48 research outputs found

    Program transformation for development, verification, and synthesis of programs

    Get PDF
    This paper briefly describes the use of the program transformation methodology for the development of correct and efficient programs. In particular, we will refer to the case of constraint logic programs and, through some examples, we will show how by program transformation, one can improve, synthesize, and verify programs

    Program Transformation for Development, Verification, and Synthesis of Software

    Get PDF
    In this paper we briefly describe the use of the program transformation methodology for the development of correct and efficient programs. We will consider, in particular, the case of the transformation and the development of constraint logic programs

    Automatic Termination Analysis of Programs Containing Arithmetic Predicates

    Full text link
    For logic programs with arithmetic predicates, showing termination is not easy, since the usual order for the integers is not well-founded. A new method, easily incorporated in the TermiLog system for automatic termination analysis, is presented for showing termination in this case. The method consists of the following steps: First, a finite abstract domain for representing the range of integers is deduced automatically. Based on this abstraction, abstract interpretation is applied to the program. The result is a finite number of atoms abstracting answers to queries which are used to extend the technique of query-mapping pairs. For each query-mapping pair that is potentially non-terminating, a bounded (integer-valued) termination function is guessed. If traversing the pair decreases the value of the termination function, then termination is established. Simple functions often suffice for each query-mapping pair, and that gives our approach an edge over the classical approach of using a single termination function for all loops, which must inevitably be more complicated and harder to guess automatically. It is worth noting that the termination of McCarthy's 91 function can be shown automatically using our method. In summary, the proposed approach is based on combining a finite abstraction of the integers with the technique of the query-mapping pairs, and is essentially capable of dividing a termination proof into several cases, such that a simple termination function suffices for each case. Consequently, the whole process of proving termination can be done automatically in the framework of TermiLog and similar systems.Comment: Appeared also in Electronic Notes in Computer Science vol. 3

    Automatic generation of simplified weakest preconditions for integrity constraint verification

    Get PDF
    Given a constraint cc assumed to hold on a database BB and an update uu to be performed on BB, we address the following question: will cc still hold after uu is performed? When BB is a relational database, we define a confluent terminating rewriting system which, starting from cc and uu, automatically derives a simplified weakest precondition wp(c,u)wp(c,u) such that, whenever BB satisfies wp(c,u)wp(c,u), then the updated database u(B)u(B) will satisfy cc, and moreover wp(c,u)wp(c,u) is simplified in the sense that its computation depends only upon the instances of cc that may be modified by the update. We then extend the definition of a simplified wp(c,u)wp(c,u) to the case of deductive databases; we prove it using fixpoint induction

    Deciding Full Branching Time Logic by Program Transformation

    Get PDF
    We present a method based on logic program transformation, for verifying Computation Tree Logic (CTL*) properties of finite state reactive systems. The finite state systems and the CTL* properties we want to verify, are encoded as logic programs on infinite lists. Our verification method consists of two steps. In the first step we transform the logic program that encodes the given system and the given property, into a monadic Ļ‰ -program, that is, a stratified program defining nullary or unary predicates on infinite lists. This transformation is performed by applying unfold/fold rules that preserve the perfect model of the initial program. In the second step we verify the property of interest by using a proof method for monadic Ļ‰-program

    Transformational Verification of Linear Temporal Logic

    Get PDF
    We present a new method for verifying Linear Temporal Logic (LTL) properties of finite state reactive systems based on logic programming and program transformation. We encode a finite state system and an LTL property which we want to verify as a logic program on infinite lists. Then we apply a verification method consisting of two steps. In the first step we transform the logic program that encodes the given system and the given property into a new program belonging to the class of the so-called linear monadic !-programs (which are stratified, linear recursive programs defining nullary predicates or unary predicates on infinite lists). This transformation is performed by applying rules that preserve correctness. In the second step we verify the property of interest by using suitable proof rules for linear monadic !-programs. These proof rules can be encoded as a logic program which always terminates, if evaluated by using tabled resolution. Although our method uses standard program transformation techniques, the computational complexity of the derived verification algorithm is essentially the same as the one of the Lichtenstein-Pnueli algorithm [9], which uses sophisticated ad-hoc techniques

    Off-line Constraint Propagation for Efficient HPSG Processing

    Full text link
    We investigate the use of a technique developed in the constraint programming community called constraint propagation to automatically make a HPSG theory more specific at those places where linguistically motivated underspecification would lead to inefficient processing. We discuss two concrete HPSG examples showing how off-line constraint propagation helps improve processing efficiency.Comment: 10 pages, uuencoded gzipped Postscrip
    corecore