19 research outputs found

    Automatic speaker segmentation using multiple features and distance measures: a comparison of three approaches

    Get PDF
    This paper addresses the problem of unsupervised speaker change detection. Three systems based on the Bayesian Information Criterion (BIC) are tested. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic thresholding followed by a fusion scheme, and finally applies BIC. The second method is a real-time one that uses a metric-based approach employing the line spectral pairs and the BIC to validate a potential speaker change point. The third method consists of three modules. In the first module, a measure based on second-order statistics is used; in the second module, the Euclidean distance and T2 Hotelling statistic are applied; and in the third module, the BIC is utilized. The experiments are carried out on a dataset created by concatenating speakers from the TIMIT database, that is referred to as the TIMIT data set. A comparison between the performance of the three systems is made based on t-statistics

    Decision Fusion for Large-Scale Sensor Networks with Nonideal Channels

    Get PDF
    Since there has been an increasing interest in the areas of Internet of Things (IoT) and artificial intelligence that often deals with a large number of sensors, this chapter investigates the decision fusion problem for large-scale sensor networks. Due to unavoidable transmission channel interference, we consider sensor networks with nonideal channels that are prone to errors. When the fusion rule is fixed, we present the necessary condition for the optimal sensor rules that minimize the Monte Carlo cost function. For the K-out-of-L fusion rule chosen very often in practice, we analytically derive the optimal sensor rules. For general fusion rules, a Monte Carlo Gauss-Seidel optimization algorithm is developed to search for the optimal sensor rules. The complexity of the new algorithm is of the order of OLN compared with OLNL of the previous algorithm that was based on Riemann sum approximation, where L is the number of sensors and N is the number of samples. Thus, the proposed method allows us to design the decision fusion rule for large-scale sensor networks. Moreover, the algorithm is generalized to simultaneously search for the optimal sensor rules and the optimal fusion rule. Finally, numerical examples show the effectiveness of the new algorithms for large-scale sensor networks with nonideal channels

    High-level Information Fusion for Constrained SMC Methods and Applications

    Get PDF
    Information Fusion is a field that studies processes utilizing data from various input sources, and techniques exploiting this data to produce estimates and knowledge about objects and situations. On the other hand, human computation is a new and evolving research area that uses human intelligence to solve computational problems that are beyond the scope of existing artificial intelligence algorithms. In previous systems, humans' role was mostly restricted for analysing a finished fusion product; however, in the current systems the role of humans is an integral element in a distributed framework, where many tasks can be accomplished by either humans or machines. Moreover, some information can be provided only by humans not machines, because the observational capabilities and opportunities for traditional electronic (hard) sensors are limited. A source-reliability-adaptive distributed non-linear estimation method applicable to a number of distributed state estimation problems is proposed. The proposed method requires only local data exchange among neighbouring sensor nodes. It therefore provides enhanced reliability, scalability, and ease of deployment. In particular, by taking into account the estimation reliability of each sensor node at any point in time, it yields a more robust distributed estimation. To perform the Multi-Model Particle Filtering (MMPF) in an adaptive distributed manner, a Gaussian approximation of the particle cloud obtained at each sensor node, along with a weighted Consensus Propagation (CP)-based distributed data aggregation scheme, are deployed to dynamically re-weight the particle clouds. The filtering is a soft-data-constrained variant of multi-model particle filter, and is capable of processing both soft human-generated data and conventional hard sensory data. If permanent noise occurs in the estimation provided by a sensor node, due to either a faulty sensing device or misleading soft data, the contribution of that node in the weighted consensus process is immediately reduced in order to alleviate its effect on the estimation provided by the neighbouring nodes and the entire network. The robustness of the proposed source-reliability-adaptive distributed estimation method is demonstrated through simulation results for agile target tracking scenarios. Agility here refers to cases in which the observed dynamics of targets deviate from the given probabilistic characterization. Furthermore, the same concept is applied to model soft data constrained multiple-model Probability Hypothesis Density (PHD) filter that can track agile multiple targets with non-linear dynamics, which is a challenging problem. In this case, a Sequential Monte Carlo-Probability Hypothesis Density (SMC-PHD) filter deploys a Random Set (RS) theoretic formulation, along with Sequential Monte Carlo approximation, a variant of Bayes filtering. In general, the performance of Bayesian filtering-based methods can be enhanced by using extra information incorporated as specific constraints into the filtering process. Following the same principle, the new approach uses a constrained variant of the SMC-PHD filter, in which a fuzzy logic approach is used to transform the inherently vague human-generated data into a set of constraints. These constraints are then enforced on the filtering process by applying them as coefficients to the particles' weights. Because the human generated Soft Data (SD), reports on target-agility level, the proposed constrained-filtering approach is capable of dealing with multiple agile target tracking scenarios

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table

    Detection in distributed sensor networks

    Get PDF
    This thesis describes detection and communication algorithms for distributed sensor networks.In the first part of the thesis, we investigate a new architecture for distributed binary hypothesis detection by employing a Collision Resolution Algorithm (CRA), where all local sensors share a common channel to communicate with the decision fusion center. This architecture is important in the design of sensor fields, where a large number of distributed sensors share a single "emergency" channel.In the second part of the thesis, we discuss an industrial application of such a distributed detection system, namely, the LonWorks control network. We concentrate on the predictive p-persistent CSMA protocol implemented in the MAC layer of LonWorks protocol, which was proposed by the Echelon Corporation in the 1980s. In order to model this algorithm, we expand the CRA model developed in the first part to analyze variable-length messages. Predictions of the model are compared to an OPNET simulator of LonWorks, and to resultsfrom a physical network.Finally, we propose a direction-of-arrival (DOA) algorithm for sensor networks. It employs an improved polynomial rooting method using unitary transformations.Ph.D., Electrical Engineering -- Drexel University, 200

    Active Information Acquisition With Mobile Robots

    Get PDF
    The recent proliferation of sensors and robots has potential to transform fields as diverse as environmental monitoring, security and surveillance, localization and mapping, and structure inspection. One of the great technical challenges in these scenarios is to control the sensors and robots in order to extract accurate information about various physical phenomena autonomously. The goal of this dissertation is to provide a unified approach for active information acquisition with a team of sensing robots. We formulate a decision problem for maximizing relevant information measures, constrained by the motion capabilities and sensing modalities of the robots, and focus on the design of a scalable control strategy for the robot team. The first part of the dissertation studies the active information acquisition problem in the special case of linear Gaussian sensing and mobility models. We show that the classical principle of separation between estimation and control holds in this case. It enables us to reduce the original stochastic optimal control problem to a deterministic version and to provide an optimal centralized solution. Unfortunately, the complexity of obtaining the optimal solution scales exponentially with the length of the planning horizon and the number of robots. We develop approximation algorithms to manage the complexity in both of these factors and provide theoretical performance guarantees. Applications in gas concentration mapping, joint localization and vehicle tracking in sensor networks, and active multi-robot localization and mapping are presented. Coupled with linearization and model predictive control, our algorithms can even generate adaptive control policies for nonlinear sensing and mobility models. Linear Gaussian information seeking, however, cannot be applied directly in the presence of sensing nuisances such as missed detections, false alarms, and ambiguous data association or when some sensor observations are discrete (e.g., object classes, medical alarms) or, even worse, when the sensing and target models are entirely unknown. The second part of the dissertation considers these complications in the context of two applications: active localization from semantic observations (e.g, recognized objects) and radio signal source seeking. The complexity of the target inference problem forces us to resort to greedy planning of the sensor trajectories. Non-greedy closed-loop information acquisition with general discrete models is achieved in the final part of the dissertation via dynamic programming and Monte Carlo tree search algorithms. Applications in active object recognition and pose estimation are presented. The techniques developed in this thesis offer an effective and scalable approach for controlled information acquisition with multiple sensing robots and have broad applications to environmental monitoring, search and rescue, security and surveillance, localization and mapping, precision agriculture, and structure inspection
    corecore