4,019 research outputs found

    Design of a prototype underwater research platform for swarm robotics

    Full text link
    To perform under water robotic research requires specialized equipment. A few pieces of electronics atop a set of wheels are not going to cut it. An underwater research platform must be waterproof, reliable, robust, recoverable and easy to maintain. It must also be able to move in 3 dimensions. Also it must be able to navigate and avoid obstacles. Further if this platform is to be part of a swarm of like platforms then it must be cost effective and relatively small. To purchase such a platform can be very expensive. However, for shallow water, a suitable platform can be built from mostly off the shelf items at little cost. This article describes the design of one such underwater robot including various sensors and communications systems that allow for swarm robotics. Whilst the robotic platform performs well, to explore what many of them would do, that is more than are available, simulation is required. This article continues to study how best to simulate these robots for a swarm, or system of systems, approach

    Towards autonomous localization and mapping of AUVs: a survey

    Get PDF
    Purpose The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. Design/methodology/approach The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms. Findings As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. Research limitations/implications This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification. Practical implications The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand. Social implications There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs. Originality/value The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles

    Cooperative and Multimodal Capabilities Enhancement in the CERNTAURO Human–Robot Interface for Hazardous and Underwater Scenarios

    Get PDF
    The use of remote robotic systems for inspection and maintenance in hazardous environments is a priority for all tasks potentially dangerous for humans. However, currently available robotic systems lack that level of usability which would allow inexperienced operators to accomplish complex tasks. Moreover, the task’s complexity increases drastically when a single operator is required to control multiple remote agents (for example, when picking up and transporting big objects). In this paper, a system allowing an operator to prepare and configure cooperative behaviours for multiple remote agents is presented. The system is part of a human–robot interface that was designed at CERN, the European Center for Nuclear Research, to perform remote interventions in its particle accelerator complex, as part of the CERNTAURO project. In this paper, the modalities of interaction with the remote robots are presented in detail. The multimodal user interface enables the user to activate assisted cooperative behaviours according to a mission plan. The multi-robot interface has been validated at CERN in its Large Hadron Collider (LHC) mockup using a team of two mobile robotic platforms, each one equipped with a robotic manipulator. Moreover, great similarities were identified between the CERNTAURO and the TWINBOT projects, which aim to create usable robotic systems for underwater manipulations. Therefore, the cooperative behaviours were validated within a multi-robot pipe transport scenario in a simulated underwater environment, experimenting more advanced vision techniques. The cooperative teleoperation can be coupled with additional assisted tools such as vision-based tracking and grasping determination of metallic objects, and communication protocols design. The results show that the cooperative behaviours enable a single user to face a robotic intervention with more than one robot in a safer way

    An Autonomous Surface Vehicle for Long Term Operations

    Full text link
    Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper.Comment: In proceedings of MTS/IEEE OCEANS, 2018, Charlesto

    TRIDENT: A Framework for Autonomous Underwater Intervention

    Get PDF
    TRIDENT is a STREP project recently approved by the European Commission whose proposal was submitted to the ICT call 4 of the 7th Framework Program. The project proposes a new methodology for multipurpose underwater intervention tasks. To that end, a cooperative team formed with an Autonomous Surface Craft and an Intervention Autonomous Underwater Vehicle will be used. The proposed methodology splits the mission in two stages mainly devoted to survey and intervention tasks, respectively. The project brings together research skills specific to the marine environments in navigation and mapping for underwater robotics, multi-sensory perception, intelligent control architectures, vehiclemanipulator systems and dexterous manipulation. TRIDENT is a three years project and its start is planned by first months of 2010.This work is partially supported by the European Commission through FP7-ICT2009-248497 projec

    Intervention AUVs: The Next Challenge

    Get PDF
    While commercially available AUVs are routinely used in survey missions, a new set of applications exist which clearly demand intervention capabilities. The maintenance of: permanent underwater observatories, submerged oil wells, cabled sensor networks, pipes and the deployment and recovery of benthic stations are a few of them. These tasks are addressed nowadays using manned submersibles or work-class ROVs, equipped with teleoperated arms under human supervision. Although researchers have recently opened the door to future I-AUVs, a long path is still necessary to achieve autonomous underwater interventions. This paper reviews the evolution timeline in autonomous underwater intervention systems. Milestone projects in the state of the art are reviewed, highlighting their principal contributions to the field. To the best of the authors knowledge, only three vehicles have demonstrated some autonomous intervention capabilities so far: ALIVE, SAUVIM and GIRONA 500, being the last one the lightest one. In this paper GIRONA 500 I-AUV is presented and its software architecture discussed. Recent results in different scenarios are reported: 1) Valve turning and connector plugging/unplugging while docked to a subsea panel, 2) Free floating valve turning using learning by demonstration, and 3) Multipurpose free-floating object recovery. The paper ends discussing the lessons learned so far
    • …
    corecore