be arbitrary points of
Sm(z0) such that d(x, z) = k, d(x,w) = k + 1, d(y, z) = m − k, and d(y,w) = m − k − 1. There exists a g ∈ G

stabilizing x and y and taking z 	→ xk and w 	→ xk+1. The extension of g to F ∗ will leave ϕ fixed, because of its
uniqueness as a support functional. We conclude that ϕ(ψ(z)) = ϕ(ψ(xk)) and ϕ(ψ(w)) = ϕ(ψ(xk+1)). This can be
summarized as follows: the functional ϕ assumes the constant value ϕ(ψ(xk)) < 0 at all points of ψ(Sk(x)∩Sm−k(y)),
and the constant value ϕ(ψ(xk+1)) � 0 at all points of ψ(Sk+1(x) ∩ Sm−k−1(y)). Denoting γ = |ϕ(ψ(xk))| > 0, one
concludes: the closed convex hulls of ψ(Sk(x) ∩ Sm−k(y)) and of ψ(Sk+1(x) ∩ Sm−k−1(y)) are at least γ > 0 apart.

Our choice of m assures that k � 2, and in particular the intersections Sk(x) ∩ Sm−k(y) and Sk+1(x) ∩ Sm−k−1(y)

are infinite. In fact, they are both isometrically isomorphic to the Urysohn metric space U0,1,...,k of diameter 2k � 4.
Let N be given. Choose 2N + 2 points ai, bi , i = 0,1,2, . . . ,N , on the sphere Sm(z0) so that a0 = x, b0 = y and

the distances between any two distinct points from among them is given by:

d(z,w) =

⎧⎪⎨
⎪⎩

1, if z = ai, w = aj , i �= j,

1, if z = bi, w = bj , i �= j,

m, if z = ai, w = bi,

m − 1, if z = ai, w = bj , i �= j.

For an arbitrary sequence ε = (εi)i�N ∈ {0,1}N , define the function fε on {z0}∪{ai}i�N ∪{bi}i�N by the conditions:

fε(z0) = m, fε(ai) = k + εi, fε(bj ) = m − k − εj .

Now one can verify, by considering 17 separate cases, that fε is an (integer-valued) Katětov function and so a distance
function from some point x∗ ∈ Sm(z0). It means that the intersection

Tε =
N⋂

i=0

Sk+εi
(ai) ∩

N⋂
i=1

Sm−k−εi
(bi) ∩ Sm(z0)

is non-empty.
Associate to every ε ∈ {0,1}N the closed convex hull Cε of ψ(Tε), which is a weakly compact subset of F .

If ε � δ, ε �= δ, then Cε and of Cδ are at a distance of at least γ > 0 from each other, where the constant γ was defined
previously in this proof. Indeed, suppose 0 � i � N be such that εi �= δi , and let h be an isometry of UZ, preserving
z0 and taking x 	→ ai and y 	→ bi . The linear functional ϕ ◦ h has norm one and assumes constant values on Cε and
on Cδ , differing between themselves by at least γ .

Denote by T the prefix binary tree associated to the Hamming cube {0,1}N , i.e., T consists of all prefix strings
of elements ε ∈ {0,1}N , with σ � τ if and only if σ is a prefix of τ . The system Cσ , σ ∈ T , forms a binary tree
under inclusion, and for every two nodes σ, τ at the same level the distance between Cσ and Cτ is at least γ . By
Corollary 6.2, the space F is not uniformly convex. �
7. Open questions

(1) The most interesting open question at the moment of writing this article seems to be whether or not every
finitely generated group admits a coarse embedding into a superreflexive Banach space.

(2) It remains unknown whether a direct sum of graphs forming an expander family can ever admit a coarse
embedding into a superreflexive Banach space (cf. open problem � 9, submitted by Piotr Nowak on the list [34]).

(3) Is there a proof of the Solecki–Vershik property along the lines of a simple combinatorial proof of the
Hrushovski theorem given in [16, Section 4.1]?

(4) Is the following “coarse analogue” of Holmes’ theorem [17] true? Suppose the Urysohn space U is coarsely
embedded into a normed space E in such a way that the image of U spans E. Then E is coarsely equivalent to the
Lipschitz–free Banach space over U. (Cf. also [35, p. 112], as well as [31].)
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(5) Does there exist an analogue of the universal Urysohn metric space in the coarse category among spaces of
bounded geometry and exponential growth? Cf. related constructions in [7].

(6) A regular embedding of a (simple, non-oriented) graph Γ into a metric space X is a map from the set of vertices
of Γ to X such that the distance between images of two adjacent vertices is always α, and between non-adjacent ones
is always β , where α < β . It is well known that many finite graphs do not admit regular embeddings into the Hilbert
space. (Cf. [27].) Does the infinite random graph R admit a regular embedding into a reflexive Banach space?
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Appendix A. Alternative proof of Solecki–Vershik Theorem 3.8

As brought to this author’s attention by S. Solecki, the first version of his article [39] contained a proof of Theo-
rem 3.8 along the same lines as outlined below. We include the proof just to make the paper reasonably self-contained.

Let X be a finite metric space. Denote by P the set of all partial isometries p of X whose domain domp is non-
empty. Let F = F(P ) be the free group on P . Every word w ∈ F defines in a unique way a partial isometry of X

(possibly one with empty domain), under the convention that the empty word e corresponds to the identity map of X.
In this way, one obtains a partial action of F(P ) on X, that is, a map from F(P ) to the set of partial isometries of X

satisfying the properties that for all x ∈ X:

(1) e · x = x,
(2) if u · x is defined, then u−1 · u · x = x,
(3) if u · v · x is defined, then (uv) · x = u · v · x.

Cf. [9,30].
A globalization of a pair consisting of a metric space X and a partial action by a group G on X is a metric space Y

containing X as a metric subspace and equipped with a global action of G in such a way that for every g ∈ G the partial
isometry of X defined by g is a restriction of the corresponding global isometry of Y . A universal globalization of X

is a globalization Z with the property that the embedding of X into any other globalization uniquely factors through
the embedding X ↪→ Z.

Given a finite metric space X, we will consider it as equipped with a canonical partial action of the free group
F = F(P ). Since every finite subspace is g-embedded into the Urysohn metric space, every isometric embedding
X ↪→ U determines (in a more than one way) a globalization of X.

The universal globalization of a pair (X,F (P )) as above was constructed by Megrelishvili and Schröder in [30].
We will denote this globalization by U(X). The construction of a globalization of a partial action appears in many
previous works and, as stressed by the anonymous referee, goes back at least to Mackey. A contribution of [30] is,
in particular, establishing that the canonical mapping from X to U(X) is an isometry under a rather weak set of
assumptions.

At the set level, this globalization is the quotient set of F × X modulo the equivalence relation

(uv, x) ∼ (u, v · x) whenever v · x is defined. (3)

As in [30], we will denote the equivalence class of a pair (u, x) by [u,x]. The action of F on U(X) is defined by
g · [u,x] = [gu,x].

The universal globalization U(X) admits an alternative description as a homogeneous factor-space of the group
F(P ). Here is a repetition, mutatis mutandis, of a construction presented in [16, pp. 1987–1988]. Choose a point
a0 ∈ X and denote by H0 a subgroup of F generated by the set

X0 = {
p−1 · p′: p,p′ ∈ P, p(a0) = p′(a0)

} ∪ {
p−1 · p1 · p2: p1,p2,p3 ∈ P, p1 ◦ p2(a0) = p3(a0)

}
.
3
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Let now H be any subgroup of F satisfying H0 < H .
For every a ∈ X there is a partial isomorphism p ∈ P taking a0 to a (for instance, one with domp = {a0}, imp =

{a}). Furthermore, if p′ has the property p′(a0) = a, then the left cosets pH and p′H coincide. Therefore, the map φ

from X to the homogeneous space F/H given by the formula

φ(a) = pH, where p ∈ P and p(a0) = a,

is well-defined. If moreover H ∩ X1 = ∅, where

X1 = {
p−1 · p′: p,p′ ∈ P, p(a0) �= p′(a0)

}
,

then φ is injective. We will assume this condition to be satisfied, and will identity X with its image under φ in F/H .
Every g ∈ F determines a left translation of the factor-space F/H , which we will denote g̃. It is easy to see that

for every p ∈ P and every a ∈ domp one has p̃(a) = p(a). Indeed, this condition means, in full, pφ(a) = φ(p(a)),
or pp1H = p2H , where p1(a0) = a and p2(a0) = p(a). Since p−1

2 pp1(a0) = a0, one has p−1
2 pp1 ∈ H0 ⊆ H , and

the condition holds.
In order to make F/H into a metric space, we first turn it into an edge-coloured graph. Namely, we add an edge

labeled with a real number r between two elements α and α′ if and only if there are a, a′ ∈ X and a g ∈ F with

d(a, a′) = r, ga = α, and ga′ = α′. (4)

(Again, we identify a with the corresponding coset φ(a), etc.)
Since for every word w ∈ F(P ) and each p ∈ P the cosets wH and wpH are adjacent, with the corresponding

edge carrying the weight d(a0,p(a0)), an inductive argument shows that the graph built on F/H is connected. Now
we equip F/H with the corresponding path distance, which is a left-invariant pseudometric.

There are a few potential problems that may arise here. Firstly, is the edge-labeling as above uniquely defined?
Secondly, is the path distance a genuine metric (that is, the distance between two distinct points is non-zero)? Thirdly,
will the restriction of this distance to X coincide with the original metric on X? (A priori, it is only bounded by dX

from above.)
In the case where H = H0, the answer to all three questions is positive, and it follows from the construction of

Megrelishvili and Schröder mentioned above.
Indeed, consider the following formula for an arbitrary g ∈ F :

ψ(gH0) = [g,a0].
Since every element of H0 stabilizes a0, one has [gh,a0] = [g,h(a0)] = [g,a0], and the map ψ from F/H0 to U(X)

is well-defined. Clearly, ψ is surjective and F -equivariant. Further, it is not difficult to verify that H0 is precisely
the stabilizer of the class [e, a0] ∈ U(X), and so the map ψ is a bijection. Lifting the metric from U(X) to F , one
concludes that the path distance constructed above is a metric extending the distance dX .

All that remains to be done, is to show that the same three conclusions hold for at least one subgroup H < F of
finite index containing H0. Notice that the condition that the path distance, d , be a metric on F/H is not essential:
as long as the restriction of d to X coincides with the distance on X, one can replace (F/H,d) with the associated
metric space, that is, the quotient space under the relation x ∼ y ⇐⇒ d(x, y) = 0.

The two conditions to be verified are that the edge labeling be uniquely defined, and that the path distance on
F/H be an extension of the distance dX on X. Both can be reformulated in a unified way as follows. Let a, b ∈ X.
Say that two finite sequences of pairs (ci, di) of elements of X and of elements xi of F , i = 1,2, . . . , n, form a bad
configuration for (a, b), if the following conditions are met:

(1) x1 · c1 = a,
(2) xi+1ci = xidi for i = 1,2, . . . , n,
(3) xndn = b, and
(4)

∑n
i=1 dX(ci, di) < dX(a, b).

In particular, non-existence of bad configurations implies the uniqueness of labeling.
We want to stress again that here we identify X with its image in F/H under φ. A more accurate rendering of the

existence of a bad configuration in F/H is therefore given by the following ad hoc concept.
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Definition A.1. Let X be a finite metric space and H a subgroup of F(P ) containing H0. A bad configuration for X

modulo H is a collection of elements p,q,pi, qi ∈ P and xi ∈ F(P ), i = 1,2, . . . , n, such that

(1) x1p1 ≡ p mod H ,
(2) xi+1pi ≡ xiqi mod H for i = 1,2, . . . , n,
(3) xnqn ≡ q mod H , and
(4)

∑n
i=1 dX(pi(a0), qi(ao)) < dX(p(a0), q(a0)).

What we want, is to avoid bad configurations for X modulo H by carefully choosing a finite index subgroup H

that in addition contains H0. Remark that there are only finitely many theoretically possible bad configurations for
any given finite metric space X, so if we can learn to choose a subgroup H of finite index containing H0 and avoiding
a given bad configuration, we are done, as the intersection of finitely many subgroups of finite index has finite index
by Poincaré’s theorem.

Recall that a group G is residually finite if homomorphisms from G to finite groups separate points. For example,
free groups are residually finite. Equivalently, residual finiteness means that for every finite subset A ⊆ F \ {e}, where
F denotes a non-Abelian free group, there is a normal subgroup N � F of finite index disjoint from A. In fact, the
collection of subgroups of free groups of finite index is much richer than that, as shows the following surprising result.

Theorem A.2. (See Hall [14].) Every finitely generated subgroup H of a non-Abelian free group F is the intersection
of subgroups N < F of finite index.

This result can be further strengthened.

Theorem A.3. (See Ribes and Zalesskiı̆ [37].) Let H1,H2, . . . ,Hn be finitely generated subgroups of a non-Abelian
free group F . Then for every g ∈ F \ H1H2 . . .Hn there are finite index subgroups K1,K2, . . . ,Kn < F such that
Hi < Ki , i = 1,2, . . . , n, and g /∈ K1K2 . . .Kn.

A further refinement of the above theorems forms the core result of the above mentioned paper by Herwig and
Lascar. To state it, we need to recall their terminology from [16]. A left-system is a finite set of equations of the form

x ≡i y · g or x ≡i g,

where i = 1,2, . . . , n, x, y belong to a finite set of unknowns, X, and g are elements of a free non-Abelian group F .
If H = (H1,H2, . . . ,Hn) is a sequence of subgroups of F , a solution of a left-system as above modulo H is a family
gx , x ∈ X of elements of F such that for every equation of the form x ≡i y · g one has

gx ≡ gy · g mod Hi,

and for every equation of the form x ≡i g one has

gx ≡ g mod Hi.

Theorem A.4. (See Herwig and Lascar [16].) Let n ∈ N, let H = (H1,H2, . . . ,Hn) be a sequence of subgroups of
a free non-Abelian group F , and let (E) be a left-system of equations in F . Assume that (E) has no solutions in F

modulo H. Then there exist finite index subgroups K1,K2, . . . ,Kn of F such that Hi < Ki , i = 1,2, . . . , n, and the
left-system (E) has no solutions in F modulo K = (K1,K2, . . . ,Kn).

Notice that the theorem of Ribes and Zalesskiı̆ is obtained from the above result if one considers the left-system of
the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xn ≡n g,

xn−1 ≡n−1 xn,
...

x2 ≡2 x3,
x1 ≡1 e.
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This system has no solutions in F modulo H if and only if g /∈ H1H2 . . .Hn.
Now it remains to notice that the existence of a bad configuration for a finite metric space X modulo a subgroup

H (Definition A.1) is equivalent to the existence of a solution to a left-system of equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ≡ pp−1
1 ,

x2 ≡ x1 · q1p
−1
1 ,

x3 ≡ x2 · q2p
−1
2 ,

...

xn ≡ qq−1
n .

Since there is no solution of this left-system modulo H0, there is a subgroup H of finite index containing H0 and such
that there are no solution modulo H either. This finishes the proof of Theorem 3.8 for the case of the Urysohn space.

Note that the above argument in effect leads to the following slight technical generalization. As usual, we say that
a subset S of a totally ordered set X is convex if for every x, y, z ∈ X the conditions x � y � z and x, z ∈ S imply
y ∈ S.

Theorem A.5 (General form of Hrushovski–Solecki–Vershik theorem). Let S be a convex subset of an additive sub-
semigroup T of R, containing zero. Then the universal Urysohn metric space US whose distance takes values in S

has the Hrushovski–Solecki–Vershik property.

Remark that under our assumptions on S, the space US always exists and is unique, according to Theorem 1.4 and
Example 1.5.3 in [6]. Now in the case S = {0,1,2} (a convex subset of the semigroup N of natural numbers) one
recovers Hrushovski’s theorem 3.7, while the case S = R gives the Solecki–Vershik theorem 3.8.
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