9,612 research outputs found

    Minimal spanning forests

    Full text link
    Minimal spanning forests on infinite graphs are weak limits of minimal spanning trees from finite subgraphs. These limits can be taken with free or wired boundary conditions and are denoted FMSF (free minimal spanning forest) and WMSF (wired minimal spanning forest), respectively. The WMSF is also the union of the trees that arise from invasion percolation started at all vertices. We show that on any Cayley graph where critical percolation has no infinite clusters, all the component trees in the WMSF have one end a.s. In Zd\mathbb{Z}^d this was proved by Alexander [Ann. Probab. 23 (1995) 87--104], but a different method is needed for the nonamenable case. We also prove that the WMSF components are ``thin'' in a different sense, namely, on any graph, each component tree in the WMSF has pc=1p_{\mathrm{c}}=1 a.s., where pcp_{\mathrm{c}} denotes the critical probability for having an infinite cluster in Bernoulli percolation. On the other hand, the FMSF is shown to be ``thick'': on any connected graph, the union of the FMSF and independent Bernoulli percolation (with arbitrarily small parameter) is a.s. connected. In conjunction with a recent result of Gaboriau, this implies that in any Cayley graph, the expected degree of the FMSF is at least the expected degree of the FSF (the weak limit of uniform spanning trees). We also show that the number of infinite clusters for Bernoulli(pup_{\mathrm{u}}) percolation is at most the number of components of the FMSF, where pup_{\mathrm{u}} denotes the critical probability for having a unique infinite cluster. Finally, an example is given to show that the minimal spanning tree measure does not have negative associations.Comment: Published at http://dx.doi.org/10.1214/009117906000000269 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane

    Get PDF
    We prove that the Minimal Spanning Tree and the Invasion Percolation Tree on a version of the triangular lattice in the complex plane have unique scaling limits, which are invariant under rotations, scalings, and, in the case of the MST, also under translations. However, they are not expected to be conformally invariant. We also prove some geometric properties of the limiting MST. The topology of convergence is the space of spanning trees introduced by Aizenman, Burchard, Newman & Wilson (1999), and the proof relies on the existence and conformal covariance of the scaling limit of the near-critical percolation ensemble, established in our earlier works.Comment: 56 pages, 21 figures. A thoroughly revised versio

    Ends in free minimal spanning forests

    Full text link
    We show that for a transitive unimodular graph, the number of ends is the same for every tree of the free minimal spanning forest. This answers a question of Lyons, Peres and Schramm.Comment: Published at http://dx.doi.org/10.1214/009117906000000025 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Processes on Unimodular Random Networks

    Full text link
    We investigate unimodular random networks. Our motivations include their characterization via reversibility of an associated random walk and their similarities to unimodular quasi-transitive graphs. We extend various theorems concerning random walks, percolation, spanning forests, and amenability from the known context of unimodular quasi-transitive graphs to the more general context of unimodular random networks. We give properties of a trace associated to unimodular random networks with applications to stochastic comparison of continuous-time random walk.Comment: 66 pages; 3rd version corrects formula (4.4) -- the published version is incorrect --, as well as a minor error in the proof of Proposition 4.10; 4th version corrects proof of Proposition 7.1; 5th version corrects proof of Theorem 5.1; 6th version makes a few more minor correction

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Indistinguishability of Trees in Uniform Spanning Forests

    Full text link
    We prove that in both the free and the wired uniform spanning forest (FUSF and WUSF) of any unimodular random rooted network (in particular, of any Cayley graph), it is impossible to distinguish the connected components of the forest from each other by invariantly defined graph properties almost surely. This confirms a conjecture of Benjamini, Lyons, Peres and Schramm. We use this to answer positively two additional questions of Benjamini, Lyons, Peres and Schramm under the assumption of unimodularity. We prove that on any unimodular random rooted network, the FUSF is either connected or has infinitely many connected components almost surely, and, if the FUSF and WUSF are distinct, then every component of the FUSF is transient and infinitely-ended almost surely. All of these results are new even for Cayley graphs.Comment: 43 pages, 2 figures. Version 2: minor corrections and improvements; references added; one additional figur

    The looping rate and sandpile density of planar graphs

    Full text link
    We give a simple formula for the looping rate of loop-erased random walk on a finite planar graph. The looping rate is closely related to the expected amount of sand in a recurrent sandpile on the graph. The looping rate formula is well-suited to taking limits where the graph tends to an infinite lattice, and we use it to give an elementary derivation of the (previously computed) looping rate and sandpile densities of the square, triangular, and honeycomb lattices, and compute (for the first time) the looping rate and sandpile densities of many other lattices, such as the kagome lattice, the dice lattice, and the truncated hexagonal lattice (for which the values are all rational), and the square-octagon lattice (for which it is transcendental)

    Percolation-like Scaling Exponents for Minimal Paths and Trees in the Stochastic Mean Field Model

    Full text link
    In the mean field (or random link) model there are nn points and inter-point distances are independent random variables. For 0<<0 < \ell < \infty and in the nn \to \infty limit, let δ()=1/n×\delta(\ell) = 1/n \times (maximum number of steps in a path whose average step-length is \leq \ell). The function δ()\delta(\ell) is analogous to the percolation function in percolation theory: there is a critical value =e1\ell_* = e^{-1} at which δ()\delta(\cdot) becomes non-zero, and (presumably) a scaling exponent β\beta in the sense δ()()β\delta(\ell) \asymp (\ell - \ell_*)^\beta. Recently developed probabilistic methodology (in some sense a rephrasing of the cavity method of Mezard-Parisi) provides a simple albeit non-rigorous way of writing down such functions in terms of solutions of fixed-point equations for probability distributions. Solving numerically gives convincing evidence that β=3\beta = 3. A parallel study with trees instead of paths gives scaling exponent β=2\beta = 2. The new exponents coincide with those found in a different context (comparing optimal and near-optimal solutions of mean-field TSP and MST) and reinforce the suggestion that these scaling exponents determine universality classes for optimization problems on random points.Comment: 19 page
    corecore