1,981 research outputs found

    Multiple-input Multiple-output Radar Waveform Design Methodologies

    Get PDF
    Multiple-input multiple-output (MIMO) radar is currently an active area of research. The MIMO techniques have been well studied for communications applications where they offer benefits in multipath fading environments. Partly inspired by these benefits, MIMO techniques are applied to radar and they offer a number of advantages such as improved resolution and sensitivity. It allows the use of transmitting multiple simultaneous waveforms from different phase centers. The employed radar waveform plays a key role in determining the accuracy, resolution, and ambiguity in performing tasks such as determining the target range, velocity, shape, and so on. The excellent performance promised by MIMO radar can be unleashed only by proper waveform design. In this article, a survey on MIMO radar waveform design is presented. The goal of this paper is to elucidate the key concepts of waveform design to encourage further research on this emerging technology.Defence Science Journal, 2013, 63(4), pp.393-401, DOI:http://dx.doi.org/10.14429/dsj.63.253

    Joint Design of Overlaid Communication Systems and Pulsed Radars

    Full text link
    The focus of this paper is on co-existence between a communication system and a pulsed radar sharing the same bandwidth. Based on the fact that the interference generated by the radar onto the communication receiver is intermittent and depends on the density of scattering objects (such as, e.g., targets), we first show that the communication system is equivalent to a set of independent parallel channels, whereby pre-coding on each channel can be introduced as a new degree of freedom. We introduce a new figure of merit, named the {\em compound rate}, which is a convex combination of rates with and without interference, to be optimized under constraints concerning the signal-to-interference-plus-noise ratio (including {\em signal-dependent} interference due to clutter) experienced by the radar and obviously the powers emitted by the two systems: the degrees of freedom are the radar waveform and the afore-mentioned encoding matrix for the communication symbols. We provide closed-form solutions for the optimum transmit policies for both systems under two basic models for the scattering produced by the radar onto the communication receiver, and account for possible correlation of the signal-independent fraction of the interference impinging on the radar. We also discuss the region of the achievable communication rates with and without interference. A thorough performance assessment shows the potentials and the limitations of the proposed co-existing architecture

    Novel Power Control Scheme for Target Tracking in Radar Network with Passive Cooperation

    Get PDF
    Distributed radar network systems (DRNS) have been shown to provide significant performance improvement. With the recent development, radar network has become an attractive platform for target tracking. In practice, the netted radars in DRNS are supposed to maximize their transmitting power to achieve better target tracking performance, which may be in contradiction with low probability of intercept (LPI). This paper investigates the problem of adaptive resource scheduling based on time difference of arrival (TDOA) cooperation for target tracking by DRNS consisting of a dedicated radar netting station and multiple netted radars. Firstly, the standard interacting multiple model (IMM) algorithm incorporating extended Kalman filter (EKF) is improved by modifying the Markov transition probability with current measurements. Then, a novel resource scheduling strategy based on TDOA cooperation is presented, in which the LPI perfor¬mance for target tracking in DRNS is improved by optimiz¬ing the radar revisit interval and the transmitted power for a predefined target tracking accuracy. The comparison of the predictive error covariance matrix and the expected error covariance matrix is utilized to control the radar netting station under intermittent-working state with TDOA cooperation. Due to the lack of analytical closed-form expression for receiver operating characteristics (ROC), we utilize several popular information-theoretic criteria, namely, Bhattacharyya distance, Kullback-Leibler (KL) divergence, J-divergence, and mutual information (MI) as the metrics for target detection performance in target tracking process. The resulting optimization problems which are associated with different information-theoretic criteria are unified under a common framework. The non¬linear programming (NP) based genetic algorithm (GA) or else known as NPGA is employed to encounter with the highly nonconvex and nonlinear optimization problems in the framework. Numerical results demonstrate that the proposed algorithm not only has excellent target tracking accuracy, but also has better LPI performance comparing to other methods

    Cloud-aided wireless systems: communications and radar applications

    Get PDF
    This dissertation focuses on cloud-assisted radio technologies for communication, including mobile cloud computing and Cloud Radio Access Network (C-RAN), and for radar systems. This dissertation first concentrates on cloud-aided communications. Mobile cloud computing, which allows mobile users to run computationally heavy applications on battery limited devices, such as cell phones, is considered initially. Mobile cloud computing enables the offloading of computation-intensive applications from a mobile device to a cloud processor via a wireless interface. The interplay between offloading decisions at the application layer and physical-layer parameters, which determine the energy and latency associated with the mobile-cloud communication, motivates the inter-layer optimization of fine-grained task offloading across both layers. This problem is modeled by using application call graphs, and the joint optimization of application-layer and physical-layer parameters is carried out via a message passing algorithm by minimizing the total energy expenditure of the mobile user. The concept of cloud radio is also being considered for the development of two cellular architectures known as Distributed RAN (D-RAN) and C-RAN, whereby the baseband processing of base stations is carried out in a remote Baseband Processing Unit (BBU). These architectures can reduce the capital and operating expenses of dense deployments at the cost of increasing the communication latency. The effect of this latency, which is due to the fronthaul transmission between the Remote Radio Head (RRH) and the BBU, is then studied for implementation of Hybrid Automatic Repeat Request (HARQ) protocols. Specifically, two novel solutions are proposed, which are based on the control-data separation architecture. The trade-offs involving resources such as the number of transmitting and receiving antennas, transmission power and the blocklength of the transmitted codeword, and the performance of the proposed solutions is investigated in analysis and numerical results. The detection of a target in radar systems requires processing of the signal that is received by the sensors. Similar to cloud radio access networks in communications, this processing of the signals can be carried out in a remote Fusion Center (FC) that is connected to all sensors via limited-capacity fronthaul links. The last part of this dissertation is dedicated to exploring the application of cloud radio to radar systems. In particular, the problem of maximizing the detection performance at the FC jointly over the code vector used by the transmitting antenna and over the statistics of the noise introduced by quantization at the sensors for fronthaul transmission is investigated by adopting the information-theoretic criterion of the Bhattacharyya distance and information-theoretic bounds on the quantization rate

    Power minimization based robust OFDM radar waveform design for radar and communication systems in coexistence.

    Get PDF
    This paper considers the problem of power minimization based robust orthogonal frequency division multiplexing (OFDM) radar waveform design, in which the radar coexists with a communication system in the same frequency band. Recognizing that the precise characteristics of target spectra are impossible to capture in practice, it is assumed that the target spectra lie in uncertainty sets bounded by known upper and lower bounds. Based on this uncertainty model, three different power minimization based robust radar waveform design criteria are proposed to minimize the worst-case radar transmitted power by optimizing the OFDM radar waveform, which are constrained by a specified mutual information (MI) requirement for target characterization and a minimum capacity threshold for communication system. These criteria differ in the way the communication signals scattered off the target are considered: (i) as useful energy, (ii) as interference or (iii) ignored altogether at the radar receiver. Numerical simulations demonstrate that the radar transmitted power can be efficiently reduced by exploiting the communication signals scattered off the target at the radar receiver. It is also shown that the robust waveforms bound the worst-case power-saving performance of radar system for any target spectra in the uncertainty sets
    corecore