34 research outputs found

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    Compressive Sensing-Based Grant-Free Massive Access for 6G Massive Communication

    Full text link
    The advent of the sixth-generation (6G) of wireless communications has given rise to the necessity to connect vast quantities of heterogeneous wireless devices, which requires advanced system capabilities far beyond existing network architectures. In particular, such massive communication has been recognized as a prime driver that can empower the 6G vision of future ubiquitous connectivity, supporting Internet of Human-Machine-Things for which massive access is critical. This paper surveys the most recent advances toward massive access in both academic and industry communities, focusing primarily on the promising compressive sensing-based grant-free massive access paradigm. We first specify the limitations of existing random access schemes and reveal that the practical implementation of massive communication relies on a dramatically different random access paradigm from the current ones mainly designed for human-centric communications. Then, a compressive sensing-based grant-free massive access roadmap is presented, where the evolutions from single-antenna to large-scale antenna array-based base stations, from single-station to cooperative massive multiple-input multiple-output systems, and from unsourced to sourced random access scenarios are detailed. Finally, we discuss the key challenges and open issues to shed light on the potential future research directions of grant-free massive access.Comment: Accepted by IEEE IoT Journa

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Blind source separation for interference cancellation in CDMA systems

    Get PDF
    Communication is the science of "reliable" transfer of information between two parties, in the sense that the information reaches the intended party with as few errors as possible. Modern wireless systems have many interfering sources that hinder reliable communication. The performance of receivers severely deteriorates in the presence of unknown or unaccounted interference. The goal of a receiver is then to combat these sources of interference in a robust manner while trying to optimize the trade-off between gain and computational complexity. Conventional methods mitigate these sources of interference by taking into account all available information and at times seeking additional information e.g., channel characteristics, direction of arrival, etc. This usually costs bandwidth. This thesis examines the issue of developing mitigating algorithms that utilize as little as possible or no prior information about the nature of the interference. These methods are either semi-blind, in the former case, or blind in the latter case. Blind source separation (BSS) involves solving a source separation problem with very little prior information. A popular framework for solving the BSS problem is independent component analysis (ICA). This thesis combines techniques of ICA with conventional signal detection to cancel out unaccounted sources of interference. Combining an ICA element to standard techniques enables a robust and computationally efficient structure. This thesis proposes switching techniques based on BSS/ICA effectively to combat interference. Additionally, a structure based on a generalized framework termed as denoising source separation (DSS) is presented. In cases where more information is known about the nature of interference, it is natural to incorporate this knowledge in the separation process, so finally this thesis looks at the issue of using some prior knowledge in these techniques. In the simple case, the advantage of using priors should at least lead to faster algorithms.reviewe

    Tensor-based signal processing with applications to MIMO-ODFM systems and intelligent reflecting surfaces

    Get PDF
    Der Einsatz von Tensor-Algebra-Techniken in der Signalverarbeitung hat in den letzten zwei Jahrzehnten zugenommen. Anwendungen wie Bildverarbeitung, biomedizinische Signalverarbeitung, radar, maschinelles Lernen, deep Learning und Kommunikation im Allgemeinen verwenden weitgehend tensorbasierte Verarbeitungstechniken zur Wiederherstellung, Schätzung und Klassifizierung von Signalen. Einer der Hauptgründe für den Einsatz der Tensorsignalverarbeitung ist die Ausnutzung der mehrdimensionalen Struktur von Signalen, wobei die Einzigartigkeitseigenschaften der Tensor-Zerlegung profitieren. Bei der drahtlosen Kommunikation beispielsweise können die Signale mehrere "Dimensionen" haben, wie Raum, Zeit, Frequenz, Polarisation, usw. Diese Arbeit ist in zwei Teile gegliedert. Im ersten Teil betrachten wir die Anwendung von Tensor-basierten Algorithmen für multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) Systeme unter Berücksichtigung von Vorhandensein von Phasenrauschenstörungen. In diesem Teil schlagen wir einen zweistufigen tensorbasierten Empfänger für eine gemeinsame Kanal-, Phasenrausch- und Datenschätzung in MIMO-OFDM-Systemen vor. In der ersten Stufe zeigen wir, dass das empfangene Signal auf den Pilotunterträgern als PARAFAC-Tensor dritter Ordnung modelliert werden kann. Auf der Grundlage dieses Modells werden zwei Algorithmen für die Schätzung der Phasen- und Kanalrauschen in den Pilotton vorgeschlagen. In der zweiten Stufe werden die übertragenen Daten geschätzt. Zu diesem Zweck schlagen wir einen Zero Forcing (ZF)-Empfänger vor, der sich die Tensorstruktur des empfangenen Signals auf den Datenträgern zunutze macht, indem er den vorgeschlagenen selektiven Kronecker-Produkt-Operators (SKP) kapitalisiert. Die Simulationsergebnisse zeigen, dass der vorgeschlagene Empfänger sowohl bei der Symbolfehlerrate als auch beim normalisierten mittleren quadratischen Fehler des geschätzten Kanal- und Phasenrauschmatrizen eine bessere Leistung im Vergleich zum Stand der Technik erzielt. Der zweite Teil dieser Arbeit befasst sich mit der Anwendung der Tensormodellierung zur Reduzierung des Kontrollsignalisierungsoverhead in zukünftigen drahtlosen Systemen, die durch intelligent reconfigurable surfaces (IRSs) unterstützt werden. Zu diesem Zweck schlagen wir eine Annäherung an die nahezu optimalen IRS-Phasenverschiebungen vor, die sonst einen prohibitiv hohen Kommunikationsoverhead auf den BS-IRS-Kontrollverbindungen verursachen würde. Die Hauptidee besteht darin, den optimalen Phasenvektor des IRSs, der Hunderte oder Tausende von Elementen haben kann, durch ein Tensormodell mit niedrigem Rang darzustellen. Dies wird erreicht durch Faktorisierung einer tensorisierten Version des IRS-Phasenverschiebungsvektors, wobei jede Komponente als Kronecker-Produkt einer vordefinierten Anzahl von Faktoren mit kleinerer Größe modelliert wird, die durch Tensor Zerlegungsalgorithmen erhaltet werden können. Wir zeigen, dass die vorgeschlagenen Low-Rank-Modelle die Rückkopplungsanforderungen für die BS-IRS-Kontrollverbindungen drastisch reduzieren. Die Simulationsergebnisse zeigen, dass die vorgeschlagene Methode besonders in Szenarien mit einer starken Sichtverbindung attraktiv sind. In diesem Fall wird fast die gleiche spektrale Effizienz erreicht wie in den Fällen mit nahezu optimalen Phasenverschiebungen, jedoch mit einem drastisch reduzierten Kommunikations-Overhead.The use of tensor algebra techniques in signal processing has been growing over the last two decades. Applications like image processing, biomedical signal processing, radar, machine/deep learning, and communications in general, largely employ tensor-based techniques for recovery, estimating, and classifying signals. One of the main reasons for using tensor signal processing is the exploitation of the multidimensional structure of signals, while benefiting from the uniqueness properties of tensor decomposition. For example, in wireless communications, the signals can have several “dimensions", e.g., space, time, frequency, polarization, beamspace, etc. This thesis is divided into two parts, first, in the application of a tensor-based algorithm in multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems with the presence of phase-noise impairments. In this first part, we propose a two-stage tensor-based receiver for a joint channel, phase-noise, and data estimation in MIMO-OFDM systems. In the first stage, we show that the received signal at the pilot subcarriers can be modeled as a third-order PARAFAC tensor. Based on this model, we propose two algorithms for channel and phase-noise estimation at the pilot subcarriers. The second stage consists of data estimation, for which we propose a ZF receiver that capitalizes on the tensor structure of the received signal at the data subcarriers using the proposed SKP operator. Numerical simulations show that the proposed receivers achieves an improved performance compared to the state-of-art receivers in terms of symbol error rate (SER) and normalized mean square error (NMSE) of the estimated channel and phase-noise matrices. The second part of this thesis focuses on the application of tensor modeling to reduce the control signaling overhead in future wireless systems aided by intelligent reconfigurable surfaces (IRS). To this end, we propose a low-rank approximation of the near-optimal IRS phase-shifts, which would incur prohibitively high communication overhead on the BS-IRS controller links. The key idea is to represent the potentially large IRS phase-shift vector using a low-rank tensor model. This is achieved by factorizing a tensorized version of the IRS phase-shift vector, where each component is modeled as the Kronecker product of a predefined number of factors of smaller sizes, which can be obtained via tensor decomposition algorithms. We show that the proposed low-rank models drastically reduce the required feedback requirements associated with the BS-IRS control links. Simulation results indicate that the proposed method is especially attractive in scenarios with a strong line of sight component, in which case nearly the same spectral efficiency is reached as in the cases with near-optimal phase-shifts, but with a drastically reduced communication overhead

    A Survey of Beam Management for mmWave and THz Communications Towards 6G

    Full text link
    Communication in millimeter wave (mmWave) and even terahertz (THz) frequency bands is ushering in a new era of wireless communications. Beam management, namely initial access and beam tracking, has been recognized as an essential technique to ensure robust mmWave/THz communications, especially for mobile scenarios. However, narrow beams at higher carrier frequency lead to huge beam measurement overhead, which has a negative impact on beam acquisition and tracking. In addition, the beam management process is further complicated by the fluctuation of mmWave/THz channels, the random movement patterns of users, and the dynamic changes in the environment. For mmWave and THz communications toward 6G, we have witnessed a substantial increase in research and industrial attention on artificial intelligence (AI), reconfigurable intelligent surface (RIS), and integrated sensing and communications (ISAC). The introduction of these enabling technologies presents both open opportunities and unique challenges for beam management. In this paper, we present a comprehensive survey on mmWave and THz beam management. Further, we give some insights on technical challenges and future research directions in this promising area.Comment: accepted by IEEE Communications Surveys & Tutorial

    Filter bank multicarrier waveforms for future wireless networks: interference analysis and cancellation

    Get PDF
    Billions of devices are expected to connect to future wireless networks. Although conventional orthogonal division multiplexing (OFDM) has proven to be an effective physical layer waveform for enhanced mobile broadband (eMBB), it experiences various challenges. For example, OFDM experiences high out-of-band (OOB) emission caused by the use of rectangular filters. This causes interference to adjacent frequency bands and make OFDM highly sensitive to asynchronous transmissions. Filter bank multicarrier (FBMC) systems have emerged as a promising waveform candidate to satisfy the requirements of future wireless networks. They employ prototype filters with faster spectral decay, which results in better OOB emission and spectral efficiency compared to OFDM. Also, FBMC systems support asynchronous transmissions, which can reduce the signaling overhead in future applications. However, in FBMC systems there is no subcarriers orthogonality, resulting in intrinsic interference. The purpose of this thesis is to address the intrinsic interference problem to make FBMC a viable option for practical application in future wireless networks. In this thesis, iterative interference cancellation (IIC) receivers are developed for FBMC systems to improve their performance and applicability in future applications. First, an IIC receiver is studied for uncoded FBMC with quadrature amplitude modulation (FBMC-QAM) systems. To improve the decoding performance, bit-interleaved coded modulation with iterative decoding (BICM-ID) is incorporated into the IIC receiver design and the technique of extrinsic information transfer (EXIT) chart analysis is used to track the convergence of the IIC-based BICM-ID receiver. Furthermore, the energy harvesting capabilities of FBMC is considered. Particularly, FBMC is integrated with a simultaneous wireless information and power transfer (SWIPT) technique. Finally, an interference cancellation receiver is investigated for asynchronous FBMC systems in both single and mixed numerology systems. Analytical expressions are derived for the various schemes and simulations results are shown to verify the performance of the different FBMC systems
    corecore