23 research outputs found

    Transceiver design and system optimization for ultra-wideband communications

    Get PDF
    This dissertation investigates the potential promises and proposes possible solutions to the challenges of designing transceivers and optimizing system parameters in ultra-wideband (UWB) systems. The goal is to provide guidelines for UWB transceiver implementations under constraints by regulation, existing interference, and channel estimation. New UWB pulse shapes are invented that satisfy the Federal Communications Commission spectral mask. Parameters are designed to possibly implement the proposed pulses. A link budget is quantified based on an accurate frequency-dependent path loss calculation to account for variations across the ultra-wide bandwidth of the signal. Achievable information rates are quantified as a function of transmission distance over additive white Gaussian noise and multipath channels under specific UWB constraints: limited power spectral density, specific modulation formats, and a highly dispersive channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel capacity is determined, and modulation formats that mitigate against this effect is identified. Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are proved to be spread spectrum. Conditions are formulated for trading coding gain with spreading gain with only a small impact on performance. Numerical results are examined to demonstrate that over a frequency-selective channel, the spreading gain may be beneficial in reducing the SI and ISI resulting in higher information rates. A reduced-rank adaptive filtering technique is applied to the problem of interference suppression and optimum combining in UWB communications. The reduced-rank combining method, in particular the eigencanceler, is proposed and compared with a minimum mean square error Rake receiver. Simulation results are evaluated to show that the performance of the proposed method is superior to the minimum mean square error when the correlation matrix is estimated from limited data. Impact of channel estimation on UWB system performance is investigated when path delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions for the variance of path delay and amplitude estimates are formulated using maximum likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in the presence of channel path delay and amplitude errors. An exact expression of the bit error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of channel path delays and amplitudes. Further, this analysis is applied to design optimal transceiver parameters. The BER is used as part of a binary symmetric channel and the achievable information rates are evaluated. The optimum power allocation and number of symbols allocated to the pilot are developed with respect to maximizing the information rate. The optimal signal bandwidth to be used for UWB communications is determined in the presence of imperfect channel state information. The number of multipath components to be collected by Rake receivers is designed to optimize performance with non-ideal channel estimation

    Reliable Cognitive Ultra Wideband Communication Systems Under Coexistence Constraints

    Get PDF
    RÉSUMÉ La croissance rapide des systĂšmes de communication sans fil et la raretĂ© du spectre ont motivĂ© les industries et les fournisseurs ouvrant dans le domaine de communication sans fil de dĂ©velopper des stratĂ©gies et des technologies de communication qui peuvent utiliser efficacement les ressources spectrales. La rĂ©utilisation pacifique du spectre sous-licence et sous-utilisĂ© peut ĂȘtre une solution prometteuse pour certaines initiatives en cours telles que la communication mobile Ă  haut dĂ©bit, la communication machine-Ă -machine, et la connectivitĂ© WiFi. Un des plus gros facteurs qui empĂȘche l'approche de cette rĂ©utilisation de frĂ©quences est l'effet d'environnements bruyants sur les dispositifs coexistent dans la mĂȘme bande de frĂ©quence. Par consĂ©quent, la demande pour une stratĂ©gie de coexistence pacifique entre les utilisateurs du spectre, des dĂ©fis et des questions techniques qu'elle engĂȘndre, motive notre recherche. Il est Ă  noter que dans cette thĂšse, nous considĂ©rons un systĂšme pratique appelĂ© MB-OFDM UWB (en anglais multiband orthogonal frequency division multiplexing ultra wideband) pour donner un aperçu pratique de ce concept. Pour atteindre cet objectif, d'abord nous examinons le problĂšme d'interfĂ©rence des utilisateurs secondaires sur les utilisateurs principaux. A cet effet, tenant compte d'un systĂšme secondaire OFDM, nous proposons des mĂ©thodes de mise en forme du spectre pour les applications de transmission Ă  antennes simples et multiples. Nous prĂ©sentons une technique dĂ©bit-efficace nommĂ©e “Enhanced active interference cancellation (E - AIC)qui est en effet capable de crĂ©er des encoches ayant des caractĂ©ristiques flexibles. Afin de rĂ©soudre le problĂšme de dĂ©passement du spectre causĂ© pas la technique classique-AIC, nous utilisons une approche multi-contraintes qui Ă  son tour cause un problĂšme multi-contrainte de minimisation (en anglais multi-constraint minimization problem, MCMP). Cependant, un nouvel algorithme itĂ©ratif basĂ© sur la technique SVD (en anglais singular value decomposition) est proposĂ©, permettant ainsi de rĂ©duire la complexitĂ© de la solution de MCMP. Les rĂ©sultats de simulation obtenus montrent que la technique E-AIC proposĂ©e fournit de meilleures performances en termes de suppression des lobes latĂ©raux avec 0 dB de dĂ©passement, moins de complexitĂ© de calcul et moins de perte de dĂ©bit par rapport aux mĂ©thodes AIC prĂ©cĂ©dentes. Quant aux antennes multiples, nous proposons deux nouvelles techniques AIC, qui utilisent l'idĂ©e principale des approches de sĂ©lection d'antennes d'Ă©mission (en anglais transmit antenna selection, TAS). Bien que les rĂ©sultats montrent que les deux techniques permettent la crĂ©ation d'encoche identique, la technique per-tone TAS-AIC a la plus grande efficacitĂ© spectrale. AprĂšs avoir obtenu une emission sans interfĂ©rence pour le systĂšme MB-OFDM UWB, nous analysons, modĂ©lisons et attĂ©nuons le bruit impulsif au rĂ©cepteur MB-OFDM UWB. Pour ce faire, d'abord, nous proposons un cadre analytique qui dĂ©crit les principales caractĂ©ristiques d'interfĂ©rence d'un systĂšme Ă  ultra large bande et saut temporel (en anglais time-hopping UWB, TH-UWB) niveau de ces paramĂštres de signalisation. Les rĂ©sultats montrent que la distribution d'interfĂ©rence dĂ©pend fortement aux paramĂštres de saut temporel du systĂšme TH-UWB.----------ABSTRACT The rapid growth of wireless communication systems along with the radio spectrum's scarcity and regulatory considerations have put the onus on the wireless industries and service providers to develop wireless communication strategies and technologies that can efficiently utilize the spectral resources. Hence, peaceful reuse of underutilized licensed radio frequencies (by secondary users) can be a promising solution for some ongoing initiatives such as mobile broadband, machine-to-machine applications and WiFi connectivity. One of the biggest factors that prevents the spectrum reusing approach to effectively address the spectrum scarcity, is noisy environments result from coexistence of different devices in the same frequency band. Therefore, the request for a peaceful coexistence strategy between spectrum users, which leads to various challenges, and technical issues, motivates our research. It is worth noting that, in this thesis, we consider a practical system called multiband orthogonal frequency division multiplexing ultra wideband (MB-OFDM UWB) as an underlay system to provide a practical insight into this concept. However, all the obtained results and contributions are applicable to other OFDM-based communication systems. Towards this goal, we first investigate the problem of the interference from secondary users to the primary users. For this purpose, considering an OFDM-based secondary communication system, we propose spectrum-shaping methods for single and multiple transmit antennas applications. For single antenna scenario, we present a throughput-efficient enhanced active interference cancellation (E-AIC) technique, which is indeed capable of creating notches with flexible characteristics. In order to address the spectrum overshoot problem of conventional-AIC techniques, we employed a multi-constraint approach, which leads to a multi-constraint minimization problem (MCMP). Hence, a novel iterative singular value decomposition (SVD) based algorithm is proposed to reduce the complexity of the MCMP's solution. The obtained simulation results show that the proposed enhanced-AIC technique provides higher performance in terms of sidelobes suppression with 0 dB overshoot, less computational complexity and less throughput-loss compared to previous constrained-AIC methods. For multiple transmit antennas, we propose two novel AIC techniques employing main ideas behind bulk and per-tone transmit antenna selection (TAS) approaches. Simulation results show that although both techniques provide identical notch creation, the per-tone TAS-AIC technique has higher spectral efficiency

    Interference management in impulse-radio ultra-wide band networks

    Get PDF
    We consider networks of impulse-radio ultra-wide band (IR-UWB) devices. We are interested in the architecture, design, and performance evaluation of these networks in a low data-rate, self-organized, and multi-hop setting. IR-UWB is a potential physical layer for sensor networks and emerging pervasive wireless networks. These networks are likely to have no particular infrastructure, might have nodes embedded in everyday life objects and have a size ranging from a few dozen nodes to large-scale networks composed of hundreds of nodes. Their average data-rate is low, on the order of a few megabits per second. IR-UWB physical layers are attractive for these networks because they potentially combine low-power consumption, robustness to multipath fading and to interference, and location/ranging capability. The features of an IR-UWB physical layer greatly differ from the features of the narrow-band physical layers used in existing wireless networks. First, the bandwidth of an IR-UWB physical layer is at least 500 MHz, which is easily two orders of magnitude larger than the bandwidth used by a typical narrow-band physical layer. Second, this large bandwidth implies stringent radio spectrum regulations because UWB systems might occupy a portion of the spectrum that is already in use. Consequently, UWB systems exhibit extremely low power spectral densities. Finally IR-UWB physical layers offer multi-channel capabilities for multiple and concurrent access to the physical layer. Hence, the architecture and design of IR-UWB networks are likely to differ significantly from narrow-band wireless networks. For the network to operate efficiently, it must be designed and implemented to take into account the features of IR-UWB and to take advantage of them. In this thesis, we focus on both the medium access control (MAC) layer and the physical layer. Our main objectives are to understand and determine (1) the architecture and design principles of IR-UWB networks, and (2) how to implement them in practical schemes. In the first part of this thesis, we explore the design space of IR-UWB networks and analyze the fundamental design choices. We show that interference from concurrent transmissions should not be prevented as in protocols that use mutual exclusion (for instance, IEEE 802.11). Instead, interference must be managed with rate adaptation, and an interference mitigation scheme should be used at the physical layer. Power control is useless. Based on these findings, we develop a practical PHY-aware MAC protocol that takes into account the specific nature of IR-UWB and that is able to adapt its rate to interference. We evaluate the performance obtained with this design: It clearly outperforms traditional designs that, instead, use mutual exclusion or power control. One crucial aspect of IR-UWB networks is packet detection and timing acquisition. In this context, a network design choice is whether to use a common or private acquisition preamble for timing acquisition. Therefore, we evaluate how this network design issue affects the network throughput. Our analysis shows that a private acquisition preamble yields a tremendous increase in throughput, compared with a common acquisition preamble. In addition, simulations on multi-hop topologies with TCP flows demonstrate that a network using private acquisition preambles has a stable throughput. On the contrary, using a common acquisition preamble exhibits an effect similar to exposed terminal issues in 802.11 networks: the throughput is severely degraded and flow starvation might occur. In the second part of this thesis, we are interested in IEEE 802.15.4a, a standard for low data-rate, low complexity networks that employs an IR-UWB physical layer. Due to its low complexity, energy detection is appealing for the implementation of practical receivers. But it is less robust to multi-user interference (MUI) than a coherent receiver. Hence, we evaluate the performance of an IEEE 802.15.4a physical layer with an energy detection receiver to find out whether a satisfactory performance is still obtained. Our results show that MUI severely degrades the performance in this case. The energy detection receiver significantly diminishes one of the most appealing benefits of UWB, specifically its robustness to MUI and thus the possibility of allowing for parallel transmissions. This performance analysis leads to the development of an IR-UWB receiver architecture, based on energy detection, that is robust to MUI and adapted to the peculiarities of IEEE 802.15.4a. This architecture greatly improves the performance and entails only a moderate increase in complexity. Finally, we present the architecture of an IR-UWB physical layer implementation in ns-2, a well-known network simulator. This architecture is generic and allows for the simulation of several multiple-access physical layers. In addition, it comprises a model of packet detection and timing acquisition. Network simulators also need to have efficient algorithms to accurately compute bit or packet error rates. Hence, we present a fast algorithm to compute the bit error rate of an IR-UWB physical layer in a network setting with MUI. It is based on a novel combination of large deviation theory and importance sampling

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Secure Neighbor Discovery and Ranging in Wireless Networks

    Get PDF
    This thesis addresses the security of two fundamental elements of wireless networking: neighbor discovery and ranging. Neighbor discovery consists in discovering devices available for direct communication or in physical proximity. Ranging, or distance bounding, consists in measuring the distance between devices, or providing an upper bound on this distance. Both elements serve as building blocks for a variety of services and applications, notably routing, physical access control, tracking and localization. However, the open nature of wireless networks makes it easy to abuse neighbor discovery and ranging, and thereby compromise overlying services and applications. To prevent this, numerous works proposed protocols that secure these building blocks. But two aspects crucial for the security of such protocols have received relatively little attention: formal verification and attacks on the physical-communication-layer. They are precisely the focus of this thesis. In the first part of the thesis, we contribute a formal analysis of secure communication neighbor discovery protocols. We build a formal model that captures salient characteristics of wireless systems such as node location, message propagation time and link variability, and we provide a specification of secure communication neighbor discovery. Then, we derive an impossibility result for a general class of protocols we term "time-based protocols", stating that no such protocol can provide secure communication neighbor discovery. We also identify the conditions under which the impossibility result is lifted. We then prove that specific protocols in the time-based class (under additional conditions) and specific protocols in a class we term "time- and location-based protocols," satisfy the neighbor discovery specification. We reinforce these results by mechanizing the model and the proofs in the theorem prover Isabelle. In the second part of the thesis, we explore physical-communication-layer attacks that can seemingly decrease the message arrival time without modifying its content. Thus, they can circumvent time-based neighbor discovery protocols and distance bounding protocols. (Indeed, they violate the assumptions necessary to prove protocol correctness in the first part of the thesis.) We focus on Impulse Radio Ultra-Wideband, a physical layer technology particularly well suited for implementing distance bounding, thanks to its ability to perform accurate indoor ranging. First, we adapt physical layer attacks reported in prior work to IEEE 802.15.4a, the de facto standard for Impulse Radio, and evaluate their performance. We show that an adversary can achieve a distance-decrease of up to hundreds of meters with an arbitrarily high probability of success, with only a minor cost in terms of transmission power (few dB). Next, we demonstrate a new attack vector that disrupts time-of-arrival estimation algorithms, in particular those designed to be precise. The distance-decrease achievable by this attack vector is in the order of the channel spread (order of 10 meters in indoor environments). This attack vector can be used in previously reported physical layer attacks, but it also creates a new type of external attack based on malicious interference. We demonstrate that variants of the malicious interference attack are much easier to mount than the previously reported external attack. We also provide design guidelines for modulation schemes and devise receiver algorithms that mitigate physical layer attacks. These countermeasures allow the system designer to trade off security, ranging precision and cost in terms of transmission power and packet length

    Ultra wideband gigabit powerline communication

    Get PDF
    PhDPowerline Communication (PLC) has long been established for low data rate applications by the electric supply companies. Since 1991, the European CENELEC standard EN 50065 has ruled the use of 3 - 148.5KHz frequency range for narrow band PLC applications. Sim- ilar standard has been established by the IEEE in the US, where a frequency range of 50 - 450KHz is available. The fast growth of Internet since the 1990s accelerated the demands for digital communication services. Furthermore, with the develop- ment of in-home networking, there is a need to establish high speed data links between multiple household devices. This makes PLC sys- tems march rapidly into the high frequency range above 1MHz. Exist- ing broadband PLC system in the 1.6 - 30MHz frequency range only provides data rates smaller than 200Mbps. With the growing demand of multimedia services such as High De nition (HD) video streaming, much faster transmission speed up to Gigabits per second is required and this can be achieved by increasing the operating frequencies. Ultra Wideband (UWB) transmission in free space provides extremely broad bandwidth for short-range, high data rate applications. If UWB signals could be transmitted over the powerline channels in the high frequency range above 30MHz, data rates up to gigabits per second could be achieved. In this thesis, the possibility of implementing ultra wideband trans- mission over the low voltage indoor powerline is investigated. The starting point is to understand the signal propagation characteristics over powerline cables, in the UWB frequency range. Experimental re- sults indicate that the signal degrades at an acceptable rate over the mains cable in a scaled down UWB frequency band (50MHz - 1GHz), which provides a potential operation band for UWB over PLC ap- plications. Key component for the PLC system, a broadband Radio Frequency (RF) coupler is designed and developed, to introduce UWB signals to the transmission channel. With the channel properties and coupling unit, extensive experimental investigations are carried out to analyse the powerline network environment, including channel loss, noise and radiated emission. Furthermore, theoretical channel capac- ity and link budget are derived from measured parameters. It is shown that the indoor powerline is a suitable media for data transmission in the high frequency range from 50 to 550MHz in the home environment. Finally, system level performance is analysed by modelling the Phys- ical Layer (PHY) data transmission. The Multiband-OFDM UWB proposal for IEEE 802.15.3a standard is used to predict the transmis- sion performance under di erent propagation paths and data rates. The research work conducted in this project has proven that UWB over PLC is highly feasible for future in-home applications. With the global promotion of smart grid applications, UWB over PLC will play an important role in providing high speed data transmission over the power networks

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Towards localisation with Doppler radar

    Full text link
    In this thesis the author introduces a novel method for Geo Localisation via Doppler Radar. The area of research is in the three dimensional space using amplitude and magnitude measurements. Geo Localisation in mobile applications is a useful technology that enables monitoring and gathering information about objects of interest

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin
    corecore