20 research outputs found

    Understanding predictability and exploration in human mobility

    Get PDF
    Predictive models for human mobility have important applications in many fields including traffic control, ubiquitous computing, and contextual advertisement. The predictive performance of models in literature varies quite broadly, from over 90% to under 40%. In this work we study which underlying factors - in terms of modeling approaches and spatio-temporal characteristics of the data sources - have resulted in this remarkably broad span of performance reported in the literature. Specifically we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users observed for periods between 3 months and one year. We show that it is much easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover, we demonstrate how the temporal and spatial resolution of the data have strong influence on the accuracy of prediction. Finally we reveal that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our ability to predict human mobility

    Correlations Between Human Mobility and Social Interaction Reveal General Activity Patterns

    Get PDF
    A day in the life of a person involves a broad range of activities which are common across many people. Going beyond diurnal cycles, a central question is: to what extent do individuals act according to patterns shared across an entire population? Here we investigate the interplay between different activity types, namely communication, motion, and physical proximity by analyzing data collected from smartphones distributed among 638 individuals. We explore two central questions: Which underlying principles govern the formation of the activity patterns? Are the patterns specific to each individual or shared across the entire population? We find that statistics of the entire population allows us to successfully predict 71\% of the activity and 85\% of the inactivity involved in communication, mobility, and physical proximity. Surprisingly, individual level statistics only result in marginally better predictions, indicating that a majority of activity patterns are shared across {our sample population}. Finally, we predict short-term activity patterns using a generalized linear model, which suggests that a simple linear description might be sufficient to explain a wide range of actions, whether they be of social or of physical character

    On the Inability of Markov Models to Capture Criticality in Human Mobility

    Get PDF
    We examine the non-Markovian nature of human mobility by exposing the inability of Markov models to capture criticality in human mobility. In particular, the assumed Markovian nature of mobility was used to establish a theoretical upper bound on the predictability of human mobility (expressed as a minimum error probability limit), based on temporally correlated entropy. Since its inception, this bound has been widely used and empirically validated using Markov chains. We show that recurrent-neural architectures can achieve significantly higher predictability, surpassing this widely used upper bound. In order to explain this anomaly, we shed light on several underlying assumptions in previous research works that has resulted in this bias. By evaluating the mobility predictability on real-world datasets, we show that human mobility exhibits scale-invariant long-range correlations, bearing similarity to a power-law decay. This is in contrast to the initial assumption that human mobility follows an exponential decay. This assumption of exponential decay coupled with Lempel-Ziv compression in computing Fano's inequality has led to an inaccurate estimation of the predictability upper bound. We show that this approach inflates the entropy, consequently lowering the upper bound on human mobility predictability. We finally highlight that this approach tends to overlook long-range correlations in human mobility. This explains why recurrent-neural architectures that are designed to handle long-range structural correlations surpass the previously computed upper bound on mobility predictability

    Creating Full Individual-level Location Timelines from Sparse Social Media Data

    Full text link
    In many domain applications, a continuous timeline of human locations is critical; for example for understanding possible locations where a disease may spread, or the flow of traffic. While data sources such as GPS trackers or Call Data Records are temporally-rich, they are expensive, often not publicly available or garnered only in select locations, restricting their wide use. Conversely, geo-located social media data are publicly and freely available, but present challenges especially for full timeline inference due to their sparse nature. We propose a stochastic framework, Intermediate Location Computing (ILC) which uses prior knowledge about human mobility patterns to predict every missing location from an individual's social media timeline. We compare ILC with a state-of-the-art RNN baseline as well as methods that are optimized for next-location prediction only. For three major cities, ILC predicts the top 1 location for all missing locations in a timeline, at 1 and 2-hour resolution, with up to 77.2% accuracy (up to 6% better accuracy than all compared methods). Specifically, ILC also outperforms the RNN in settings of low data; both cases of very small number of users (under 50), as well as settings with more users, but with sparser timelines. In general, the RNN model needs a higher number of users to achieve the same performance as ILC. Overall, this work illustrates the tradeoff between prior knowledge of heuristics and more data, for an important societal problem of filling in entire timelines using freely available, but sparse social media data.Comment: 10 pages, 8 figures, 2 table

    Unraveling pedestrian mobility on a road network using ICTs data during great tourist events

    Get PDF
    Tourist flows in historical cities are continuously growing in a globalized world and adequate governance processes, politics and tools are necessary in order to reduce impacts on the urban livability and to guarantee the preservation of cultural heritage. The ICTs offer the possibility of collecting large amount of data that can point out and quantify some statistical and dynamic properties of human mobility emerging from the individual behavior and referring to a whole road network. In this paper we analyze a new dataset that has been collected by the Italian mobile phone company TIM, which contains the GPS positions of a relevant sample of mobile devices when they actively connected to the cell phone network. Our aim is to propose innovative tools allowing to study properties of pedestrian mobility on the whole road network. Venice is a paradigmatic example for the impact of tourist flows on the resident life quality and on the preservation of cultural heritage. The GPS data provide anonymized georeferenced information on the displacements of the devices. After a filtering procedure, we develop specific algorithms able to reconstruct the daily mobility paths on the whole Venice road network. The statistical analysis of the mobility paths suggests the existence of a travel time budget for the mobility and points out the role of the rest times in the empirical relation between the mobility time and the corresponding path length. We succeed to highlight two connected mobility subnetworks extracted from the whole road network, that are able to explain the majority of the observed mobility. Our approach shows the existence of characteristic mobility paths in Venice for the tourists and for the residents. Moreover the data analysis highlights the different mobility features of the considered case studies and it allows to detect the mobility paths associated to different points of interest. Finally we have disaggregated the Italian and foreigner categories to study their different mobility behaviors

    Evaluation of home detection algorithms on mobile phone data using individual-level ground truth

    Get PDF
    Inferring mobile phone users’ home location, i.e., assigning a location in space to a user based on data generated by the mobile phone network, is a central task in leveraging mobile phone data to study social and urban phenomena. Despite its widespread use, home detection relies on assumptions that are difficult to check without ground truth, i.e., where the individual who owns the device resides. In this paper, we present a dataset that comprises the mobile phone activity of sixty-five participants for whom the geographical coordinates of their residence location are known. The mobile phone activity refers to Call Detail Records (CDRs), eXtended Detail Records (XDRs), and Control Plane Records (CPRs), which vary in their temporal granularity and differ in the data generation mechanism. We provide an unprecedented evaluation of the accuracy of home detection algorithms and quantify the amount of data needed for each stream to carry out successful home detection for each stream. Our work is useful for researchers and practitioners to minimize data requests and maximize the accuracy of the home antenna location. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1140/epjds/s13688-021-00284-9

    An inherent limiting factor of human mobility prediction

    Get PDF
    Predicting how we humans move within space and time is becoming a central topic in many scientific domains, ranging from epidemic propagation, urban planning to ride-sharing. However, current works neglect individuals' preferences for exploration and discovery of new places. Yet, noveltyseeking activities appear to have significant consequences on the ability to understand and predict individuals' trajectories. In this work, we propose a new approach for the identification of moments of novelty-seeking. Subsequently, we construct individuals' mobility profiles based on their exploration inclinations-Scouters (i.e., extreme explorers), Routiners (i.e., extreme returners), and Regulars (i.e., without extreme behavior)
    corecore