384 research outputs found

    Making distributed computing infrastructures interoperable and accessible for e-scientists at the level of computational workflows

    Get PDF
    As distributed computing infrastructures evolve, and as their take up by user communities is growing, the importance of making different types of infrastructures based on a heterogeneous set of middleware interoperable is becoming crucial. This PhD submission, based on twenty scientific publications, presents a unique solution to the challenge of the seamless interoperation of distributed computing infrastructures at the level of workflows. The submission investigates workflow level interoperation inside a particular workflow system (intra-workflow interoperation), and also between different workflow solutions (inter-workflow interoperation). In both cases the interoperation of workflow component execution and the feeding of data into these components workflow components are considered. The invented and developed framework enables the execution of legacy applications and grid jobs and services on multiple grid systems, the feeding of data from heterogeneous file and data storage solutions to these workflow components, and the embedding of non-native workflows to a hosting meta-workflow. Moreover, the solution provides a high level user interface that enables e-scientist end-users to conveniently access the interoperable grid solutions without requiring them to study or understand the technical details of the underlying infrastructure. The candidate has also developed an application porting methodology that enables the systematic porting of applications to interoperable and interconnected grid infrastructures, and facilitates the exploitation of the above technical framework

    Integrating Existing Software Toolkits into VO System

    Full text link
    Virtual Observatory (VO) is a collection of interoperating data archives and software tools. Taking advantages of the latest information technologies, it aims to provide a data-intensively online research environment for astronomers all around the world. A large number of high-qualified astronomical software packages and libraries are powerful and easy of use, and have been widely used by astronomers for many years. Integrating those toolkits into the VO system is a necessary and important task for the VO developers. VO architecture greatly depends on Grid and Web services, consequently the general VO integration route is "Java Ready - Grid Ready - VO Ready". In the paper, we discuss the importance of VO integration for existing toolkits and discuss the possible solutions. We introduce two efforts in the field from China-VO project, "gImageMagick" and " Galactic abundance gradients statistical research under grid environment". We also discuss what additional work should be done to convert Grid service to VO service.Comment: 9 pages, 3 figures, will be published in SPIE 2004 conference proceeding

    Assessing and Improving Interoperability of Distributed Systems

    Get PDF
    InteroperabilitĂ€t von verteilten Systemen ist eine Grundlage fĂŒr die Entwicklung von neuen und innovativen GeschĂ€ftslösungen. Sie erlaubt es existierende Dienste, die auf verschiedenen Systemen angeboten werden, so miteinander zu verknĂŒpfen, dass neue oder erweiterte Dienste zur VerfĂŒgung gestellt werden können. Außerdem kann durch diese Integration die ZuverlĂ€ssigkeit von Diensten erhöht werden. Das Erreichen und Bewerten von InteroperabilitĂ€t stellt jedoch eine finanzielle und zeitliche Herausforderung dar. Zur Sicherstellung und Bewertung von InteroperabilitĂ€t werden systematische Methoden benötigt. Um systematisch InteroperabilitĂ€t von Systemen erreichen und bewerten zu können, wurde im Rahmen der vorliegenden Arbeit ein Prozess zur Verbesserung und Beurteilung von InteroperabilitĂ€t (IAI) entwickelt. Der IAI-Prozess beinhaltet drei Phasen und kann die InteroperabilitĂ€t von verteilten, homogenen und auch heterogenen Systemen bewerten und verbessern. Die Bewertung erfolgt dabei durch InteroperabilitĂ€tstests, die manuell oder automatisiert ausgefĂŒhrt werden können. FĂŒr die Automatisierung von InteroperabilitĂ€tstests wird eine neue Methodik vorgestellt, die einen Entwicklungsprozess fĂŒr automatisierte InteroperabilitĂ€tstestsysteme beinhaltet. Die vorgestellte Methodik erleichtert die formale und systematische Bewertung der InteroperabilitĂ€t von verteilten Systemen. Im Vergleich zur manuellen PrĂŒfung von InteroperabilitĂ€t gewĂ€hrleistet die hier vorgestellte Methodik eine höhere Testabdeckung, eine konsistente TestdurchfĂŒhrung und wiederholbare InteroperabilitĂ€tstests. Die praktische Anwendbarkeit des IAI-Prozesses und der Methodik fĂŒr automatisierte InteroperabilitĂ€tstests wird durch drei Fallstudien belegt. In der ersten Fallstudie werden Prozess und Methodik fĂŒr Internet Protocol Multimedia Subsystem (IMS) Netzwerke instanziiert. Die InteroperabilitĂ€t von IMS-Netzwerken wurde bisher nur manuell getestet. In der zweiten und dritten Fallstudie wird der IAI-Prozess zur Beurteilung und Verbesserung der InteroperabilitĂ€t von Grid- und Cloud-Systemen angewendet. Die Bewertung und Verbesserung dieser InteroperabilitĂ€t ist eine Herausforderung, da Grid- und Cloud-Systeme im Gegensatz zu IMS-Netzwerken heterogen sind. Im Rahmen der Fallstudien werden Möglichkeiten fĂŒr Integrations- und InteroperabilitĂ€tslösungen von Grid- und Infrastructure as a Service (IaaS) Cloud-Systemen sowie von Grid- und Platform as a Service (PaaS) Cloud-Systemen aufgezeigt. Die vorgestellten Lösungen sind in der Literatur bisher nicht dokumentiert worden. Sie ermöglichen die komplementĂ€re Nutzung von Grid- und Cloud-Systemen, eine vereinfachte Migration von Grid-Anwendungen in ein Cloud-System sowie eine effiziente Ressourcennutzung. Die InteroperabilitĂ€tslösungen werden mit Hilfe des IAI-Prozesses bewertet. Die DurchfĂŒhrung der Tests fĂŒr Grid-IaaS-Cloud-Systeme erfolgte manuell. Die InteroperabilitĂ€t von Grid-PaaS-Cloud-Systemen wird mit Hilfe der Methodik fĂŒr automatisierte InteroperabilitĂ€tstests bewertet. InteroperabilitĂ€tstests und deren Beurteilung wurden bisher in der Grid- und Cloud-Community nicht diskutiert, obwohl sie eine Basis fĂŒr die Entwicklung von standardisierten Schnittstellen zum Erreichen von InteroperabilitĂ€t zwischen Grid- und Cloud-Systemen bieten.Achieving interoperability of distributed systems offers means for the development of new and innovative business solutions. Interoperability allows the combination of existing services provided on different systems, into new or extended services. Such an integration can also increase the reliability of the provided service. However, achieving and assessing interoperability is a technical challenge that requires high effort regarding time and costs. The reasons are manifold and include differing implementations of standards as well as the provision of proprietary interfaces. The implementations need to be engineered to be interoperable. Techniques that assess and improve interoperability systematically are required. For the assurance of reliable interoperation between systems, interoperability needs to be assessed and improved in a systematic manner. To this aim, we present the Interoperability Assessment and Improvement (IAI) process, which describes in three phases how interoperability of distributed homogeneous and heterogeneous systems can be improved and assessed systematically. The interoperability assessment is achieved by means of interoperability testing, which is typically performed manually. For the automation of interoperability test execution, we present a new methodology including a generic development process for a complete and automated interoperability test system. This methodology provides means for a formalized and systematic assessment of systems' interoperability in an automated manner. Compared to manual interoperability testing, the application of our methodology has the following benefits: wider test coverage, consistent test execution, and test repeatability. We evaluate the IAI process and the methodology for automated interoperability testing in three case studies. Within the first case study, we instantiate the IAI process and the methodology for Internet Protocol Multimedia Subsystem (IMS) networks, which were previously assessed for interoperability only in a manual manner. Within the second and third case study, we apply the IAI process to assess and improve the interoperability of grid and cloud computing systems. Their interoperability assessment and improvement is challenging, since cloud and grid systems are, in contrast to IMS networks, heterogeneous. We develop integration and interoperability solutions for grids and Infrastructure as a Service (IaaS) clouds as well as for grids and Platform as a Service (PaaS) clouds. These solutions are unique and foster complementary usage of grids and clouds, simplified migration of grid applications into the cloud, as well as efficient resource utilization. In addition, we assess the interoperability of the grid-cloud interoperability solutions. While the tests for grid-IaaS clouds are performed manually, we applied our methodology for automated interoperability testing for the assessment of interoperability to grid-PaaS cloud interoperability successfully. These interoperability assessments are unique in the grid-cloud community and provide a basis for the development of standardized interfaces improving the interoperability between grids and clouds

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum

    Active Ontology: An Information Integration Approach for Dynamic Information Sources

    Get PDF
    In this paper we describe an ontology-based information integration approach that is suitable for highly dynamic distributed information sources, such as those available in Grid systems. The main challenges addressed are: 1) information changes frequently and information requests have to be answered quickly in order to provide up-to-date information; and 2) the most suitable information sources have to be selected from a set of different distributed ones that can provide the information needed. To deal with the first challenge we use an information cache that works with an update-on-demand policy. To deal with the second we add an information source selection step to the usual architecture used for ontology-based information integration. To illustrate our approach, we have developed an information service that aggregates metadata available in hundreds of information services of the EGEE Grid infrastructure

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    A Federated Approach to Information Management in Grids

    Full text link
    • 

    corecore