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Abstract 
Detection in Distributed Sensor Networks 

Erwei Lin 
Moshe Kam, Ph.D. 

This thesis describes detection and communication algorithms for distributed sensor 

networks. 

In the first part of the thesis, we investigate a new architecture for distributed binary 

hypothesis detection by employing a Collision Resolution Algorithm (CRA), where all 

local sensors share a common channel to communicate with the decision fusion center. This 

architecture is important in the design of sensor fields, where a large number of distributed 

sensors share a single "emergency" channel. 

In the second part of the thesis, we discuss an industrial application of such a distributed 

detection system, namely, the LonWorks control network. We concentrate on the predictive 

p-persistent CSMA protocol implemented in the MAC layer of LonWorks protocol, which 

was proposed by the Echelon Corporation in the 1980s. In order to model this algorithm, 

we expand the CRA model developed in the first part to analyze variable-length messages. 

Predictions of the model are compared to an OPNET simulator of LonWorks, and to results 

from a physical network. 

Finally, we propose a direction-of-arrival (DOA) algorithm for sensor networks. It 

employs an improved polynomial rooting method using unitary transformations. 



Chapter 1. Introduction 

1.1 Distributed Sensor Networks 

A Distributed Sensor Network (DSN) consists of multiple sensor nodes that are capable of 

communicating with each other and collaborating on a common sensing goal [18,46,53]. 

Interest in DSNs includes modem military applications, which are expected to use a large 

number of inexpensive sensors distributed from an aerial platform, and then self organize 

to perform useful detection and estimation tasks. 

DSNs are different than other popular distributed networks, which are typically built to 

transfer data between nodes. In DSNs, nodes often collect information from local sensing 

resources, and then transmit the combined and processed result to a user. The user is 

more likely to want information from a region or a set of nodes [39,40] rather than from 

individual nodes. In some cases, the user may not even need the detailed information of 

each individual node and only seeks an aggregated decision or estimate. 

It is usually quite expensive to construct a distributed sensor network with nodes com- 

municating through a wired medium. Improvements in wireless communications have re- 

duced the costs of this technology and most sensor networks planned at the present time 

are wireless [17,65]. 

The DSN we assume in this study is a collection of unattended devices that self-organize 

and have a degree of fault tolerance. It is expected that some nodes may fail, and that 

some will lose their energy source intermittently or permanently. The DSN must therefore 

incorporate multiple levels of redundancy. The straightforward solution is to use more 

sensor nodes than strictly necessary to cover an area. Redundancy in the number of nodes 

allows for node attrition and increases the reliability of the system [13]. 



1.2 Distributed Detection in Sensor Networks 

Distributed detection in DSN refers to the acquisition, detection, and integration of in- 

formation gathered by the sensors for the purpose of hypothesis testing. The objective 

is to provide optimal or near-optimal use of the available information for tasks such as 

target detection or identification of a threat. Although the original motivation for dis- 

tributed detection in sensor networks in the early 80s was rooted in military radar appli- 

cations [24,30,38,66], implementation of multi-sensor fusion systems in civilian appli- 

cations is now common. In one proposed mode of operation, nodes may lie dormant for 

long periods waiting for some change (such as the presence of a chemical agent). A for- 

est fire management system is envisaged as an example [8,14,42]. For such a system, 

many thousands of nodes may be preemptively deployed in the area at risk. An increase in 

temperature or the C02 level may trigger local sensors to send warning signals to a user. 

Many sensors may combine their alarm signals to yield higher-quality information before 

the user is informed. The objective is to provide aggregated decisions that have simultane- 

ously higher detection rate and lower false alarm rate when compared to individual sensor 

decision. 

There is a 30 year history of research activities in distributed detection for sensor net- 

works. Among these networks, the parallel configuration shown in Figure 1.1 has atiacted 

the most attention. The architecture is comprised of three key components: N local sensors, 

a decision fusion center (DFC), and a communication channel between each local sensor 

and the DFC. Typically, the task of such a system is binary hypothesis testing [26,60,70]. 

During the operation, the local sensors observe the phenomenon and make a local decision 

to determine whether to accept the null hypothesis Ho (ui = 0, "target absent") or the 

alternative hypothesis HI (ui = 1, "target present"). It is often assumed that all local ob- 

servations are statistically independent, conditioned on the hypothesis. The local decision 

vector {ui), i = 1,2 ,  ..., N is then transmitted to the DFC through N dedicated communi- 



cation channels, one for each local decision. The DFC then generates the global decision, 

uo from the local decisions. 

The Parallel architecture requires the determination of decision rules for both the local 

(ul, ua, .. . , uN) and global (uo) decisions, so that the global objective function (e.g., min- 

imum probability of error) can be minimized. The majority of studies of this architecture 

were devoted to the design of local and global decision rules for Bayesian performance 

indices and for the Neyman-Pearson (NP) criterion [15,34,49,50,55-571. Various exten- 

sions of these results, especially for large-scale networks, are summarized in the survey 

paper [59]. 

A key assumption of the parallel architecture is the availability of dedicated channels 

between the local detectors and the DFC. However, in many applications, such as DSNs, 

such multiple channels are too costly to install and maintain. Instead, sensors use a single 

over-the-air channel and efficient use of this shared resource become an important objec- 

tive. 

Communication Channel 

) p h e n o r n e n ~ ~  

Communication Channel w i-7-I-I 

Data 
Fusion 
Center 
(DFC) 

Global = 
"0 

Figure 1.1 : Parallel decision fusion structure 

Such a DSN is illustrated in Figure 1.2. Here all the local sensors rely on a single, 

time-slotted, random access channel to send the local decisions to the DFC. Due to the 

randomness of the access mechanism, during each time slot the channel has three oper- 



ational conditions, namely success (a single local decision was transmitted successfully), 

idle (none of the local sensors attempted to transmit), and collision (more than one local 

sensor attempted to transmit). In our study, we assume that all the local sensors and the 

DFC are able to detect the state of channel at each time slot. These schemes are geared 

towards sensor field applications where alerts are sent over the shared channel only when a 

threat is detected, and a centralized communication controller is not practical. 

Recently, Yuan and Kam [67,68] have studied the performance of the system shown 

in Figure 1.2. They analyzed two schemes: one did not use a collision resolution algo- 

rithm (CRA) but used instead the statistics of successful transmissions and collisions to 

discover the observed phenomena. The other used a simple CRA with dynamic retransmis- 

sion probability. Simulations in [67,68] showed that the system without CRA would not 

converge to the optimal performance while the system with CRA appears to converge to 

the performance of the parallel architecture in Figure 1.1 (which was calculated in [26]). 

n 

Figure 1.2: Parallel decision fusion with a common LD-DFC channel 

1.3 Thesis Organization 

This thesis consists of three components. Following this introduction, we study (chapter 

2) the decentralized system structure described in Figure 1.2, and propose a more sophis- 



ticated CRA than the one studied in [68]. We use the results to investigate (in chapter 3), 

an industrial application of distributed detection, using the LonWorks control technology. 

We concentrate on the predictive p-persistent CSMA protocol implemented in the MAC 

layer of the LonWorks protocol, which was proposed by the Echelon Corporation in the 

1980s. We expand the CRA of sensor model provided in chapter 2, so it can be used to 

analyze variable-length messages used by the LonWorks architecture. In chapter 4, we 

study another application of sensor networks, direction-of-anival(D0A) of a target. We 

use a variant of the improved polynomial rooting method to provided the DSN with DOA 

capability'. 

1.4 Main Achievements of This Study 

In this study, We expand on Yuan and Kam's studies [67,68] of the DSNs that share com- 

munication channels by providing a more sophisticated CRA to the local sensor, namely 

the predictive p-CSMA mechanism. This primary advantage over the Yuan-Kam CRA is 

that implementation requires less synchronization efforts (see Section 2.1). We further de- 

velop decision schemes for such distributed detection systems under two different channel 

conditions, namely, (1) the full channel state is available to the DFC; and (2) only partial 

channel state information (successful transmissions) is available to the DFC. 

We also discuss an industrial application of such DSNs, namely, the LonWorks control 

network. We study the predictivep-persist carrier sense multiple access (CSMA) algorithm 

using an analytical model, simulations, and physical experiments. A analytical model for 

the algorithm is developed based on the Markov-chain model we provide in Chapter 2, as 

well as a OPNET-based simulation of the model. Predictions of the analytical model and 

simulation are compared to experimental data collected from a network of six SMART I/O 

'Admittedly the locations of sensors for this application require higher regularity than the senor networks 
envisioned for detection in sentry or chemical/biological threat applications. 



ADR112-F units connected though TPIFT-10 channel. 

Finally, we proposed a variation of the improved polynomial rooting (IPR) method 

for DOA estimation of multiple targets by a sensor network. The variation, unitary IPR 

(UIPR), transforms the complex-valued covariance matrix of the sensor signals to a real- 

valued matrix using unitary transformations. Then the IPR method is applied to determine 

the DOA of the targets. Simulation results indicate the potential improvement provided by 

our approach compared with MUSIC, Root-MUSIC, ESPRIT, and IPR. 



Chapter 2. Detection in Distributed Sensor Network Using Single Random Access 
Channel 

2.1 Introduction 

Interest in distributed detection, and the fusion of decisions from decentralized sensors, 

was spurred by real-world problems, many of which are related to military surveillance 

applications. Distributed detection has been widely studied, and many architectures and 

performance results are available [7, 15,27,60-63,69,7 1,721. From the viewpoint of 

performance, it is desired for the local detectors in a multiple sensor system to send the raw 

sensor data to a fusion center where optimal integration algorithm will be employed. Such 

an approach has the potential to yield optimal detection performance as there is small or 

no information loss in the communication process. However, in many practical situations, 

communicating the raw data to the the fusion center may become very expensive and be 

limited by physical constraints (e.g., communication bandwidth). These limitations often 

require that the observation at local sensors be compressed before transmission to the fusion 

center. 

Distributed sensor networks (DSNs) are an emerging technology for monitoring a vol- 

ume of surveillance with a densely distributed network of wireless sensors. Each sensor 

has limited communication and computation ability and can sense the environment in one 

or more modalities, such as acoustic, seismic, and infrared. A wide variety of applications 

are being envisioned for sensor networks, including disaster relief [37], border monitor- 

ing [43], condition-based machine monitoring [58], and surveillance in battlefields [20]. 

Future DSNs are expected to employ a large number of inexpensive sensors whose reso- 

lution, bandwidth, and power are limited. Moreover, the communication channels between 

the local sensors and the central processing center (also known as the fusion center) are ex- 

pected to be bandwidth-constrainted. In such circumstances, the local sensor readings are 



often compressed, in the extreme into 1 bit decisions (target presentlabsent). When these 

compressed readings are collected, an elaborate processing mechanism may be needed to 

develop an estimate of the original data that were observed. 

Rago et al. [48] studied the decentralized detection problem with communication con- 

straints, where the sensors employ a "send/no send" strategy to reduce the communication 

requirements from the communication channel between sensors and the fusion center. In 

an earlier study, Longo et al. [36] considered the bandwidth constrained problem using an 

information-theoretic framework. 

The motivation for our study is the additional constraints on many sensor networks that 

limits the sensor communications to a single shared over-the-air channel (figure 1.2). 

Yuan and Kam [68] have recently studied this restriction, and examined how the Data 

Fusion Center (DFC) in Figure 1.2 performs (i) without implementing a collision resolution 

algorithm (CRA), and (ii) with a simple CRA similar to slotted-ALOHA (and with dynam- 

ically updated retransmission probability). The basic idea is to divide the time into non- 

overlapping contention windows, and to have all the sensors that detected a target (those 

with uk = 1 in our notation) attempt to inform the DFC during the contention window. 

In [68] the contention window is divided into time slots. All sensors that detected a target 

and were not able to transmit the decision successfully attempt to transmit this decision 

with a certain probability during the next time slot. The performance of the system with 

CRA appeared to have converge to the optimal performance. The major limitation of [68] 

is that all local sensors have to maintain synchronization of the contention window, since 

the transmission probability is reset at the beginning of the contention window. Moreover, 

during the operation, all local sensors have to calculate and maintain the same transmis- 

sion probability. Deviation from the shared probability by some local sensors would cause 

significant deterioration in overall performance. 

In our distributed detection architecture, all local sensors are connected to the shared 

communication channel. As in [67,68], only the sensors that detect the presence of a "tar- 



get" (uk = 1) will plan to transmit its l-bit decision to the DFC. In order to maximize 

the probability of successful transmission, a CRA mechanism, similar to the p-CSMA al- 

gorithm implemented in IEEE 802.1 l WLAN protocol [ l  l], is employed by every local 

sensor. It causes the sensors to update their transmission probability every time they trans- 

mit. The DFC studies the output of the communication channel and makes a decision about 

target presencelabsence based on the information gathered over a fixed time interval imme- 

diately proceeding the present time. At each time slot, the communication channel is in 

one of three possible states: success, idle or collision. We assume that at each time slot 

n sensors attempted a transmission. For a time slot to be in the idle state, n = 0; to be 

in success state, n = 1; to be in a collision state, n > 1. Since the DFC produces a new 

opinion after each time slot, the proposed scheme can be implemented as an on-line, non 

stop process. 

The rest of this chapter is organized as follows. Following the introduction, we de- 

scribe the parallel decision fusion using a shared communication channel. In section 2.3 

we describe the CRA mechanism. We then describe the decision making at the DFC for 

two conditions: 1) the DFC possesses full state (i.e., the number of success slots, idle 

slots, and collision during a defined of time interval) and 2) only the number of successful 

transmissions during a certain interval is available to the DFC. Next, we simulate the sys- 

tem performance and compare performance of the single-channel system (figure 1.2) to the 

performance of a parallel binary system with dedicated sensor-DFC channels [26]. 

2.2 Parallel Decision Fusion Using a Shared Communication Channel 

We refer to figure 1.2, where the studied architecture is presented. The system is comprised 

of N local sensors, all of which communicate with the DFC through a shared, time-slotted, 

single random-access channel. The task is binary hypothesis testing. We denote the two 

hypotheses as Ho and H I ,  where Ho represents the null hypothesis (target absent) and HI 



represents the alternative hypotheses (target present). The a priori probabilities of Ho and 

H1 are assumed to be constant and known, and denoted as Po and PI, respectively. 

We use the time slot of the communication channel as the time unit of the system. A 

discrete, integer time slot scale is thus adopted. One slot is considered long enough for each 

sensor to sample the environment, make the local decision, and transmit the decision to the 

DFC if the channel is available and the local sensor "believes" the target is present ("1" 

is sent to the DFC by the local sensor). The DFC makes a global decision by estimating 

the number of transmitting sensors during a specified time interval that consists multiple 

time slots (this number is compared to a threshold to decide whether or not H I  should be 

accepted. The performance index is probability of error). We further assume that all sensors 

are only allowed to transmit at the beginning of each time slot so that the collisions will be 

experienced immediately by each local sensor during the subsequence time slot. In other 

words, in our study, all the sensors need to be synchronized for the unit of time instead both 

of the unit of time and the length of the contention window as required in [67,68]. 

Let u: E {O,l}, k = 1,2 , .  . . , N, T = 1,2 , .  . . be the decision made by kth local 

sensor at time T for the observation of the underlying phenomenon. The decision uk = 1 is 

used to represent acceptance of H1 by the kth local sensor, and uk = 0 is used to represent 

acceptance of Ho by the kth local sensor. uz E {O,1}  is used to denote the global decision 

made by the DFC at time T. We assume that all the local sensors employ the same fixed 

decision rule, and that they all have same false alarm probability Pf = P(uk = lIHO) 

and missed detection probability P, = P(uk = OIH1). Temporal and spatial statistical 

independence are assumed here for all observations of all N sensors, conditioned on the 

hypothesis. 



2.3 The Local Sensor Model 

Let zk E RL (for some integer 1) be a vector of local observations available to the kth sensor. 

During any time slot, the sensor uses zk E O , 1  in a decision rule uk = g(zk) to make 

decision uk. After processing the observations zk locally, if the local sensor detects the 

target is present (uk = l), it will try to transmit its decision to the DFC through the single 

random access channel. The local sensor will use the CRA to schedule a transmission 

attempt. 

Using our CRA, each sensor maintains its local backlog parameter Wi, which de- 

pends on the number of successful transmissions and collisions experienced. Wi is used 

to generate the random waiting period (rwp) that is uniformly selected from the range 

(0,1, . . . , Wi). Once a local sensor was able to transmit its decision successfully, it changes 

its local backlog parameter so that the period of rwp is decreased. If the attempt to transmit 

was unsuccessful (caused a collision), the local sensor changes its backlog parameter in the 

direction of increasing rwp. We increase or decrease Wi by a fixed amount Wbase every 

time a transmission attempt has failed or has succeeded. Wi is calculated as 

where i is defined as the "backlog stage". It ranges from 0 to the maximum backlog value 

m. The value of i moves toward m by one step when the transmission attempt has failed, 

and it moves toward 0 by one step when the transmission attempt has succeeded. Both m 

and Wbase are design parameters. Once the value of rwp was uniformly selected from the 

range (O,1, . . . , Wi), a timer is set and a countdown is started. The local sensor transmits 

the 1-bit message when the time reaches zero. The data fusion center determines the global 

decision w, based on the observation of the channel states during a certain fixed interval. 

Let b ( t )  be the stochastic process that represents the rwp counter for a specific local 

sensor, and s ( t )  the stochastic process representing the backlog stage (0, . . . , m) of the 



sensor at time t. Process b ( t )  represents the number of remaining slots in rwp before the 

sensor starts to transmit its 1-bit decision. As we mentioned in 2.2, a discrete, integer time 

scale is adopted where t and t + 1 correspond to two consecutive time slots, and the rwp 

counter of each sensor decreases at the beginning of each time slot. The backlog window 

size for every sensor depends on the collisions and on the successful reservation attempts 

experienced by the sensor in the past. 

Figure 2.1 : Markov chain model for the dynamic of local sensor 

The key assumption of our CRA is that a collision occur with the same probability p 

regardless of the state of the backlog time counter used for this transmission. Based on 

this assumption, we modified the discrete time Markov chain model in [ l l ] ,  which was 

originally developed to study the MAC algorithm of IEEE 802.1 1 protocol for wireless 



local area networks. We can model s( t ) ,  b(t) by the discrete time Markov chain model 

presented in Figure 2.1, which is a state transition diagram with m rows, each having 

Wi + 1 (i = 0,1,. . . , m )  states. Each state is indexed by two integers ( s ( t ) ,  b(t)) ,  so that 

if s ( t )  = s  and b(t) = b, then we are at backlog state s  and have b time slots until we 

will try to transmit. The numbered arrows that connect the states indicate the direction and 

probability of transition from the source state to the destination state. Transitions between 

states in the same row occur every time unit. Transitions between rows occur only after 

a transmission attempt: we move up if the attempt was successful; we move down if the 

attempt was unsuccessful. 

If we adopt the short notation P{i,  jlm,n)= P{s(t  + 1) = i,b(t + 1) = j ( s ( t )  = 

m ,  b ( t )  = n )  for the conditional transition probabilities, the one-step transition probabili- 

ties can be found as following 

Within a row: 

Moving to higher row: 

Moving to a lower row: 

Staying at the highest row: 



Staying at the lowest row: 

Equation 2.2 states that after the sensor generates the rwp timer according to the esti- 

mated backlog window size, it keeps decreasing until it reaches the zero state of the current 

layer (b(t) = 0). 

Equation 2.3 states that if the transmission of the packet at time i is successful (with 

probability 1 - p), the sensor moves one stage toward stage 0 and the estimated backlog 

window size is decreased by 1. The rwp for the transmission of the next packet will be 

generated uniformly from a smaller range (0, Wi). 

Equation 2.4 shows that if the transmission of the packet has failed, which means that 

a collision has occurred with probability p, the sensor moves one step toward stage m and 

the estimated backlog window size is increased by 1. The new rwp will be generated from 

a larger range (0, Wi+,). 

Equation 2.5 considers the special condition of the sensor being at stage 0 when it 

transmits a packet successfully. 

Equation 2.6 is the special case when the sensor is at the last stage and it fails to transmit 

a packet. 

We designate bi = limt+oo P{s(t) = i, b(t) = j), i E (0, m), j E (0, Wi) to be the 

stationary behavior after the process has been running for a long time. For state boYo, we 

have the balance equation: 

which gives 

P 
b1,o = - b0,o. 

1 -P  
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Similarly, to state blTo, we can establish the balance equation: 

substituting bl,0 from Equation 2.8 in Equation 2.9, we have 

Using the method of induction, it can be shown that 

P .  
b i , ~  = (-)'bo,ol i E (O,m). 

1 -P  

The transition probability of the initial stage bo,j, j E (0, Wo) in the Markov chain model 

satisfies 

The transition probabilities of the last stage bmj, j E (0, W,) satisfy 

For the rest of the stages, we have the transition probabilities bi,. 

W i + l - j  b. . = wi+l  (bi+l,~(l - p) + b i - l , ~ ~ ) ,  2 E (1, m - 1) (2.14) 

By substituting Equation 2.8 to Equation 2.12, we get 

Substitute Equation 2.1 1 into Equations 2.13 and 2.14 



16 

and 

Equations 2.15,2.16, and 2.17 can be summarized as one equation: 

where 

Since the sum of the probabilities of all the states in a Markov Chain model is 1, we have, 

By substituting Equations 2.18 and 2.19, Equation 2.20 can be simplified: 

From which we can further derive (by substituting Equation 2.18 and Wi = WbaSe(l + 
i )  - 1 into Equation 2.20): 

We can now express the probability T that a sensor transmits in a randomly chosen time 

slot. As the transmission occurs only when the backlog counter is equal to zero, regardless 



of the backlog stage, it is 

After substituting and applying the equation of Arithmetic-Geometric series, T can be 

1 expressed as 

L 1 
T = 

~b~..(p(1-p)m+l+(2m+l)pm+2-(rn+l)pm+l) ' p # 5. (2.28) 
(Wbase  + 1) + ((1-p)m+L-pm+1)(l-2p) 

When p = i, from Equation 2.19 we have bi,o = bo,o, substituting this in Equation 2.22 

gives us 

substituting it in Equation 2.26, we have 

Equations 2.28 and 2.32 can be combined as 

Probability T is a function of collision probability p which is still unknown. The proba- 

bility p that a contention attempt collides is the probability that at least one of the remaining 



n - 1 local sensors transmits in the same time slot. Hence, we are able to get another equa- 

tion for p and T :  

Equations 2.33 and 2.34 form a nonlinear equation set with unknown p and T .  The 

unique solution can be found by employing numerical methods that evaluate p and T for 

the combinations of W and m. The following steps prove that a unique solution for the 

equation set exists: 

We rewrite Equation 2.34 as 

T is a continuous and monotonically increasing variable with respect to the p E ( 0 , l )  

(see Figure 2.2) since (1 -p)A is a continuous and monotonically decreasing with respect 

to the p E (0 , l )  when n # 1. T increases from 0 (p = 0) to 1 (p = 1). The T in Equa- 

tion 2.33 is continuous and monotonically decreasing in the same range (0,l). It decreases 
0 0 
,& & 

from (> 0) to (< 1). Hence, a unique solution can be always 
Wbase + 1 Wbase (m + 1) + 1 

found due to the existence of a single intersection point. 

Given that there are n sensors attempting to transmit local decisions to the DFC, the 

probability that at least one sensor attempts to transmit in any given time slot is given by 

The probability that an occumng transmission is successful, is given by the probability 

that one sensor attempts to transmit and the remaining n - 1 sensors remain idle, provided 

that at least one transmission occurs in the channel 
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Figure 2.2: Probability of a sensor transmit in a random slot 

The probabilities that a randomly selected time slot will be a success, idle or collision 

(PSIn, PIln, and Pcln, respectively) are 

Let the number of success slots, idle slots, and collision slots during a W window be 

Ns, NI, Nc, respectively. Given that there are n sensors attempt to transmit, the probability 

that Ns = ns, NI = n ~ ,  and Nc = n c  is a trinomial distribution function: 

W W - n s  p n s p n r p n c  
p n ~ , n ~ . n ~ l n  = (ns) ( nI ) SIn Ijn cln7 

W! 
where n s  + nr + n c  = W, and 



2.4 DFC Decision Schemes 

Once the local sensors detect the presence of the target, they start to access the channel 

using the CRA we described in Section 2.3. The DFC makes the decision about the two 

hypotheses according to the available statistics of the channel states within a W window. 

In our studies, the size of W is not necessarily needed to be greater than the number of 

sensors. 

We used two estimators in two different conditions to estimate the number of sensors 

attempting to transmit on the channel during the period of W: 1) Bayesian maximum a- 

posteriori (MAP) estimator under the condition that the channel state is fully available to 

the DFC (namely, S for success state, I for idle state, C for collision state), 2) Expecta- 

tion Maximization (EM) estimator under the condition that only a partial channel state is 

available to the DFC (only the the number of successful transmission). 

2.4.1 Full state is available: decision rule based on the MAP estimator 

We assume that the DFC has full awareness of the statistics of the channel states during 

any time. Let Xl, 1 = 1,2, ... W be the random state of the lth time slot in a W window, 

with the realization xl E {S, I, C), and let xl:, = (xl, xl+l,. . . , x,) be the sequence of 

realization states from the lth to mth time slots, 1 and m hold the relation 1 5 1 5 m 5 W. 

The MAP estimator calculates the estimate of the total number of transmitting sensors (N) 

using the criteGon 

CMAP = arg max P(N = ~ 1 x 1 : ~ )  (2.42) 
n ~ { l ,  ..., N }  

where n is selected from (0, 1, . . . , N). P(N = n l ~ ~ : ~ )  is the probability that there are n 

sensors attempting to access the channel given the sequence of realization states from the 

first to lcth slot. 



The term P ( X ~ : ~ \ N  = n )  denotes the probability that the realization of the channel 

status is xl:k, given that n sensors accepted HI during the duration of a W window. For 

k 2 2 we have 

P ( x ~ : ~ ~ N  = n )  = ~ ( x l : k - l ,  x k l ~  = n) 

where 

It is insightful to consider the limited case: 

- P ( X * , N  = n) - (2.49) 
P(N = nlHo)Po + P(N = nlHl)Pl 

P ~ l n  
N(Popj+P~pd) , if xl = S;  

= I Ptln 
N(PoPf+piPd) ' if x1 = I ;  (2.50) 

P~ln 
N(PoPff4Pd) ' if xl = C. 

We assume that the objective of the DFC is to minimize the probability of error 



We further assume that all the observations at the local detectors are conditionally in- 

dependent as well as restricted to be identically distributed, and the probabilities of false 

alarm (Pj  = P(uk  = lIHo)) and detection (Pd = P(uk  = lIH1)) at each of the local sen- 

sors are the same. We can then apply the "K out of N optimal decision rule [60] (section 

3.4) to make the decision about the two hypotheses 

= K*.  

Thus, the optimum value of K for the "K-out-of-N" fusion rule is given by 

[K*l, if K* 2 0, 
Kopt = 

otherwise. 

where [ e l  denotes the standard ceiling function, and it rounds the value of K* to the 

nearest target integer. The overall probability of false alarm can be expressed as 

and the probability of missed detection is 



2.4.2 Partial state availability: decision rule based on the EM estimator 

In the previous section, we assumed that the full state of the channel is available to the 

DFC. However, in some circumstances, the DFC has knowledge only of successful trans- 

missions (the decisions made by the local sensors) during a specified time interval. We are 

still interested in estimating the number of sensors that are transmitting local decisions on 

the communication channel given the incomplete data set of the channel states. To solve 

this problem, we use the Expectation-Maximization (EM) iterative algorithm [19], which 

is a broadly applicable statistical technique for handling incomplete data models. At each 

iteration of the algorithm, two steps are performed: (1) E-Step consisting of projecting an 

appropriate functional containing the augmented data on the space of the original, incom- 

plete data, and (2) M-Step consisting of maximizing the functional. 

We assume the complete data set x = {xl, xz, . . . , xl) is divided into an observed 

component x0 (the incomplete data set) and a missing component xm. Similarly, each data 

vector XI is divided into (xp, xy).  x0 is assumed to have a postulated pdf as f (xO, K), where 

K = ( K ~ ,  . . . , K ~ )  is a vector of unknown parameters that we would like to estimate. We 

denote the pdf of the random vector corresponding to the complete data set x as gC(x, 6). 

The log-likelihood for K, if x were fully observed, would be 

I log LC(4 = log gc(x, 4 .  (2.58) 

The incomplete data vector x0 comes from the "incomplete" sample space Ti. Since 

there is a one-to-one correspondence between the complete sample space Tc and the incom- 

plete sample space Ti, for xl E Tc, one can uniquely find the one-to-one correspondence 

xp = F ( x l )  in Ti. Also, the incomplete pdf could always be found by integrating out the 

complete pdf, 

9(x0, = /Tc(xo, SC(X, K ) ~ x  (2.59) 

where TC(x0) is the subset of TC constrained by the relation x; = F(xl).  



Let be some initial value for K. At the k-th step, the EM algorithm performs the 

following two steps: 

E-Step. Calculate 

&(K,  K'") = EE,(k, {log Lc(K) lx0} . (2.60) 

M-Step. Choose any value dk++') that maximizes Q(K, d k ) ) ,  i.e., 

In our study, the DFC receives n s  local decisions during the W window, the probability 

density function, given the data is 

W !  
Pns (1 - PS,n)nT g(x0, 'sin) = ~ l n  (2.62) 

where n~ = W - ns, is the summation of the number of the collision and idle slots. 

By estimating the PSI,, we will know how many sensors are accessing the channel. 

Assume that the original value n~ comprises the counts nl and n i ,  such that + n: = 

n ~ .  The probability of an idle state is assumed aPsln and the probability of a collision 

state is assumed 1 - ( a  + l)Psln, where a = 5. The "complete data" can be defined as 

x = (ns, G ,  n:), where n s  + riI + nk = W .  

The probability mass function of incomplete data x0 is g(xO, Psln) = C gc(x, psln), 

where 

where c ( x )  is free of Psln, and the summation is taken over all values of x for which 

+ n-c = n ~ .  

The "complete" log likelihood is 



Our goal is to find the conditional expectation of log Lc(Psln) given xO, using the start- 

(0) ing point for PSI,, 

As log LC is a linear function in YiI and nk, the E-step is done simply by replacing YiI 

and n c  by their conditional expectation, given xO. 

Consider Nc to be a random variable corresponding to nc ,  it is easy to see that the 

conditional expectation of Nc given n~ is 

Further, cI(') = n~ - nk(O). This completes the E-Step part. 

In the M-Step part, one chooses P$; so that &(PSI., P::) is maximized. After re- 

placing n i  and 6 by their conditional expectation nJ(O) and @(') in the Q function, the 

maximum is obtained at 

Now the E- and M-steps are alternating. At the iteration k we have 



2.5 Simulation Results 

The model of a local sensor specified in Section 2.3, together with the two fusion schemes 

under two different channel conditions allow the development of numerical procedures for 

the evaluation of our distributed detection system, in terms of probabilities of channel states 

and detection error. 

Figures 2.3 and 2.4 show the global probabilities of error (calculated from Equation 2.5 1) 

against the contention window size for the system with Po = PI = 0.5, Pj = 0.1, Pd = 0.9 

and N = 20. Both results were gathered from 300 simulations. Figures 2.3 shows the 

comparison between the MAP estimator and the system with dedicated channels between 

the local sensor to DFC (sensor-DFC) (calculation based on [26]). We observe with full- 

state information, the MAP estimator appears to converge to that of a distributed detection 

system with dedicated sensor-DFC channels as the size of contention window increases 

since all the local sensors are able to communicate with the DFC when the window size is 

long enough. When the channel state was not fully available (Figure 2.4), the performance 

of the EM estimator did not converge to the optimum even when the contention window 

size reached 2000. Still, there was marked improvement over the performance of a single 

sensor. 

In Figure 2.5 we compare the probability of error gathered from our MAP estimator 

to the probability of error gathered from Yuan's CRA algorithm [68] for a system with 

N = 10, Pj = P, = 0.1 and Po = PI = 0.5. Probabilities of error are shown for 

the system with Yuan's CRA (simulation), with the CRA proposed in this paper, and with 

dedicated sensor-DFC channels (calculated based on [26]). We observe that the advantages 

of our algorithms in terms of implementation reduced our performance, we take much 

longer time to converge to the optimal solution. 

In Figure 2.6 we show the transmission probability of a specified sensor against time 

for a distributed detection system with the configurations shown in Table 2.1. The dashed 
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Figure 2.3: Comparison of error probability (MAP) 
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2000 time slots, the simulation result appears to have converged to the analytical result. 

Figures 2.7,2.8, and 2.9 show the corresponding probabilities of success, idle, and collision 

states of the communication channel, respectively. 

In order to study the accuracy of these estimators in estimating the number of trans- 

mitting sensors, we use a root-mean-square-error (RMSE) metric. The RMSE for each 

simulation time is calculated as follows: 

where Nsi, is the total simulation time, N is the total number of sensors connected to the 



EM algorithm, channel states are partially available 
- - - Dedicated channels, calculated from Kam paper 

Figure 2.4: Comparison of error probability (EM) 

channel, and 5 is the estimate of the number of transmitting sensors n. 

Figure 2.10 shows the RMSE of the MAP estimator for the number of transmitting 

sensors against the size of contention window under full state information. Figure 2.11 

shows the RMSE of the EM estimator when only partial state in formation is available. In 

both of the cases, we set Po = PI = 0.5, Pf = 0.1, Pd = 0.9, N = 20 and the simulation 

is repeated 300 times. As expected, the RMSE of the estimator decreases as the size of 

contention window increases. The steady state error of the MAP estimator with full state 

information is smaller than the steady state error of the EM estimator (with partial state) 

Figure 2.12 gives the receiver operating characteristic (ROC) curves obtained by using 

the K-out-of-N optimal fusion rule with dedicated sensor-DFC channels. In this example, 

the total number of sensors is 20 with sensor level Pf = 0.3 and Pd = 0.7. The tradeoff 
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Figure 2.5: Comparison of error probability with the CRA proposed in [68] 

between the probabilities of detection and false alarm for the different apn'ori probabilities 

is also shown in the figure. 

2.6 Conclusion and Discussion 

A distributed detection system using a single random access communication channel is 

studied in this chapter. Based on our sensor model that incorporates the collision avoidance 

mechanism to transmit local decisions to the DFC, two decision schemes are developed for 

estimating sensor transmissions on the channel under different channel conditions. These 

schemes are geared toward sensor field applications where pre-warnings are sent over the 

shared channel to inform of the presence of threats, and where resources are limited and 

central processing is impossible. Simulations show that the system performance matched 



Table 2.1: The set of parameters used in simulation 

what we predicted by using the two dimensional Markov-chain sensor model. For the deci- 

Parameters 

N 

n 

Wbase 

m 

W 

Duration of Simulation 

Simulation Times 

sion schemes, the first scheme is developed using MAP estimator under the assumption that 

the channel statistics are fully available to the DFC. While the second scheme is develop 

Values 

20 

10 

10 

20 

150 

10000 

300 

using EM estimator by assuming only partial channel statistics are available to the DFC. 

Simulations also show that the performance of MAP estimator is always better than EM 

estimator from the aspects of RMSE and the needed size of contention window due to the 

different degrees of channel statistics awareness. 



Transmission probability of a specified sensor 
. . . . . . . Analytical transmission probability 

0.1 9 

0.1 8 

2 0.17 .- - .- 
n 
a 

0.16 
I 

a 
0.15 .- 

V) 
V) .- 

0.14 
K 
z 
I- 0.13 

0.12 

0.1 1 

0.1 
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Time (Unit:Slot) 

Figure 2.6: Probability of transmission of a specified sensor vs. Time under the conditions 

in Table 2.1 
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Figure 2.7: Probability of Successful transmission vs. Time under the conditions in Table 

2.1 
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Figure 2.8: Probability of Idle state vs. Time under the conditions in Table 2.1 
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Figure 2.9: Probability of collision state vs. Time under the conditions in Table 2.1 
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Figure 2.10: RMSE of the MAP estimator when channel states are fully available 
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Figure 2.1 1: RMSE of the EM estimator when channel states are not fully available 
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Figure 2.12: Receiver operating characteristics for the system. N = 20, Pd = 0.7, Pf = 0.3 



Chapter 3. Distributed Detection in LonWorks Application 

3.1 Introduction 

In this chapter we use the approach developed in Chapter 2 to analyze a commercial appli- 

cation of distributed detection for control applications. Specifically, we study the Carrier 

Sense Media Access (CSMA) protocols, which are used to control the access of a com- 

puter network device to a shared channel in distributed control architectures. CSMA proto- 

cols belong to the family of contention protocols, which allow sensors to compete for net- 

work access. CSMA protocols are used in several networking standards (e.g., IEEE 802.3 

CSMAICD (ethernet) standard [I], IEEE 802.1 1 wireless LAN standard [5]), and come in 

several variants (non-persistent, 1 -persistent, p-persistent). In this chapter, we concentrate 

on the predictive p-persistent CSMA protocol, which was proposed by the Echelon Corpo- 

ration in the 1980s (registered as the American standard ANSUEIA-709.1 [6] and European 

standard ENV 13154-2). The predictive p-persistent CSMA protocol was proposed for use 

in distributed sensor networks and is used in the Media Access Control sublayer of the 

LonTalk protocol in Local Operating Networks (LonWorks) [2]. 

In most contention algorithms, terminals reschedule transmission of packets that were 

unsuccessfully transmitted before according to a randomly distributed retransmission delay. 

In p-persistent CSMA [28,54], the time window during which the next packet will be 

transmitted is finely slotted. If a terminal is ready to transmit a packet, and if it senses 

that the channel is idle, it would transmit the packet during the next slot with probability 

p. It would delay transmitting the packet with probability 1 - p by the equivalent of one 

slot. If the terminal detects that the channel is idle at this point in time, it would repeat 

the process. Otherwise, another terminal has begun transmission and our terminal will 

reschedule retransmission according to a retransmission delay distribution. If the ready 



terminal senses the channel busy, it would wait until it senses that the channel is idle and 

then operate as above. 

The difference between the p-persistent CSMA algorithm as introduced in 1975 and 

the predictive p-persistent CSMA algorithm is that in the former the probability p was 

constant, while in the latter p depends on the channel backlog. Past evaluations of the 

predictive p-persistent CSMA algorithms (Chen [16], Miskowicz 1411) relied primarily 

on simulations (not analytical models), and provided no experimental verification of their 

predictions. Here we supplement these past evaluations by developing an analytical model 

for the predictive p-persistent CSMA algorithm and by providing experimental results from 

a six-sensor network of SMART Z/O ADR112-F units [4] connected by TPIFT-10 media- 

type network [2]. Our analytical model is inspired by performance analysis of the 802.1 l 

distributed coordination function by Bianchi [I 11. 

The rest of the chapter is organized as follows: In section 3.2 we review the predictive 

p-persistent CSMA algorithm as implemented by the LonWorks protocol. In section 3.3 

we present a probabilistic calculation of the p-persistent CSMA algorithm, following by 

a Markov-chain model of the predictive p-persistent CSMA algorithm. The probabilistic 

calculation is from the "channel viewpoint", while the Markov-chain model is "sensor- 

centric". In section 3.4, we describe the implementation details of the simulation tool by 

using the OPNET Modeler [3]. Section 3.5 validates the performance of the simulation tool 

by comparing results gathered from simulations, from a physical system using LonWorks 

sensors, and from the analytical models. 

3.2 An Overview of the Basic Mechanism of the LonWorks Protocol 

3.2.1 The predictive p-persistent CSMA algorithm implementation in LonTalk 

The LonTalk protocol([EIA-709.1-A]) is a peer-to-peer networking protocol that employs a 

collision resolution algorithm (CRA) to allow sensors to share a single time-slotted channel 
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Figure 3.1: Packet cycle of LonWorks protocol 

Packet 

by using knowledge of the expected channel load. Like some other existing CSMA algo- 

rithms, the LonTalk MAC algorithm (the predictive p-persistent CSMA algorithm) splits 

the time axis into segments called slots, whose length is specified as P2. Figure 3.1 shows 

the packet cycle of the LonTalk protocol. A reservation phase is used for priority messages, 

and a random access phase is used for all other messages. The size of the randomizing win- 

dow used in the second phase depends on the backlog, and can extend from 16 to 1008 time 

slots (each of a specified length P2). Here we assume that the priority slots are not used, 

and any new packets will be transmitted between 0 and wP2. Specifically we show a packet 

transmitted in slot w + 1, where w is the random waiting period as described below: At 

any given time, the communication channel is in one the following three states: idle, colli- 

sion, communication. Each sensor connected to the channel, when it has a packet ready for 

transmission, follows the algorithm as shown in Figure 3.2. The sensor monitors the state 

of channel, and classifies the channel as idle if it detects no transmission during a period 

of length PI. Next, the sensor starts a transmission cycle, which depends on two positive 

integers, w and W, and w < W. The next transmission would occur within a window from 

0 to WP2, and the sensor would attempts transmission only after a waiting period of wP2 

and only if it senses that the channel is idle after the waiting period. The value of w is 

selected uniformly at random from the set {0,1, .  . . , W), and the value of W is chosen as 

Packet 0 1 2  W 0 1  2 



where S, and Wbase are positive integers. In the LonTalk protocol, S represents as current 

backlog size (initially S = 1) and S E {1,2, . . . ,631, Wbase = 16. If after waiting for w,B2 

the channel is not idle, or if it is idle but a collision follows the transmission attempt, the 

sensor will start a new transmission cycle. In the latter case (collision) it would increment 

S by 1 as long as S < 63. 

3.2.2 Message services 

To ensure that messages are being transmitted successfully via the communication channel, 

LonWorks offers two message services for packet transmission: 1) Acknowledged message 

service (ACKD) provides for end-to-end acknowledgement. When using this service, a 

message is sent to a device or group of up to 64 devices and individual acknowledgements 

are expected from each receiver. If acknowledgements are not received after a specified 

timeout period, the sender start a new transmission cycle. 2) Unacknowledged message 

service (UNACKDRPT) causes a message to be sent to a device or group of any number 

of devices multiple times and no acknowledgements are expected. This message service 

has the lowest overhead and is the most typically used service. Since none of the packets 

are acknowledged the value of S remain fixed at 1, and the protocol is non predictive (the 

original p-persistent CSMA algorithm [28]). 

3.3 Modeling of the LonWorks Communication Protocol 

To study the performance of the LonWorks network, we modeled the LonWorks channel 

behavior in two modes of operations: with unacknowledged service, and with acknowl- 

edged service. The model for unacknowledged service is developed from the viewpoint 

of the communication channel, and is essentially for non-predictive p-persistent CSMA. 
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Figure 3.2: Block diagram of the p-CSMA algorithm 

Related work can be found in [16] and [41]. We derive the probability of the collision rate 

for the channel. The model for acknowledged service is developed from the viewpoint of 

the sensor under the assumption that the randomizing window of each sensor is dynami- 

cally changed according to the probability of message collision. In developing this model, 

for the predictive p-persistent CSMA algorithm, we relied on the expanded CRA model 

developed in Chapter 2. 



3.3.1 Model for p-persistent CSMA (Unacknowledged service in LonTalk protocol) 

In this case S = 1 and W = 15. We use N to designate the number of sensors connected 

to the channel. When the sensor with the smallest value of w gains access to the channel 

(provided it is the only sensor that selected this value of w) it will try to transmit. Assuming 

the network is operating under a heavy steady state load and N local sensors are always 

competing for the channel, a single sensor would gain access to the channel during the wth 

time slot with probability 

The probability that no sensor would attempt to get access to the channel during the wth 

time slot is 

The probability of a collision during wth time slot is 

p p  = 1 - p(w) - p!"). 

The probability that a collision occurred during the W window after the channel became 

available is: 

3.3.2 Model for predictive p-persistent CSMA (Acknowledged service in LonTalk 
protocl) 

We develop the model for predictive p-persistent CSMA assuming the worse case, namely 

"saturation throughput". In saturation, every sensor that is connected to the bus channel 

always has a packet available for transmission immediately after the completion of each 



successful transmission. We further assume that we are in steady state: whenever a sensor 

is about to transmit a packet (having waited w time slots) its probability of successful 

transmission (neither busy channel nor collision) is q. 

Figure 3.3: Markov chain model for the backlog window size of LonWorks sensor 

For any give sensor, let b(t) be the stochastic process that represents the time left until 

the end of the current random waiting period, b(t) E (0, 1, . . . ,  S,,, x Wbase - 1(= 63 x 

16 - 1 = 1007)). A discrete, integer time scale is adopted where t and t + 1 correspond 

to two consecutive slot times, and the backlog time counter of each station decreases at the 

beginning of each slot time. We also designate s(t) be the stochastic process that represents 

the backlog coefficient (S  in Equation 3.1, s(t)  E {1,2, ..., Sma,(= 63)). As Figure 3.2 

shows S is incremented or decremented after each transmission attempt. 



The key assumption of this model is that a packet transmission fails with the same 

probability q regardless of the backlog time counter used for this transmission. Based on 

this assumption, we modified Bianchi's discrete time Markov chain model [l I], which was 

originally developed to study the MAC algorithm of IEEE 802.1 1 protocol for wireless 

local area networks. We can model s(t) ,  b(t) by the discrete time Markov chain model 

presented in Figure 3.3. We show in the figure that the Markov chain has m rows. The sth 

row has Ws + L states, here Ws = sWbase - 1 and L  is the average length of packets to be 

transmitted on the channel. Each row corresponds to one of the 63 states of s(t), and each 

row has 16s + L - 1 states, representing all possible waiting times to transmission attempts 

(b ( t ) ) .  

At the beginning of a transmission cycle, a sensor whose backlog is s(t)  is in state 

(s, w), and its state moves to the left every time step (to (s, w - l ) ,  (s, w - 2), etc.) until 

it reaches (s, 0). When the state reaches (s, O), the sensor either (a) decides not to transmit 

since the channel is busy, or transmit and face a collision; or (b) transmits successfully. 

In case (a) it moves at the next time slot to a state in row s + 1 (except if s was 63) and 

uniformly chooses a new w from a larger range size of W (Wbase slots more) . In case (b) it 

moves to the left until it reaches (s, - (L  - I)),  which means the transmission is completed 

and the sensor moves at the next time slot to row s - 1 (except if s was 1). 

If we adopt the short-hand notation P{i, jlk, 1)= P{s(t + 1) = i, b(t + 1) = j )s( t )  = 

k, b(t) = 1) for the conditional transition probabilities, the one-step transition probabilities 
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can be found as 

P i ,  j  j  + 1 = 1, (3.6) 

( 1 , )  j E ( 0 , W i - 1 )  or j ~ ( - 2 , - ( L - 1 ) ) ;  

i E (1, m ) ;  
1 

Equation 3.6 states that after the sensor generates the random waiting timer according to 

the estimated backlog window size, the timer keeps decreasing until it reaches (i, 0) .  If the 

transmission of the packet at time ( i ,  0)  is successful (probability is 1 - q), the sensor moves 

one state toward (i, - (L  - 1))  and keeps transmitting the packet until it reaches the state 

(i, - (L  - I ) ) ,  then the sensor moves one stage toward stage 1 and the estimated backlog 

window size is decreased by 1. The w value for the transmission of the next packet will 

be generated uniformly from a smaller range (0, Wi) ,  which is represented in Equation 3.8. 

Equation 3.9 shows that if the transmission of the packet at state (i, 0 )  has failed, which 

means that the transmission is unsuccessful (a collision has occurred or the channel is busy) 

with probability q, the sensor moves one step toward stage m and the estimated backlog 

window size is increased by 1. The new selected w will be generated from a larger range 

(0, Wi+l). Equation 3.10 considers the special condition of the sensor being at stage 1 



when it transmits a packet successfully. Equation 3.1 1 is the special case when the sensor 

is at the last stage and it fails to transmit a packet. 

We designate bij = limt+oo P { s ( t )  = i, b( t )  = j ) , i  E ( l ,m) ,  j E (0, Wi) to be the 

stationary behavior after the process has been running for a long time. After some algebra 

and applying the method of induction, it can be shown that 

and 

b. 2 ,J . = ( 1  - q)bi,O, i € ( l ,m) ,  j € ( -1 ,  - (L  - I ) ) ,  (3.13) 

where 

4 bi,0 = (-)i-lbl,o (3.14) 
1 - 9  

Since the sum of the probabilities of all the states in a Markov Chain model is unity, we 

have, 

We can further derive by substituting bi,. from Equation 3.12,3.13 and Wi = iWbase - 1 

into Equation 3.15 

We can now express the probability T that a sensor transmits in any randomly chosen 

time slot. As any transmission occurs when the backlog time counter is equal to zero, 

regardless of the backlog stage, 



After substituting and applying the equation of Arithmetic-Geometric series, T can be 

expressed as 

The probability T depends on the probability q, which is still unknown. The probability 

q that a transmission attempt was aborted or resulted in collision is the probability that at 

least one of the remaining N - 1 stations transmit in the same time slot. Hence, we are 

able to get another equation for p and T: 

Equations 3.18 and 3.19 form a nonlinear equation set with unknowns q and T .  The 

system can be solved by numerical methods. It is easy to prove that there is a unique solu- 

tion to this nonlinear system since, in Equations 3.18, T is a continuous and monotonically- 

increasing function in the range of (0 , l )  . In Equation 3.19, T is a continuous and monotonically- 

decreasing function in the same range. Which means that, a point of intersection between 

0 and 1 can always be found. 

Let Ptr be the probability that at least one transmission attempts occurs in the given 

time slot. For a LonWorks network with N sensors, Ptr is given by 

The probability P,,,, that an occurring transmission in a given time slot is successful, 

is given by the probability that one sensor transmits and the remaining N - 1 sensors remain 

idle given that at least one transmission occurs on the channel: 



Hence, a successful transmission in a given time slot of the communication channel will 

be Ps,,Pt,, and with probability (1 - Ps,,)Pt, the given time slot of the communication 

channel contains unsuccessful attempts. 

3.4 Integrated Simulation Model 

3.4.1 Design concepts 

In this section, we describe the methodology and tools [33,64] used to conduct the per- 

formance evaluation of the LonWorks protocol. The simulation environment consists of 

detailed modules for the communication channel, MAC layer, Network and Transaction 

layer, Transport layer, and Application layer developed in OPNET Modeler [3]. These 

detailed simulation models will constitute the evaluation framework for studying the data 

traffic conditions on the LonWorks communication channels. Some parts of the LonWorks 

protocol (e.g., Session layer and Link layer) have been simplified, omitted or deferred since 

it is intended primarily to study and evaluate the performance of the LonWorks protocol at 

the data-networking level. 

Figure 3.4 shows the OPNET network model we have developed for the LonWorks 

protocol. The figure illustrates a simple bus network channel (TPIFT-10) with five sensors, 

along with the corresponding hierarchical relationship with an inside view of the sensor and 

process modules. The left-hand top corner shows a network of five sensors connected to a 

single multiple access channel. Each unit is then expanded to reveal its internal structure. 

3.4.2 Supported functionalities 

Table 3.1 summarizes the functions supported in the simulation model. Our model assumes 

that no propagation delays occur on the communication channel, and only transmission 

delays are considered. Moreover, all stations are deferred for an integral number of P2 time 

slots. Therefore, collisions can occur only at the beginning of the transmission cycle. We 



Figure 3.4: Hierarchical structure of network model 

assume that packet error is caused only by collisions, and that packet loss is a result of the 

buffer between the MAC layer and higher layers being full. In other words, the rest of the 

channel is ideal. 

3.4.3 Node model 

This section gives an operational description of the LonWorks node model implemented in 

OPNET. The node model consists of the following modules: 



3.4.3.1 MAC module 

Table 
Access 
Mechanism 

I 
I 

Message 
Service 

Data Rate 

Input Clock 

Transmission 

Buffer Size 

Node Auto- 
addressing 

A s  we mentioned in Section 3.1, LonWorks employs p-CSMA as its media access protocol 

3.1 : Summary of supported functionalities 
Carrier senses multiple access with collision 
avoidance (CSMNCA) and optional collision 
detection (CSMNCD) access schemes as defined 
in the standard. 
Two lunds of message services are supported: 
acknowledged messages and unacknowledged 
messages. 
78Kbps data rate supported by LonWorks 
TP/FT- 10 bus channel l.25Mbps data rate 
supported by TPIXF- 1250 bus channel 
Different input clock frequencies of LonWorks 
node: 0.625MHz, 1.25MHz, 2.5MHz, SMHz, 
10MHz. Different clocks have different 
limitations on packet rate and time slot 
duration. 
Full-duplex transrnissions.FIF0 processing of 
transmission requests.Transrnission attempt limit 
of 256 after collision. 
A packet that has arrived from a higher layer to 
the LonTalk MAC layer is stored in an output 
buffer. The buffer size is limited to the 
adjusted maximum value. Higher-layer packets 
are dropped once the maximum buffer size 
is reached. 
All the nodes can be configured for node ID 
auto-addressing. User can also specify node 
addresses. However, no subnet or group address 
is supported yet.Destination address of 
each packet can be chosen automatically from 
address pool of all the nodes. 

in the MAC layer. We have designed a finite state machine (FSM) for the MAC layer 

according to the description of predictive p-CSMA algorithm (Section 3.2) and integrated 

it into the MAC module. 

In the FSM of the MAC module, operation starts from the INIT state, which is used 

to initialize the source parameters for the simulation and ensure the node is connected to 



the communication channel. If it is connected to the network, the MAC module goes to the 

IDLE state. In the IDLE state, the module monitors the state of the channel, and determines 

if the channel is still in the IDLE state. If it detects that the channel is busy, it will enter the 

BUSY state. Otherwise, if it detects no transmission during the PI period, it will enter the 

BACKLOG state, where a w is generated in the interval { O , l , .  . . , Wbase x S - 1) and the 

module waits for it to expire. When the waiting period expires, nodes without a packet to 

transmit will go back to IDLE and remain in synchronization, and nodes with a packet to 

transmit enter the TX state if the communication channel is still idle when rwp expires. If 

the transmission is successful, the node enters the TXBND state. Otherwise, it goes to the 

COLLISION and TXABORT states. The whole process repeats until there are no more 

packets arriving at the MAC layer and requiring transmission . 

Each node maintains an estimate of the backlog window size W throughout the oper- 

ation by monitoring the following conditions: I) The MPDUs it sends or receives, 11) If a 

collision is detected, 111) If a packet cycle or Wbase randomizing slots go by without channel 

activity. 

3.4.3.2 Network and Transaction module 

There are two services provided in this module, namely I) address recognition, 11) dupli- 

cate transaction detection. Each LonWorks node performs address recognition during the 

operation. The module receives and forwards the message from MAC layer to the upper 

layer if the address (or UniqueBodeJD) of the message matches the address of the cur- 

rent node. To make sure the receiver only acts upon the same packet once, the transaction 

control algorithm is established to perform duplicate detection. 

The transaction control algorithm uses 4-bit transaction numbers that are initialized 

by the sender to guarantee the ordering among outgoing messages and are used by the 

receiver to detect duplicate packets. The detailed implementation of the transaction control 



Figure 3.5: Finite state machine of MAC module 

algorithm follows the following basic operations 

When a node has a packet to send, it picks a transaction ID from (0, 1, . . . , 15) 

Upon receipt of that packet, the receiver decides whether the packet is a duplicate of 

a previous packet or a new one according to the attributes stored in TPDU. 

If the packet is a new one, the receiver allocates a new record and starts a receive 

transaction timer for the packet (In our simulation, the receive transaction timer is 8 

seconds) 

If the packet is detected as a duplicate, it will not be delivered to the upper layer. The 

process model for the network and transaction module is shown in Figure 3.6. 

3.4.3.3 Transport module 

Figure 3.7 shows the process model of the transport module. In the INIT and WAIT states, 

the module initializes its state variables used in the entire process. Then the node registers 
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Figure 3.6: Finite state machine of Network and Transaction module 

itself and makes connections with other process nodes that are connected to the transport 

module. After leaving the initial states, the module switches among IDLE, XMITJXPIRES, 

and two packet processing states (UPPERARRIVAL and LOWERARRIVAL). The mod- 

ule enters the IDLE state and waits for an incoming event. The event can be either an 

incoming packet from the application module, an incoming packet from the network and 

transaction layer, or the expiration of the retransmission timer Xmit-Timer when using ac- 

knowledged message service. When a packet arrives from the application module, the 

UPPERLAYERPKTARVL event is triggered, and the state machine enters the UP- 

PERARRIVAL state where the type of packet is determined and the required processing 

and encapsulation are executed. Then the packet is forwarded to the network and transac- 

tion layer where it will be enclosed into an NPDU. 

During the operation, if an unacknowledged message service is selected, the module 

only handles packets from two directions and switches the states among IDLE, UPPER 

ARRIVAL and LOWERARRIVAL. If acknowledged messages are being used, every time 

the module receives a packet from the source, it will add an entry to a FIFO queue model 

according to the destination address of this packet. At the same time, the process will start 

a retransmission timer based on self-interrupts to wait for an acknowledgement from the re- 



ceiving node. When an acknowledgement-type packet is received before this timer expires, 

the corresponding entry for that ACKD-type packet will be erased from the queue. How- 

ever, if XMITXXPRES is triggered, the expired ACKD-type packet will be retransmitted 

and a new timer will be started. 
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pM arrives from upper layer 

EXPIRES 

p k ~  anives from b r  layer ( 8 ARRIVAL 

Figure 3.7: Finite state machine of Transport module 

3.4.3.4 Application module 

The services provided by the application module are: 1) Address assignment, where the 

addresses of the node and the outgoing messages are specified (or can be set to auto-assign 

by simulator) 2) Message assignment, where one can specify the message type (e.g. ACKD 

and UNACKD-RPT), length, and the frequency rates to be generated during the simulation. 

The application module makes no assumptions apart from relying on the transaction 

module for correct TPDU sequencing and duplicate detection of packets. The process 

model of the application module, which is an extension of the source generator model, is 

shown in Figure 3.8. The model consists of six states: INIT, WAIT, ACTIVE, GENER- 

ATEPACKET, RECEIVEPACKET, and STOP. 

The packet generation service and receiving process are implemented in the GENER- 



ATEPACKET and RECEIVEPACKET states, respectively. The STOP state is used to 

collect statistical values at the end of the simulation. 

GENERAT 

. Generate a packet1 I Finished 

default 
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packet arrival 

Figure 3.8: Finite state machine of Application module 

3.5 Model Validation 

We discuss numerical results concerning the performance of the LonWorks modeling tool. 

In addition to the analysis presented in Section 3.3, simulation results of our cornrnunica- 

tion simulator were compared to the results gathered from a physical test platform. The 

purpose of the comparison are twofold: 1) to cross-validate the results obtained from two 

analytical models, and 2) to experiment with variations of the scheme, traffic patterns, and 

network loads which are not easily represented by the current analysis. 

3.5.1 Validation of collision probability 

Figure 3.9 illustrates the collision probability of the communication channel as a function 

of the number of nodes in the channel where the number of slots in the randomization set is 

a fixed value of 16 slots. The dashed line is the analytical result gathered from Equation 3.5, 



and the solid line with star symbols indicates the result gathered from the simulation tool. 

In each simulation run, every node in the network attempted to transmit repeatedly an 

unacknowledged floating-point network variable to a neighboring node as fast as possible. 

The simulated nodes on the channel were set to "5MHz neuron processors" and they all 

connected to a TPm-10 media-type network at a 78.125 kbps data rate. 

As expected, the collision probability increases when the number of nodes increases. 

The OPNET simulation results match the collision rates predicted by Equation 3.5 closely. 

As we can see from the figure, when the network size and number of collisions increase, 

the difference between the analytical result and simulation result also increases, since our 

assumption of a fixed window size W is less valid when there are more nodes competing 

for the channel. This situation results in an increasing number of collisions and backlog 

window size. Actually, the increase in the value of W by the protocol allows the physical 

network to have a better collision rate than the rate our analytical model predicted. 

Figure 3.10 shows the probability of unsuccessful transmission for the given time slot 

when all the nodes connected to the channel were set to acknowledged message service. 

The dashed line represents the analytical result gathered from Equation 3.18 and 3.19. The 

solid line represents the result gathered from simulation. During the simulation, every node 

in the network always tried to transmit a packet as long as the node sensed that the channel 

was idle. We set the parameters of the simulation in accordance with our node-oriented 

analytical model. The service type of transmission was "acknowledged", which results 

in dynamic adjustment of the size of the randomizing window to the current estimated 

channel backlog S ranging between 1 and 63. The simulated nodes on the channel were set 

to 5MHz again and a TPm-10 media-type network was still used. 

From the figure we can see that the simulation results match the trend of the analysis, 

with greater discrepancy for networks with a small number of nodes connected on it. In 

these small networks, the underlying assumption of our analysis, namely that every node is 

ready to transmit whenever the channel is available, does not hold due to hardware limita- 
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Figure 3.9: Comparison of channel collision probability 

tions. As a result, actual collision rates are lower than those predicted by Equation 3.18 and 

3.19. For networks with a large number of nodes, the channel is occupied with activity and 

now the channel, not the local node processors, becomes the limiting factor in the system. 

Messages in the media access processor begin to queue up, guaranteeing that whenever the 

channel returned to an idle state, every node in the network would position itself in the 

transmission queue. 
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Figure 3.10: Comparison of Node collision probability 

I 3.5.2 Validation of channel throughput and bandwidth utilization 

In order to compare the accuracy of our modeling tool, we compared the results of the 

simulation to the results gathered from a measurement of a physical system based on six (6) 

programmable smartcontrol devices. We demonstrate two examples in this section. Test 

1 uses an unacknowledged message service while test 2 uses an acknowledged service. 

In both cases, all the smartcontrol devices were connected with twisted-pair wiring and 

configured to transmit at 78.125 kbps. All the nodes were programmed to transmit floating- 

point type network variable to a neighboring node according to the variable rates. We 

configured the exact same settings in the LonWorks modeling tool. 

Figure 3.11 shows the comparison of channel throughput as a function of the traffic 
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Figure 3.1 1: Comparison of Channel Throughput 

offered by each node for tests 1 and 2. The channel throughput is expressed in messages 

transmitted per second, which is the actual message load to the network. Figure 3.12 shows 

the comparison of bandwidth utilization for tests 1 and 2. The bandwidth utilization is 

defined as the time used for transmission divided by the total elapsed time of the simulation. 

In both plots, the line crossed by the circle represents data gathered experimentally; the line 

crossed by the star represents the corresponding throughput rates predicted by our modeling 

tool. From Figures 3.1 1 and 3.12, we can see that the simulation model matches the real 

system well. We note that under a light traffic load, the channel throughput increases 

linearly until a saturation point. 



Chapter 4. An Efficient Method for DOA Estimation: Unitary Improved Polynomial 
Rooting 

4.1 Introduction 

The final chapter is this thesis addresses a different aspect of sensor arrays, namely the use 

of arrays for direction of arrival estimation for target detection and target tracking. Over last 

30 years, this problem, tracking the DOA of multiple targets by using sensor network, has 

received considerable attention. Many techniques have been developed for important appli- 

cations such as sonar, radar, radio, telecommunication, astronomy and strategic defense op- 

erations [12,16,47]. For example, in wireless communication (W-CDMA, GSM) [22,3 1],a 

smart antenna system uses an array of sensors to acquire the spatial signatures of the trans- 

mitted signals. It uses the difference of the spatial signatures or the DOA of signals in 

order to estimate the desired signal. The array sensors may consist of antennas as in radar, 

radio communication [25] and radio astronomy, hydrophones as in sonar applications, geo- 

phones in seismology and ultrasonic probes and X-ray detectors in medical imagings [21]. 

The objective is to extract information such as estimates of number of signals, direction of 

arrival (DOA), and central frequency from the sensors'output. Since the collected data con- 

tain noise, signal processing is required for the suppression of noise and interfering signals 

and the enhancement of the target signals. 

Several high resolution methods for DOA estimation such as MUSIC [52], Root-MUSIC 

[lo], Minimal Nomz (MIN-NORM) [29], Estimation of Signal Invariance Techniques (ES- 

PRIT) [5 11 and the IPR method [9] have been developed. Those methods based on complex 

value signal subspace often require significant computational cost during eigen-decomposition. 

Other methods based on maximum likelihood principles are often dependent on assumption 

and have a narrow scope of applicability. Recently, several techniques have concentrated on 

reducing the computational complexity of eigen-decomposition based methods: Pesavento 



and Haardt [44] presented a real-valued variant of Root-MUSIC based on the unitary trans- 

formation. Lineborge [35] developed several efficient algorithms for real value singular 

value decomposition (SVD). 

In this chapter, a unitary transformation of the IPR method [32] is developed. The 

method transforms a complex-valued covariance matrix into a real-valued matrix by unitary 

transformations, and the IPR method is used to determine the DOA. The use of Unitary-IPR 

reduces the computational cost by more than half compared to IPR, while DOA precision 

is maintained. 

The rest of this chapter is organized as follows: we discuss the array signal model in 

Section 4.2. In Section 4.3, we describe two existing techniques: MUSIC and root-MUSIC, 

then we propose Unitary-IPR method in Section 4.4. After that, we present the simulation 

results of the proposed method and compare it to other existing methods. In Section 4.5 we 

show the simulation results. Finally, we conclude that our method achieve the better results 

from the stances of computational complexity and mean square error of DOA estimation. 

4.2 Model Definition and Problem Formulation 

Consider q signals represented as narrow-band processes, emitted by the targets from the 

far field. The signals can be considered as sample functions of a stationary stochastic 

process or deterministic functions in time. They are impinging on an uniform linear array 

(ULA) composed of p omnidirectional isotropic sensors. The signals are assumed point 

sources from q targets. The signals have a known identical center frequency wo, and emit 

in (azimuth) directions 01, 02, . . . , Og where -; 5 Oi 5 5 .  
The kth sensor observation, yk(t), consists sum of all point sources si(t) (i = 1, . . . , q). 

Also, ylc(t) includes additive noise, qk(t), assumed white Gaussian noise with zero mean 

and uncorrelated with s(t). The measurement of the lcth sensor yk(t) is expressed as: 



where k = 1,2, . . . , p, and the ak is a steering factor that ak(Oi) = e - j w O ~ ( e i ) .  ak (Oi) 

is specified by propagation time delay rk(Oi) at kth sensor by ith signal, and it assumed to 

be (dk/c)sin(Oi), where dk is the distance between the kth sensor and the reference point 

of the first sensor, c is the speed of wave propagation, and Oi is the DOA for the ith point 

source. 

We can rewrite equation (4.1) in matrix form as 

where 

When the sensors are located equally spaced, we have 

a(6) = [l e -j(+)sine . , . e - j ( w n ' ~ - l ) d )  sin O]T (4.3) 

where d is the distance between two adjacent sensors. The array is said to be un- 

ambiguous if the corresponding vectors a(&) for distinct Oi are linearly independent or, 

equivalently, A is of full rank. 

Assume that the signal S(t) (q x 1) has mean zero and a non-singular covariance matrix: 

where s t ( t )  denotes the complex conjugate and transpose of the matrix S(t),  and that the 

noise ~ ( t )  O, x 1) is white and has zero mean and covariance matrix I?, = E(q(t)qt(t))  = 

a21p, where I, is p x p identity matrix. 



Furthermore, ~ ( t )  is assumed to be independent of S(t).  The covariance matrix of 

Y(t )  is 

It is common to obtain the correlation matrix estimate 2 based on N snapshots using 

B y  spectral decomposition (SD), there exists an orthogonal matrix E of order p  and a 

real diagonal matrix A of order p  such that 

where 

and 

E = [el - . e,ie,+l . . . e,] (4.10) 

In this thesis, lowercase boldface characters refer to vectors. Uppercase boldface italic 

characters refer to matrices. At is the Hermitian conjugate (or complex-conjugate trans- 

pose) of matrix A. Subspace methods use the special eigenstructure of C which is ex- 

pressed in terms of its eigenvalues, A,, and their corresponding eigenvectors en (n = 

1 , 2 , .  . . , p ) .  We XI 2 A2 2 . . . 2 A,. The first q eigenvalues corresponding to the 

signal should be larger than a2 ,  and the remaining ( p  - q) eigenvalues are approximately 
' 



equal to a2. The eigenvectors corresponding to the signal eigenvalues can be described 

using the signal subspace, E, = [el . . . eq] .  En = [eq+l . . . e,] is the matrix containing the 

remaining p - q noise eigenvectors describing the noise subspace, which is the orthogonal 

complement to the signal subspace. 

4.3 Improved Polynomial Rooting 

Proposed by Bai, Improved Polynomial Rooting method (IPR) is an efficient and asymp- 

totic method to estimate the DOA. 

If we let zl = = 1 , 2 ,  . , q)  and define a polynomial as, 

Suitably choose gq+l so that we have 

and gq+l > 0. Then, we have 

Where G is p x (p - q)  matrix given by 



the estimated noise eigen vectors matrix 6, can always be transformed to 2: by Gauss 

elimination or Householder transformation. The coefficients of g ( z )  can be estimated by 

averaging the elements of the p - q columns of 2:: 

for i = 1, . . . , q + 1. As a consequence, the exactly q roots of the polynomial equation 

, with the form 

will converge to zk = e-Q with probability 1 .  Thus, the DOAs corresponding to the array 

A can be obtained by .ik. 

4.4 Proposed Method- Unitary-IPR 

In this section, a unitary transformation of the IPR method is proposed. The covariance 

matrix estimate in equation( 4.7) can be described as forward averaged matrix [45], since 

the matrix can be found by a preprocessing scheme that partitions the total array of sensors 

into subarrays and then generates the average of the subarray output covariance matrix. 

Usually, we call matrix C as centro-Hermitian [23] if there exists a matrix J such that 

C = JC* J (4.17) 

where J is the exchange matrix with ones on its anti-diagonal and zeros elsewhere. C* 

represents C conjugate. C is the centro-Hermitian only when the signal sources are uncor- 

related. For the purpose of decorrelating any correlated signal matrix S that we previously 

defined, a forward-backward (FB) matrix [35] has been developed to make the signal co- 



variance matrix C become centro-Hermitian matrix CFB as 

where 

and 

The centro-hermitian matrices can be interpreted to real-valued (unitary) matrices [35] 

I by 

2 = K + % ~ ~ K ,  (4.21) 

where 2 is q x q square matrix, K is the matrix that satisfies when CFB is even dimen- 

sion, 

and when CFB is odd dimension, we have 

Now we can get the real-valued matrix 2 directly via the complex valued covariance 

matrix 5 since 



A 

2 can be obtained via either gFB or C,  the two approaches are equivalent, however, 

the latter has a simpler implementation than the former. 

Consider the real-valued eigen-decomposition of L is 

where ll is eigenvalue matrix and V is the eigenvector matrix of L. 

11, = diag[r1, . . . , rq] 

We also have the eigen-decomposition of the matrix C, which has been given in equa- 

tion (4.8). 

where 

The FB matrix of C,  CFB is defined in the same way 

CFB = U E U ~  

The eigenvalues and eigenvectors are defined as follows, 



Let us rewrite the equation (4.27), 

and 

From equations (4.30) and (4.31), the eigenvectors and the eigenvalues of the matrix L 

and CFB are coupled as 

The noise eigenvectors of U, and V, should also be hold as, 

Equation (4.34) indicates that real-value eigen-decomposition can be used to find the 

eigenvectors of the signal covariance matrix. Also one can notice that the floating point 

operation cost for directly evaluating the eigenvectors and eigenvalues of CFB is in the 

order of 8n2, which are, 4n2 for multiplications and another 4n2 for additions. If we use 

the real-value eigen decomposition (4.25), it only uses n2 for multiplications and n2 for 



Let us rewrite the equation (4.27), 

and 

From equations (4.30) and (4.31), the eigenvectors and the eigenvalues of the matrix L 

and CFB are coupled as 

The noise eigenvectors of U, and V, should also be hold as, 

U ,  = KV, (4.34) 

Equation (4.34) indicates that real-value eigen-decomposition can be used to find the 

eigenvectors of the signal covariance matrix. Also one can notice that the floating point 

operation cost for directly evaluating the eigenvectors and eigenvalues of CFB is in the 

order of 8n2, which are, 4n2 for multiplications and another 4n2 for additions. If we use 

the real-value eigen decomposition (4.25), it only uses n2 for multiplications and n2 for 



additions, total is 2n2. That is 75% of the computational cost efficiency compared to direct 

evaluation. 

The Unitary-IPR algorithm is described as follows, 

A 

1. Determine covariance matrixes C from the sensors'observation, 

2. Obtain a real-value matrix L by Equation (4.24), 

3. Solve eigenvalue matrix II = diag(.rrl, . ,.lr,) and eigenvector matrix V = [vl , v2, . . . v,] 

from 2. 

A 

4. Obtain noise eigen-vector matrix V, = [vl . v,+~] from V ,  

5. Convert to U ,  by Equation (4.34), 

6. Column reduce fin into G,, 

7. Sum the values in each column of e, to obtain the value of Gi, 

8. Solve the roots ik from the polynomial equation with coefficients iji, where 1 5 i 5 

q + 1 and 1 5 k 5 q, and 

9. Determine the DOAs Or = arcsin(~eal(- 9)). 

4.5 Simulation Results 

In this section, we study the performance of the proposed Unitary-IPR method using nu- 

merical simulations. We compared our method with the existed methods we have men- 

tioned in Section 4.1, namely MUSIC, Root-MUSIC, TLS-ESPRIT and IPR. 

A uniformly linear array of p sensors is used with inter-element spacings of d. Suppose 

the central frequency wo of the targets is 10' Hz. 



4.5.1 Comparisons of RMSE and FPOC vs SNR 

Assume we have three uncorrelated targets of equal power located at 63 = -20°,02 = lo0 

and O3 = 40°. Let d = 10 and p = 10. We take 200 snapshots with 1000 times simulation. 

We can show the accuracy and the computational complexity of the DOA estimation. The 

accuracy is determined by Root Mean Square Error (RMSE), and computational complex- 

ity is measured by number of Floating Point Operation Counts(FP0Cs). 

The RMSE is plotted vs. SNR (-5dB-15dB) in figure 4.1. The RMSE estimator shows 

a significant improvement compared to IPR and TLS-ESPRIT. 
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+ UNITARY-IPR 
+ TLS-ESPRIT 

Figure 4.1 : The RMSE vs. SNR performance of Unitary-IPR compared to MUSIC, root- 

MUSIC, TLS-ESPRIT, and IPR(q = 3, p = 10, and 200 snapshots 

The computation complexity can be evaluated using flops function in matlab. Figure 4.2 



illustrates the FPOCs of each methods vs. SNR. Again, Unitary-IPR is much better com- 

pared to other methods because it requires the least FPOCs. 
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Figure 4.2: The Floating Point Operation Counts vs. SNR performance of Unitary-IPR 

compared to other methods(q = 3, p = 10, and 200 snapshots) 

4.5.2 Comparisons of RMSE and FPOC vs number of sensor 

Now we can study the performance measures when we vary number of sensors while we 

keep SNR equals to 5dB. The other parameters stay the same as in the Section 4.5-A. Fig- 

ure 4.3 shows the RMSE comparison, and figure 4.4 illustrates the FPOCs comparison with 

number of sensors varies from 5-25. Again, Unitary-IPR shows a significant improvement 

over other methods. Also, we observe the FPOC increases exponentially as the number of 



sensor increases. 

1 4.5.3 Comparisons of RMSE vs number of snapshots 

Here, we assume the SNR is the fixed value at 5dB, and show the RMSEperformance with 

I 
different sample number (snapshots) N. Again, Unitary-IPR achieves a better performance 

than TLS-ESPRIT and IPR , and the FPOC performance for Unitary-IPR can be figured 

out from Figure 4.2 at point SNR=5 dB. 
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Figure 4.3: Comparison of RMSE vs. Number of Sensors (q=3, SNR=5dB, 200 snapshots) 



sensor increases. 

, 4.5.3 Comparisons of RMSE vs number of snapshots 

Here, we assume the SNR is the fixed value at 5dB, and show the RMSE performance with 

different sample number (snapshots) N. Again, Unitary-IPR achieves a better performance 

than TLS-ESPRIT and IPR , and the FPOC performance for Unitary-IPR can be figured 

out from Figure 4.2 at point SNR=5 dB. 
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Figure 4.3: Comparison of RMSE vs. Number of Sensors (q=3, SNR=SdB, 200 snapshots) 
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Figure 4.4: Comparison of FPOC vs. Number of Sensors(q=3, SNR=SdB, 200 snapshots) 

4.6 Conclusion 

We have developed the Unitary Improved Polynomial Rooting method (Unitary-IPR). The 

simulation results show that it significantly improve the existed IPR method. 

Further improvement might be achieved using spatial downsampling of the sensor ar- 

rays. 
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Figure 4.5: Comparison of RMSE vs. Number of Snapshots (q=3, p=10, SNR=5dB) 



Chapter 5. Conclusion and Future Research 

5.1 Technical Summary 

In this thesis, we studied distributed sensor network architectures and their applications 

to the industrial control protocol LonWorks. We have also investigated DOA estimation 

by sensor networks and improved a popular DOA estimation algorithm by using unitary 

transformations. 

The following results were presented. 

A self-adaptive collision resolution algorithm for the local sensor has been devel- 

oped. The performance of a distributed detection system employed with such sensor 

model has been studied. 

A mathematical model for Lonworks control network was developed, to study the 

network behavior of predictive p-CSMA algorithm. 

A simulator for Lonworks based on OPNET has been implemented. 

A more efficient technique has been developed to estimate the DOA by using an array 

of sensors. 

5.2 Future Research 

Future research in directions outlined by this thesis should focus on developing more real- 

istic data fusion solutions. Specifically, the following problems need to be addressed. 

An efficient transmission scheme. In our sensor model for distributed sensor net- 

works, we assumed all local sensors have the same detection performance (e.g., all Pj 

and.Pd are same), though in realistic scenarios it is possible that some sensors will have 

better operating characteristics than others. A more advanced transmission scheme can 



be developed so that a priority phase will be introduced. Sensors with higher operating 

characteristics will be given priorities to improve overall system performance. 

Extend distributed detection algorithm when a fading and noisy channel is consid- 

ered. Fusion of binary decisions transmitted over fading channels has important applica- 

tions in low-cost low-power wireless sensor networks. The work reported here was based 

on noise-free environment, with complete channel knowledge. Decision fusion schemes 

are of interests for single random access channel when fading statistics are available or 

need to be estimated. Further, the dual problem to decision fusion, namely the optimal 

local sensor decision rule in the presence of unideal transmission channels should also be 

investigated. 
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Appendix A. LonWorksB Analysis Toolkit OPNET Model User's Guide 

A.l Overview 

A.l.1 Introduction of LonWorks OPNET Model 

The LonWorks OPNET model is a design toolkit that can be used as a simulation, network 

analysis, testing, and learning tool for LonWorks products. It assists a designer who used 

LonMaker in the following tasks: (I) evaluating the performance of the communication 

infrastructure; (2) displaying simulation results; (3) predicting the behavior of cornrnunica- 

tion channel; and (4) estimatinglmonitoring the network statistics (e.g., channel throughput 

and bandwidth utilization). These activities do not require any physical network infrastruc- 

ture and are performed through computation and simulation. 

The LonWorks OPNET model is designed to be intuitive and user friendly. The model 

package can be shared across hardware and platforms transparently without modification. 

Figure A.lshows the GUI of the LonWorks modeling tool. In the figure, we show eight 

(8) smartcontrol@ devices along with a Protocol analyzer (LonManager) connected to the 

TPRT-10 bus channel. Users can drag icons from the Object Palette window in order 

to add more smartcontrol'@ devices to the channel. The user can run the simulation by 

clicking run simulation under the Simulation popup menu. 

A.1.2 Features supported with this release (notation follows standard ANSVEIA- 
709.1-A) 

The features supported is shown in Table A. 1. The LonWorks OPNET model assumes that 

no propagation delays occur on the communication channel; only transmission delays are 

considered. Moreover, all stations are deferred for integral slot times of p2. Therefore, 

collisions can occur only at the beginning of the transmission cycle. We assume that packet 

error is caused only by collisions, and that packet loss is a result of the buffer between the 



Table A.l: Features supported with this release 
Access Mechanism Carrier senses multiple access with collision avoidance 

(CSMNCA) and optional collision detection (CSMNCD) 
access schemes as defined in the standard. 

Message Service We support two kinds of message transmissions: 
acknowledged messages and unacknowledged messages. 

Deference Interframe spacing and backoff time slot P2 implementation. 
& The values are selected based on design specification from Echelon 
Bac koff (the manufacturer of LONWORKS nodes). Random delay backlog 

generated from the predictive estimation of channel load BL. 
Data Rate 78Kbps data rate supported by LonWorks TPIFT-10 bus channel 

1.25Mbps data rate supported by TPIXF- 1250 bus channel. 
Input Clock Different input clock frequencies of LonWorks node: 0.625MHz, 

1.25MHz, 2.5MHz, 5MHz, IOMHz. Different clocks have different 
limitations on packet rate and time slot duration. 

Transmission Full-duplex transmissions. FIFO processing of transmission 
requests. Transmission attempt limit of 256 after collision. 

Buffer Size A packet that has arrived from a higher layer to the LonTalk MAC 
layer is stored in an output buffer. The buffer size is limited 
to the adjusted maximum value. Higher-layer packets are dropped 
once the maximum buffer size is reached. 

Framing Assemble MAC frame before transmission, and disassemble 
& frame when receiving from PHY layer. Frame format is defined 
Disassembly as MPDU format specified in the standard, with additional address 

and message type information in order to evaluate channel 
performance under different message service types. 

Frame Size Frame sizes, based on measurements from real LonWorks channel, 
are in the range of 10 to 16 bytes. 

Node Auto All the nodes can be configured for node ID auto-addressing. 
addressing User can also specify node addresses. However, no subnet or 

group address is supported yet. Destination address of each packet 
can be chosen automatically from address pool of all the nodes. 

Recovery Retransmission mechanism for data frame based on failure 
Mechanisms of the reception of the acknowledgment frame. 
Collision Collision detection from physical layer. Normal Mode 
Detection or Special Purpose Mode as defined in the standard. 



Figure A. 1 : LonWorks Network Analysis Toolkit OPNET module 

MAC layer and higher layers being full. In other words, the rest of the channel is ideal. 

A.1.3 Audience 

System designers that use the LonWorks OPNET modeling tool. 

A.1.4 Content 

This manual provides detailed specifications of the LonWorks OPNET model, as well as 

an example of using this model. The example contains step-by-step procedures to teach the 

user how to use the model to design a LonWorks network. 
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Figure A.2: Adding the LonWorks Model to Modeler 

A.1.5 Related Documentation 

The following publications are suggested for additional information: 

1. OPNET Modeler, OPNET Modeler manuals, MIL 3, Inc. Online: http://www.opnet.com 

2. ANSVEIA-709.1-A, Control Network Protocol Specification, 1999 

3. Fairmount Automation Inc., Development of a Virtual Distributed Control System 

(VDCS) Test Platform (Phase 11), Final Report, Phoenixville, PA, June 2004 

4. LonBuilder User Guide (078-0001-01) (see http://www.echelon.com/support/ docu- 

mentation/) 



A.2 Getting Started 

A.2.1 System Requirement 

Hardware Requirements 

Windows NT, 2000, XP, or UNIX platform 

Minimum 800 MHz CPU 

Minimum 256 MB RAM 

~ i n i m u m  of 64MB free memory 

Software Requirements 

OPNET Modeler 8.0.C (Build 1283) or a more advanced version 

Microsoft Visual Studio 6.0 or a more advanced version (Windows OS only) 

A.2.2 Installation 

The files required in order to run the simulations are included in a single zipped file. This 

file must be unzipped in the user's OPNET models directory (e.g. "opmodels"). After 

unzipping the file, choose Model files from the File menu of the Modeler, then click on 

Add Model Directory and select the directory of the LonWorks OPNET Model (see Fig- 

ure A. 12). The user should also modify the OPNET environment variable mod-dir (choose 

Preferences from the Edit menu), or edit manually the file "\opadmin\env-db8.0 so that 

the path of LonWorks OPNET model is added to the Modeler. 

The attribute check~newer~processmodelfiles in the OPNET environment must be 

set to "FALSE to avoid recompiling of the source code of models, which would result in 

simulation failure. 



A.2.3 Contact information 

Please direct all questions to Moshe Kam at Drexel University, m.kam@ieee.org. Mail 

address: M.Kam, ECE Department, Drexel University, 3141 Chestnut Street, Philadelphia, 

PA 19104. Phone number: (215) 895 6920. 

A.3 General Overview 

The LonWorks OPNET model Revision 6.1 includes scenarios (lonmac-VDCS.prj) that 

can be used as templates. It is recommended to use these templates as the basis of user- 

created scenarios. 

The palette in Figure A.3 can be used to add component to a new scenario. The de- 

scription of these components follows: 

Figure A.3: LonWorks Object Palette 

A.3.1 Components of the Model 

A.3.1.1 lon-device model 

The londevice is the key component of the LonWorks OPNET model. As illustrated in Fig- 

ure A.4, the LonWorks device module is comprised of the lonmac process, transmitter, re- 

ceiver, lonmacinf process, source, sink, and the channel streams. Module "lonmac"implements 



the p-persistent CSMA algorithm of the MAC layer. Module "lonmacinterface" is the in- 

terface module between the MAC layer and higher layers, working as a data link layer 

and as part of the network layer. The solid lines between different modules represent data 

streams, which transmit packets or frames. The dash lines signify the status of transceivers 

(busy or collision). 

rur I - u W I C ~  

Figure A.4: Ion-devicemodule 

A.3.1.2 Ion-protocolanalyzer model 

The LonManager Protocol analyzer (LPA) model (Figure A.5) allows users to observe, an- 

alyze and diagnose the channel behavior of the simulated LonWorks networks. It provides 

the statistics of network, such as channel collision rate and error packet rate. Some of these 

cannot be provided by other LonWorks devices. 
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Figure A.5: lon-protocol-analyzer model 

A.3.1.3 lon-TPTT10 channel 

The TPm-10 (Figure A.6) is the channel type connecting the LonWorks devices with 

arbitrary topologies. It supports network bit rates up to 78 kbps per second and 2200 

meters maximum distance (bus topology). 

Figure A.6: TP/FT-10 Channel Model 



A.3.1.4 Ion-TPIT10 tap 

The TP/FI'-10 tap (Figure A.7) is used to connect between TP/FT-10 channel and other 

devices, such as the LonWorks node model and the protocol analyzer model. 

Figure A.7: TPm-10 Tap 

A.3.2 Model Parameters 

Each LonWorks node in OPNET model has the same set of attributes. These attributes (see 

Figure A.8) are part of the LonWorks parameters. There is also a MAC address (Device 

address) parameter that is an internal station address and is usually set as auto assigned 

unless a specific configuration is required. 

Figure A.8: The various LonWorks Device attributes 
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A.3.3 Packet Format 

Figure A.9 shows the frame format of the MPDU, implemented in LonWorks OPNET 

Model. This implementation is a slightly different from what the 709 standard specifies. 

Some fields such as length, domain andfull version of address format are neglected in this 

format under the assumption that we are using only one subnet, one group, and one domain 

in the modeling tool. We only implemented the fields that affect the traffic performance 

and characteristics. These fields include all the MPDU headers, which are priority bit 

(Pri), alternative path (AltPath), and increment of backlog (DeltaBL). The frame format 

of the MPDU also includes part of the NPDU header (source and destination address and 

TPDU-Type). Pri, AltPath, and DeltaBL have the following semantics: 

1 1 6 7 7 2 

Pn 

Figure A.9: Frame format of MAC layer Protocol data unit 

Figure A.10 shows the packet structure implemented in the OPNET packet format edi- 

tor. 

Figure A.lO: Frame format from OPNET 

Alt Path Delta BL Src-Address DestJIWnrs TPDU-Type PDUIData 
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A.3.4 Collected Statistics 

The usefulness of a simulation model is dependent on the statistics of the physical system 

that it provides. In our LonWorks OPNET model, we have implemented a comprehensive 

statistical set of "points of measurements". These statistics are stored in two types of output 

files: vector and scalar. Vector output files trace the course of a statistic over an interval 

of time; each data point has an associated time at which it was logged. Scalar output files 

store a set of singular statistic values grouped by simulation. Table A.2 lists the statistics 

being collected in vector files, while Table A.3 lists the statistics collected in scalar files. 

Figure A.ll  shows the OPNET implementation of available statistics. 

A.3.5 Features supported with this release (notation follows standard ANSVEIA- 
709.1-A) 

A.4 Example 

An example titled lonmac-VDCS has been included in the zipped file. The example 

includes three scenarios, namely three LonWorks simulations under different assumptions. 

In this session, we present detailed step-by-step procedures, which illustrate how to 

build a LonWorks simulation project by using the OPNET Modeler. The goal is to demon- 

strate the LonWorks OPNET model. 

Suppose we want to observe how the performance of the LonWorks protocols varies as 

a function of channel traffic. In order to do this, we design a shared channel (bus topol- 

ogy) that has eight nodes (8) connected on. Each node transfers standard integer-type data 

to its neighboring node at the various data rates (specifically, let us assume that the data 

rates of the nodes are lpktsls, IOpktsIs, 20pkts/s, 50pkts/s, lOOpktsIs, 125pkts/s, 200pktsls, 

250pkts/s, and 500pkts/s, respectively). All the nodes use the UNACK service to commu- 

nicate with each other. 

In this example we demonstrate: 
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Table A.2: Statistics stored in vector output file 
Name Summary 
Backlog Size Index of backlog window size that the current node can 

randomly choose from before transmission while contending 
for the medium. 

Collision Count Number of collisions encountered by the MAC layer of this 
node. 

End-to-End Delay End-to-End delay of the packets accepted by this node. 
(set> 
Packets Offered per Total number of packets sent by current node. 
Node (packets) 
Packets Offered per Average number of packets sent by current node. 
Node (packetslsec) 
Packets Received per Total number of packets received by current node. 
Node (packets) 
Queue Size of Packets Number of packets received from higher level being held 
being held at queue of MAC layer. 
Traffic Offered Total data traffic (in bits) sent to the MAC layer from a 
per Node (bits) higher layer. 
Traffic Offered Average data traffic (in bits) sent to the MAC layer from a 
per Node (bitslsec) higher layer. 
Traffic Received Total number of bits forwarded to higher layer by the MAC 
per Node (bits) layer. 
Traffic Received Average bits per second forwarded to the next-higher layer by 
per Node (bitslsec) the MAC layer in this node. 
Transmission Number of transmission attempts made by the MAC layer of 
Attempts current node before frames are successfully transmitted. 

Table A.3: Statistics stored in scalar output file for LonWorks node device 
Name Summary 
Average Offered Average packet rate offered by the source as channel load. 
Load (packetsls) 
Collision Rate (%) Collision rate of this specific node, percentage of collisions 

with respect to the total number of transmission attempts. 
Node Throughput Throughput of this specific node. 
(pac ketsls) 
Channel Throughput Total throughput measured on the channel. 
(pac ketsls) 
Dropped Packets Percentage of packets that are dropped due to fullness of buffer. 

(%I 
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Figure A.12: Adding the LonWorks Model to Modeler 

3. In the Startup Wizard, use the settings described in Table A.5. 

In order to easily build the network, a custom palette is needed that contains the neces- 

sary objects for the network. To create the palette: 

1. In the Object Palette window, click on the Configure Palette... button. 

2. In the Configure Palette dialog box, click Clear (All objects except the subnet are 

Table A.4: Initial settings of sample scenario 
Dialog Box Name 
Initial Topology 

Choose Network Scale 
Specify Size 

Select Technologies 
Review 

Value 
Default Values: Create Empty Scenario 

Office("Use Metric Units" enabled) 
1 OOm x 1 OOm 

None 
Check values, then click ok 



removed from the palette.) 

3. Click on the Node Models button; then add lon-device and lon~procotolanalyzer 

from the list of available node models. Click OK to close the dialog box when 

finished. 

4. Click on the Link Models button; then add lon-TPTT10 from the list of available 

link models. Click OK to close the dialog box when finished. 

5. Save the Object Palette by clicking on the Save button in the Configure Palette 

dialog box. Use lon-example-palette as the file name. 

6. Click OK to close the Configure Palette dialog box (the lon-example-palette Object 

Palette is ready for use). 

Instead of creating the entire network by hand, one can use rapid configuration, as 

follows: 

1. Choose Rapid Configuration from the Topology menu. 

2. Select Bus from the menu of available configurations, then click OK. 

3. In the Rapid Configuration: Bus dialog box, set the following values as shown in 

Figure A.13. 

4. Click OK when all the values are entered. (The network on the following is drawn 

in the workspace.) 

In order to analyze the channel behavior of the task, one needs to add a lon-protocolanalyzer 

module into the network: 

1. Click and drag the protocol analyzer from the palette into the left side of the tool 

area. 
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Figure A. 13: Rapid Configuration 

2. Click on the Ion-TPlTlO tap link in the palette, and then draw a tap from the bus to 

the protocol analyzer node. (Note: you cannot draw a tap from the node to the bus.) 

The completed bus model looks like the diagram shown in Figure A.15 

After completing the network construction for the example, one must specify the node 

attributes by select Edit Attributes from the pop-up menu after right-clicking the mouse 

button when the mouse is pointed to any one of the selected LonWorks nodes (node-0 to 

node-7). To apply the changes to all of the nodes: 

1. Check the Apply Changes to Selected Objects check box in the node attributes 

dialog box. 

2. Click OK to close the Attributes dialog box. 

In order to display the network statistics that the nodes record during the simulation, 

we need to enable one (and only one) of the recording interrupts in the node attributes. To 



Figure A.14: Network Created by Rapid Configuration 

Figure A. 15: Adding Protocol Analyzer 

do this, one selects any one of the nodes; and changes the attribute 1onmac.endsim intrpt 

in the window of node attributes to enabled. 

Finally, one can save the model (but not exit the Project Editor) and close the object 

palette. 

A.4.2 Collecting Statistics 

To collect statistics: 

1. Right-click in the workspace to display the workspace pop-up menu, and select 
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Figure A. 16: Node Attributes Dialog Box 

Choose Individual Statistics. 

2. Place checks in the check boxes. In this example, we assume we would like to see the 

statistics of Backlog Size, Packets Offered per Node, Packets received per Node, 

Queue Size of Packets being held and some other related statistics. 

3. Click OK to close the Choose Results dialog box. 

A.4.3 Executing the Simulation 

Our simulation produces both scalar and vector results. An output scalar file and an output 

vector file must be specified where these results accumulate from successive simulations. 

This operation is done in the Simulation Configuration Editor, which can be reached by se- 

lecting Configure Simulation (advanced) from the Simulation menu in the Project Editor. 

The goal of this session is to observe how the performance of the protocols varies as 

a function of channel traffic. The inter-arrival time input parameter will be varied in a 
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Figure A.17: Choosing Available Statistics 

series of simulations to produce different levels of traffic and hence, different levels of 

throughput. Conclusions will be drawn from the results of nine simulations, each with a 

different inter-arrival time value. 

1. Choose Configure Simulation (advanced) from the Simulation menu in the Project 

Editor. 

2. Right-click on the simulation set icon and select Edit Attributes from the Object 

pup-up menu. 

3. Set the Scalar file to lon~examplescalar~le 
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Figure A. 19: Simulation Set 

Table A.5: Initial settings of sample scenario 
Simulation Completed - Collating Results. 
Events: Tota1(10650851), Average Speed (19048 eventslsec) 
Time: Elapsed (9min. 19 sec.), Simulated (5 rnin. 0 sec) 
Simulation Log: 1 entries 

3. The ten simulations display their progress as they execute. Any simulation run will 

be no longer than 5 minutes (simulation time) and will terminate with a message such 

as that shown in 

4. When the simulations are complete, close the editor. 

A.4.4 Analyzing the simulation results 

Once the simulation finished executing, one may want to examine the collected network 

statistics. These statistics are stored in two formats. 
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Figure A.20: Select Scalar Panel Data 

A.4.4.1 Analyzing the results stored in scalar file 

To open the scalar output file: 

1. In the Project Editor, choose View results (Advanced) from the Results menu 

2. Select Load Output Scalar file from the File Menu. 

3. Select Ion-examplescalarfile from the list of available files. 

1. Click on the Create a graph of two scalars action button. 

2. Select the horizontal variable [LonWorks Node] Avg load offered by Each Node 

(packetslsec) first, and then select the vertical variable [LonWorks Node] Channel 

Throughput (packetslsec) from the menu of available scalars that pops up. 

3. Click OK 

The graph of the scalar panel appears in the workspace as shown in Figure A.21. 

Instead of using [LonWorks Node] Channel Throughput (packetslsec) as the vertical 

variable, you can choose [Protocol Analyzer] Collision Rate of Channel (%) as the ver- 

tical variable, which shows the collision probability of channel versus packet inter-arrival 

times. It appears as in Figure A.22: 
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Figure A.21: Simulation Result 1 

One can get other plots of available statistics by repeating steps 2 and 3 using other 

horizontal/ vertical variables. 

A.4.4.2 Analyzing the results stored in vector file 

To view the statistics results for the simulation gathered by each node: 

1. Right-click on the LonWorks device node choose View Results from the pop-up - 
menu 

2. Expand the Office Network:node-0:LonWorks Node hierarchy, 

1 3. Click on the boxes next to Backlog Size, Queue Size of Packets bt :ing held, Packets 

Received per Node (packetslsec) and Packet Offered per Node (packetslsec) to 

indicate that you want to view those results. 

4. Click the Show button in the View Results dialog box. 
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Figure A.22: Simulation Results 2 

The graph of the network statistics gathered by specified node appears in the Project 

Editor: 

In order to view the same statistic for all the nodes by once, follow the steps: 

1. Left-click on the create a graph of a statistic action button (The view Results dialog 

box opens). 

2. Expand the following hierarchy user-defined-project-unackservice:Object Statis- 

tics:Office Network. 

3. Select the statistic you want to study from each node (for example, select Backlog 

Size). 

4. Click on the Show button 

The graph of the backlog size for each LonWorks node versus time progresses appears 

in the Project Editor: 
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Figure A.24: Simulation Results 3 
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Figure A.25: Displayed Statistics 
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Nomenclature 

a steering factor 

the notation representing limt+oo P{s(t)  = i, b(t) = j )  

the stochastic process that represents number of 

remaining backlog waiting period before the sensor 

starts to transmit 

Collision state 

null hypothesis 

alternate hypothesis 

index of backlog stage 

Idle state 

number of local sensors connected on the channel 

number of local sensors transmitting on the channel 

number of idle slots on the channel 

number of success slots on the channel 

summation of the number of the collision and idle slots 

maximum backlog value 

probability that a transmission collides for a specific sensor 

a priori probability of null hypothesis 

a priori probability of alternate hypothesis 

probability that a collision happened during w-th time slot 

probability that a collision occurred 



the notation representing P{s(t + 1) = i, b(t + 1 )  = jls(t) = m, 

b ( t )  = n)  

probability that no sensor would attempt to get access during w-th 

time slot 

false alarm probability 

probability density function of ns, n ~ ,  and nc, given there are n 

sensors attempt to transmit 

missed detection probability 

probability that an occuring transmission is successful 

probability that a single sensor would gain access to the channel during 

w-th time slot 

the probability that at least one sensor attempts to transmit in any 

given time slot on the channel 

the probability that a randomly selected time slot will be a collision 

global probability of detection 

global probability of false alarm 

the probability that a randomly selected time slot will be a idle 

the probability that a randomly selected time slot will be a success 

the stochastic process representing the backlog stage (0, . . . , m) 

for a specific local sensor 

S: Success state 

u0: decision made by the Data Fusion Center 

ui : decision made by the i-th local sensor 

UT : decision made by the i-th local sensor during time T 
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