288 research outputs found

    Benchmarking Deep Reinforcement Learning for Continuous Control

    Get PDF
    Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuous control due to the lack of a commonly adopted benchmark. In this work, we present a benchmark suite of continuous control tasks, including classic tasks like cart-pole swing-up, tasks with very high state and action dimensionality such as 3D humanoid locomotion, tasks with partial observations, and tasks with hierarchical structure. We report novel findings based on the systematic evaluation of a range of implemented reinforcement learning algorithms. Both the benchmark and reference implementations are released at https://github.com/rllab/rllab in order to facilitate experimental reproducibility and to encourage adoption by other researchers.Comment: 14 pages, ICML 201

    ๋™์˜์ƒ ์† ์‚ฌ๋žŒ ๋™์ž‘์˜ ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์žฌ๊ตฌ์„ฑ ๋ฐ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021. 2. ์ด์ œํฌ.In computer graphics, simulating and analyzing human movement have been interesting research topics started since the 1960s. Still, simulating realistic human movements in a 3D virtual world is a challenging task in computer graphics. In general, motion capture techniques have been used. Although the motion capture data guarantees realistic result and high-quality data, there is lots of equipment required to capture motion, and the process is complicated. Recently, 3D human pose estimation techniques from the 2D video are remarkably developed. Researchers in computer graphics and computer vision have attempted to reconstruct the various human motions from video data. However, existing methods can not robustly estimate dynamic actions and not work on videos filmed with a moving camera. In this thesis, we propose methods to reconstruct dynamic human motions from in-the-wild videos and to control the motions. First, we developed a framework to reconstruct motion from videos using prior physics knowledge. For dynamic motions such as backspin, the poses estimated by a state-of-the-art method are incomplete and include unreliable root trajectory or lack intermediate poses. We designed a reward function using poses and hints extracted from videos in the deep reinforcement learning controller and learned a policy to simultaneously reconstruct motion and control a virtual character. Second, we simulated figure skating movements in video. Skating sequences consist of fast and dynamic movements on ice, hindering the acquisition of motion data. Thus, we extracted 3D key poses from a video to then successfully replicate several figure skating movements using trajectory optimization and a deep reinforcement learning controller. Third, we devised an algorithm for gait analysis through video of patients with movement disorders. After acquiring the patients joint positions from 2D video processed by a deep learning network, the 3D absolute coordinates were estimated, and gait parameters such as gait velocity, cadence, and step length were calculated. Additionally, we analyzed the optimization criteria of human walking by using a 3D musculoskeletal humanoid model and physics-based simulation. For two criteria, namely, the minimization of muscle activation and joint torque, we compared simulation data with real human data for analysis. To demonstrate the effectiveness of the first two research topics, we verified the reconstruction of dynamic human motions from 2D videos using physics-based simulations. For the last two research topics, we evaluated our results with real human data.์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค์—์„œ ์ธ๊ฐ„์˜ ์›€์ง์ž„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๋ถ„์„์€ 1960 ๋…„๋Œ€๋ถ€ํ„ฐ ๋‹ค๋ฃจ์–ด์ง„ ํฅ๋ฏธ๋กœ์šด ์—ฐ๊ตฌ ์ฃผ์ œ์ด๋‹ค. ๋ช‡ ์‹ญ๋…„ ๋™์•ˆ ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด ์™”์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , 3์ฐจ์› ๊ฐ€์ƒ ๊ณต๊ฐ„ ์ƒ์—์„œ ์‚ฌ์‹ค์ ์ธ ์ธ๊ฐ„์˜ ์›€์ง์ž„์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ต๊ณ  ๋„์ „์ ์ธ ์ฃผ์ œ์ด๋‹ค. ๊ทธ๋™์•ˆ ์‚ฌ๋žŒ์˜ ์›€์ง์ž„ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ ๋ชจ์…˜ ์บก์ณ ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค. ๋ชจ์…˜ ์บก์ฒ˜ ๋ฐ์ดํ„ฐ๋Š” ์‚ฌ์‹ค์ ์ธ ๊ฒฐ๊ณผ์™€ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์žฅํ•˜์ง€๋งŒ ๋ชจ์…˜ ์บก์ณ๋ฅผ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•„์š”ํ•œ ์žฅ๋น„๋“ค์ด ๋งŽ๊ณ , ๊ทธ ๊ณผ์ •์ด ๋ณต์žกํ•˜๋‹ค. ์ตœ๊ทผ์— 2์ฐจ์› ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ์‚ฌ๋žŒ์˜ 3์ฐจ์› ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ์—ฐ๊ตฌ๋“ค์ด ๊ด„๋ชฉํ•  ๋งŒํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค์™€ ์ปดํ“จํ„ฐ ๋น„์ ผ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ์ž๋“ค์€ ๋น„๋””์˜ค ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋‹ค์–‘ํ•œ ์ธ๊ฐ„ ๋™์ž‘์„ ์žฌ๊ตฌ์„ฑํ•˜๋ ค๋Š” ์‹œ๋„๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋น ๋ฅด๊ณ  ๋‹ค์ด๋‚˜๋ฏนํ•œ ๋™์ž‘๋“ค์€ ์•ˆ์ •์ ์œผ๋กœ ์ถ”์ •ํ•˜์ง€ ๋ชปํ•˜๋ฉฐ ์›€์ง์ด๋Š” ์นด๋ฉ”๋ผ๋กœ ์ดฌ์˜ํ•œ ๋น„๋””์˜ค์— ๋Œ€ํ•ด์„œ๋Š” ์ž‘๋™ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ ์—ญ๋™์ ์ธ ์ธ๊ฐ„ ๋™์ž‘์„ ์žฌ๊ตฌ์„ฑํ•˜๊ณ  ๋™์ž‘์„ ์ œ์–ดํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ์‚ฌ์ „ ๋ฌผ๋ฆฌํ•™ ์ง€์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋น„๋””์˜ค์—์„œ ๋ชจ์…˜์„ ์žฌ๊ตฌ์„ฑํ•˜๋Š” ํ”„๋ ˆ์ž„ ์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ณต์ค‘์ œ๋น„์™€ ๊ฐ™์€ ์—ญ๋™์ ์ธ ๋™์ž‘๋“ค์— ๋Œ€ํ•ด์„œ ์ตœ์‹  ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•์„ ๋™์›ํ•˜์—ฌ ์ถ”์ •๋œ ์ž์„ธ๋“ค์€ ์บ๋ฆญํ„ฐ์˜ ๊ถค์ ์„ ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜ ์ค‘๊ฐ„์— ์ž์„ธ ์ถ”์ •์— ์‹คํŒจํ•˜๋Š” ๋“ฑ ๋ถˆ์™„์ „ํ•˜๋‹ค. ์šฐ๋ฆฌ๋Š” ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต ์ œ์–ด๊ธฐ์—์„œ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœํ•œ ํฌ์ฆˆ์™€ ํžŒํŠธ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ๋ชจ์…˜ ์žฌ๊ตฌ์„ฑ๊ณผ ์บ๋ฆญํ„ฐ ์ œ์–ด๋ฅผ ๋™์‹œ์— ํ•˜๋Š” ์ •์ฑ…์„ ํ•™์Šตํ•˜์˜€๋‹ค. ๋‘˜ ์งธ, ๋น„๋””์˜ค์—์„œ ํ”ผ๊ฒจ ์Šค์ผ€์ดํŒ… ๊ธฐ์ˆ ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ๋‹ค. ํ”ผ๊ฒจ ์Šค์ผ€์ดํŒ… ๊ธฐ์ˆ ๋“ค์€ ๋น™์ƒ์—์„œ ๋น ๋ฅด๊ณ  ์—ญ๋™์ ์ธ ์›€์ง์ž„์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด ๋ชจ์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๊ธฐ๊ฐ€ ๊นŒ๋‹ค๋กญ๋‹ค. ๋น„๋””์˜ค์—์„œ 3์ฐจ์› ํ‚ค ํฌ์ฆˆ๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๊ถค์  ์ตœ์ ํ™” ๋ฐ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต ์ œ์–ด๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ”ผ๊ฒจ ์Šค์ผ€์ดํŒ… ๊ธฐ์ˆ ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์‹œ์—ฐํ•œ๋‹ค. ์…‹ ์งธ, ํŒŒํ‚จ์Šจ ๋ณ‘์ด๋‚˜ ๋‡Œ์„ฑ๋งˆ๋น„์™€ ๊ฐ™์€ ์งˆ๋ณ‘์œผ๋กœ ์ธํ•˜์—ฌ ์›€์ง์ž„ ์žฅ์• ๊ฐ€ ์žˆ๋Š” ํ™˜์ž์˜ ๋ณดํ–‰์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. 2์ฐจ์› ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ ๋”ฅ๋Ÿฌ๋‹์„ ์‚ฌ์šฉํ•œ ์ž์„ธ ์ถ”์ •๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ํ™˜์ž์˜ ๊ด€์ ˆ ์œ„์น˜๋ฅผ ์–ป์–ด๋‚ธ ๋‹ค์Œ, 3์ฐจ์› ์ ˆ๋Œ€ ์ขŒํ‘œ๋ฅผ ์–ป์–ด๋‚ด์–ด ์ด๋กœ๋ถ€ํ„ฐ ๋ณดํญ, ๋ณดํ–‰ ์†๋„์™€ ๊ฐ™์€ ๋ณดํ–‰ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ทผ๊ณจ๊ฒฉ ์ธ์ฒด ๋ชจ๋ธ๊ณผ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ์ธ๊ฐ„ ๋ณดํ–‰์˜ ์ตœ์ ํ™” ๊ธฐ์ค€์— ๋Œ€ํ•ด ํƒ๊ตฌํ•œ๋‹ค. ๊ทผ์œก ํ™œ์„ฑ๋„ ์ตœ์†Œํ™”์™€ ๊ด€์ ˆ ๋Œ๋ฆผํž˜ ์ตœ์†Œํ™”, ๋‘ ๊ฐ€์ง€ ๊ธฐ์ค€์— ๋Œ€ํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ ํ›„, ์‹ค์ œ ์‚ฌ๋žŒ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜์—ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ์ฒ˜์Œ ๋‘ ๊ฐœ์˜ ์—ฐ๊ตฌ ์ฃผ์ œ์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•ด, ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ฐจ์› ๋น„๋””์˜ค๋กœ๋ถ€ํ„ฐ ์žฌ๊ตฌ์„ฑํ•œ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์—ญ๋™์ ์ธ ์‚ฌ๋žŒ์˜ ๋™์ž‘๋“ค์„ ์žฌํ˜„ํ•œ๋‹ค. ๋‚˜์ค‘ ๋‘ ๊ฐœ์˜ ์—ฐ๊ตฌ ์ฃผ์ œ๋Š” ์‚ฌ๋žŒ ๋ฐ์ดํ„ฐ์™€์˜ ๋น„๊ต ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ํ‰๊ฐ€ํ•œ๋‹ค.1 Introduction 1 2 Background 9 2.1 Pose Estimation from 2D Video . . . . . . . . . . . . . . . . . . . . 9 2.2 Motion Reconstruction from Monocular Video . . . . . . . . . . . . 10 2.3 Physics-Based Character Simulation and Control . . . . . . . . . . . 12 2.4 Motion Reconstruction Leveraging Physics . . . . . . . . . . . . . . 13 2.5 Human Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Figure Skating Simulation . . . . . . . . . . . . . . . . . . . 16 2.6 Objective Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Optimization for Human Movement Simulation . . . . . . . . . . . . 17 2.7.1 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Human Dynamics from Monocular Video with Dynamic Camera Movements 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Pose and Contact Estimation . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Learning Human Dynamics . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.3 Scene Estimator . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Video Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Comparison of Contact Estimators . . . . . . . . . . . . . . . 33 3.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Figure Skating Simulation from Video 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Skating Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Non-holonomic Constraints . . . . . . . . . . . . . . . . . . 46 4.3.2 Relaxation of Non-holonomic Constraints . . . . . . . . . . . 47 4.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Trajectory Optimization and Control . . . . . . . . . . . . . . . . . . 50 4.5.1 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . 50 4.5.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Gait Analysis Using Pose Estimation Algorithm with 2D-video of Patients 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.1 Patients and video recording . . . . . . . . . . . . . . . . . . 63 5.2.2 Standard protocol approvals, registrations, and patient consents 66 5.2.3 3D Pose estimation from 2D video . . . . . . . . . . . . . . . 66 5.2.4 Gait parameter estimation . . . . . . . . . . . . . . . . . . . 67 5.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.1 Validation of video-based analysis of the gait . . . . . . . . . 68 5.3.2 gait analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.1 Validation with the conventional sensor-based method . . . . 75 5.4.2 Analysis of gait and turning in TUG . . . . . . . . . . . . . . 75 5.4.3 Correlation with clinical parameters . . . . . . . . . . . . . . 76 5.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Control Optimization of Human Walking 80 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.1 Musculoskeletal model . . . . . . . . . . . . . . . . . . . . . 82 6.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.3 Control co-activation level . . . . . . . . . . . . . . . . . . . 83 6.2.4 Push-recovery experiment . . . . . . . . . . . . . . . . . . . 84 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Conclusion 90 7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Docto

    Push recovery with stepping strategy based on time-projection control

    Get PDF
    In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed of three pendulums to simulate swing and torso dynamics. Based on 3LP equations, we formulate discrete LQR controllers and use a particular time-projection method to adjust the next footstep location on-line during the motion continuously. This adjustment, which is found based on both pelvis and swing foot tracking errors, naturally takes the swing dynamics into account. Suggested adjustments are added to the Cartesian 3LP gaits and converted to joint-space trajectories through inverse kinematics. Fixed and adaptive foot lift strategies also ensure enough ground clearance in perturbed walking conditions. The proposed structure is robust, yet uses very simple state estimation and basic position tracking. We rely on the physical series elastic actuators to absorb impacts while introducing simple laws to compensate their tracking bias. Extensive experiments demonstrate the functionality of different control blocks and prove the effectiveness of time-projection in extreme push recovery scenarios. We also show self-produced and emergent walking gaits when the robot is subject to continuous dragging forces. These gaits feature dynamic walking robustness due to relatively soft springs in the ankles and avoiding any Zero Moment Point (ZMP) control in our proposed architecture.Comment: 20 pages journal pape

    Learning When to Switch: Composing Controllers to Traverse a Sequence of Terrain Artifacts

    Full text link
    Legged robots often use separate control policiesthat are highly engineered for traversing difficult terrain suchas stairs, gaps, and steps, where switching between policies isonly possible when the robot is in a region that is commonto adjacent controllers. Deep Reinforcement Learning (DRL)is a promising alternative to hand-crafted control design,though typically requires the full set of test conditions to beknown before training. DRL policies can result in complex(often unrealistic) behaviours that have few or no overlappingregions between adjacent policies, making it difficult to switchbehaviours. In this work we develop multiple DRL policieswith Curriculum Learning (CL), each that can traverse asingle respective terrain condition, while ensuring an overlapbetween policies. We then train a network for each destinationpolicy that estimates the likelihood of successfully switchingfrom any other policy. We evaluate our switching methodon a previously unseen combination of terrain artifacts andshow that it performs better than heuristic methods. Whileour method is trained on individual terrain types, it performscomparably to a Deep Q Network trained on the full set ofterrain conditions. This approach allows the development ofseparate policies in constrained conditions with embedded priorknowledge about each behaviour, that is scalable to any numberof behaviours, and prepares DRL methods for applications inthe real worl

    FC Portugal 3D Simulation Team: Team Description Paper 2020

    Full text link
    The FC Portugal 3D team is developed upon the structure of our previous Simulation league 2D/3D teams and our standard platform league team. Our research concerning the robot low-level skills is focused on developing behaviors that may be applied on real robots with minimal adaptation using model-based approaches. Our research on high-level soccer coordination methodologies and team playing is mainly focused on the adaptation of previously developed methodologies from our 2D soccer teams to the 3D humanoid environment and on creating new coordination methodologies based on the previously developed ones. The research-oriented development of our team has been pushing it to be one of the most competitive over the years (World champion in 2000 and Coach Champion in 2002, European champion in 2000 and 2001, Coach 2nd place in 2003 and 2004, European champion in Rescue Simulation and Simulation 3D in 2006, World Champion in Simulation 3D in Bremen 2006 and European champion in 2007, 2012, 2013, 2014 and 2015). This paper describes some of the main innovations of our 3D simulation league team during the last years. A new generic framework for reinforcement learning tasks has also been developed. The current research is focused on improving the above-mentioned framework by developing new learning algorithms to optimize low-level skills, such as running and sprinting. We are also trying to increase student contact by providing reinforcement learning assignments to be completed using our new framework, which exposes a simple interface without sharing low-level implementation details
    • โ€ฆ
    corecore