168 research outputs found

    Uniform attractors for non-autonomous wave equations with nonlinear damping

    Full text link
    We consider dynamical behavior of non-autonomous wave-type evolutionary equations with nonlinear damping, critical nonlinearity, and time-dependent external forcing which is translation bounded but not translation compact (i.e., external forcing is not necessarily time-periodic, quasi-periodic or almost periodic). A sufficient and necessary condition for the existence of uniform attractors is established using the concept of uniform asymptotic compactness. The required compactness for the existence of uniform attractors is then fulfilled by some new a priori estimates for concrete wave type equations arising from applications. The structure of uniform attractors is obtained by constructing a skew product flow on the extended phase space for the norm-to-weak continuous process.Comment: 33 pages, no figur

    Averaging of equations of viscoelasticity with singularly oscillating external forces

    Full text link
    Given ρ[0,1]\rho\in[0,1], we consider for ε(0,1]\varepsilon\in(0,1] the nonautonomous viscoelastic equation with a singularly oscillating external force ttuκ(0)Δu0κ(s)Δu(ts)ds+f(u)=g0(t)+ερg1(t/ε) \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t)+\varepsilon ^{-\rho }g_{1}(t/\varepsilon ) together with the {\it averaged} equation ttuκ(0)Δu0κ(s)Δu(ts)ds+f(u)=g0(t). \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t). Under suitable assumptions on the nonlinearity and on the external force, the related solution processes Sε(t,τ)S_\varepsilon(t,\tau) acting on the natural weak energy space H{\mathcal H} are shown to possess uniform attractors Aε{\mathcal A}^\varepsilon. Within the further assumption ρ<1\rho<1, the family Aε{\mathcal A}^\varepsilon turns out to be bounded in H{\mathcal H}, uniformly with respect to ε[0,1]\varepsilon\in[0,1]. The convergence of the attractors Aε{\mathcal A}^\varepsilon to the attractor A0{\mathcal A}^0 of the averaged equation as ε0\varepsilon\to 0 is also established

    Time-Dependent Attractor for the Oscillon Equation

    Full text link
    We investigate the asymptotic behavior of the nonautonomous evolution problem generated by the Klein-Gordon equation in an expanding background, in one space dimension with periodic boundary conditions, with a nonlinear potential of arbitrary polynomial growth. After constructing a suitable dynamical framework to deal with the explicit time dependence of the energy of the solution, we establish the existence of a regular, time-dependent global attractor. The sections of the attractor at given times have finite fractal dimension.Comment: to appear in Discrete and Continuous Dynamical System

    Existence Results for Some Damped Second-Order Volterra Integro-Differential Equations

    Full text link
    In this paper we make a subtle use of operator theory techniques and the well-known Schauder fixed-point principle to establish the existence of pseudo-almost automorphic solutions to some second-order damped integro-differential equations with pseudo-almost automorphic coefficients. In order to illustrate our main results, we will study the existence of pseudo-almost automorphic solutions to a structurally damped plate-like boundary value problem.Comment: 20 pages. arXiv admin note: substantial text overlap with arXiv:1402.563

    Convergence of non-autonomous attractors for subquintic weakly damped wave equation

    Get PDF
    We study the non-autonomous weakly damped wave equation with subquintic growth condition on the nonlinearity. Our main focus is the class of Shatah--Struwe solutions, which satisfy the Strichartz estimates and are coincide with the class of solutions obtained by the Galerkin method. For this class we show the existence and smoothness of pullback, uniform, and cocycle attractors and the relations between them. We also prove that these non-autonomous attractors converge upper-semicontinuously to the global attractor for the limit autonomous problem if the time-dependent nonlinearity tends to time independent function in an appropriate way

    Рівномірний атрактор хвильового рівняння з нелінійним демпфуванням, що явно залежить від часу

    Get PDF
    The paper deals with long-time behavior of the solutions to the initial-boundary value problem for a non-autonomous non-linear wave equation. The peculiarity of the equation is the non-linear damping term depending explicitly on time. The problem is studied in the framework of the theory of processes and their attractors. The family of processes generated by the initial-boundary value problem is introduced. It is proved that this family is uniformly (with respect to the time-dependent damping coefficient) dissipative and asymptotically compact, thus possesses a uniqueuniform attractor. The attractor is a compact set in the common phase space of the processes.Вивчається асимптотична поведінка розв’язків початково-крайової задачі для неавтономного нелінійного хвильового рівняння. Особливістю рівняння є те, що доданок рівняння, який відповідає за демпфування, є нелінійним і залежить явно від часу. Дослідження проведено у рамках теорії процесів та їх атракторів. Побудовано сім’юпроцесів, що відповідає початково-крайовій задачі. Доведено, що ця сім’яє рівномірно (відносно коефіцієнта демпфування, який залежить від часу) дисипативною та асимптотично компактною, отже має єдиний рівномірний атрактор. Атрактор є компактною множиною у спільному фазовому просторі процесів

    Attractors for processes on time-dependent spaces. Applications to wave equations

    Full text link
    For a process U(t,s) acting on a one-parameter family of normed spaces, we present a notion of time-dependent attractor based only on the minimality with respect to the pullback attraction property. Such an attractor is shown to be invariant whenever the process is T-closed for some T>0, a much weaker property than continuity (defined in the text). As a byproduct, we generalize the recent theory of attractors in time-dependent spaces developed in [10]. Finally, we exploit the new framework to study the longterm behavior of wave equations with time-dependent speed of propagation
    corecore