15,202 research outputs found

    Neural population coding: combining insights from microscopic and mass signals

    Get PDF
    Behavior relies on the distributed and coordinated activity of neural populations. Population activity can be measured using multi-neuron recordings and neuroimaging. Neural recordings reveal how the heterogeneity, sparseness, timing, and correlation of population activity shape information processing in local networks, whereas neuroimaging shows how long-range coupling and brain states impact on local activity and perception. To obtain an integrated perspective on neural information processing we need to combine knowledge from both levels of investigation. We review recent progress of how neural recordings, neuroimaging, and computational approaches begin to elucidate how interactions between local neural population activity and large-scale dynamics shape the structure and coding capacity of local information representations, make them state-dependent, and control distributed populations that collectively shape behavior

    Infants segment words from songs - an EEG study

    No full text
    Children’s songs are omnipresent and highly attractive stimuli in infants’ input. Previous work suggests that infants process linguistic–phonetic information from simplified sung melodies. The present study investigated whether infants learn words from ecologically valid children’s songs. Testing 40 Dutch-learning 10-month-olds in a familiarization-then-test electroencephalography (EEG) paradigm, this study asked whether infants can segment repeated target words embedded in songs during familiarization and subsequently recognize those words in continuous speech in the test phase. To replicate previous speech work and compare segmentation across modalities, infants participated in both song and speech sessions. Results showed a positive event-related potential (ERP) familiarity effect to the final compared to the first target occurrences during both song and speech familiarization. No evidence was found for word recognition in the test phase following either song or speech. Comparisons across the stimuli of the present and a comparable previous study suggested that acoustic prominence and speech rate may have contributed to the polarity of the ERP familiarity effect and its absence in the test phase. Overall, the present study provides evidence that 10-month-old infants can segment words embedded in songs, and it raises questions about the acoustic and other factors that enable or hinder infant word segmentation from songs and speech

    Investigating the Neural Basis of Audiovisual Speech Perception with Intracranial Recordings in Humans

    Get PDF
    Speech is inherently multisensory, containing auditory information from the voice and visual information from the mouth movements of the talker. Hearing the voice is usually sufficient to understand speech, however in noisy environments or when audition is impaired due to aging or disabilities, seeing mouth movements greatly improves speech perception. Although behavioral studies have well established this perceptual benefit, it is still not clear how the brain processes visual information from mouth movements to improve speech perception. To clarify this issue, I studied the neural activity recorded from the brain surfaces of human subjects using intracranial electrodes, a technique known as electrocorticography (ECoG). First, I studied responses to noisy speech in the auditory cortex, specifically in the superior temporal gyrus (STG). Previous studies identified the anterior parts of the STG as unisensory, responding only to auditory stimulus. On the other hand, posterior parts of the STG are known to be multisensory, responding to both auditory and visual stimuli, which makes it a key region for audiovisual speech perception. I examined how these different parts of the STG respond to clear versus noisy speech. I found that noisy speech decreased the amplitude and increased the across-trial variability of the response in the anterior STG. However, possibly due to its multisensory composition, posterior STG was not as sensitive to auditory noise as the anterior STG and responded similarly to clear and noisy speech. I also found that these two response patterns in the STG were separated by a sharp boundary demarcated by the posterior-most portion of the Heschl’s gyrus. Second, I studied responses to silent speech in the visual cortex. Previous studies demonstrated that visual cortex shows response enhancement when the auditory component of speech is noisy or absent, however it was not clear which regions of the visual cortex specifically show this response enhancement and whether this response enhancement is a result of top-down modulation from a higher region. To test this, I first mapped the receptive fields of different regions in the visual cortex and then measured their responses to visual (silent) and audiovisual speech stimuli. I found that visual regions that have central receptive fields show greater response enhancement to visual speech, possibly because these regions receive more visual information from mouth movements. I found similar response enhancement to visual speech in frontal cortex, specifically in the inferior frontal gyrus, premotor and dorsolateral prefrontal cortices, which have been implicated in speech reading in previous studies. I showed that these frontal regions display strong functional connectivity with visual regions that have central receptive fields during speech perception

    Frontal brain asymmetries as effective parameters to assess the quality of audiovisual stimuli perception in adult and young cochlear implant users

    Get PDF
    How is music perceived by cochlear implant (CI) users? This question arises as "the next step" given the impressive performance obtained by these patients in language perception. Furthermore, how can music perception be evaluated beyond self-report rating, in order to obtain measurable data? To address this question, estimation of the frontal electroencephalographic (EEG) alpha activity imbalance, acquired through a 19-channel EEG cap, appears to be a suitable instrument to measure the approach/withdrawal (AW index) reaction to external stimuli. Specifically, a greater value of AW indicates an increased propensity to stimulus approach, and vice versa a lower one a tendency to withdraw from the stimulus. Additionally, due to prelingually and postlingually deafened pathology acquisition, children and adults, respectively, would probably differ in music perception. The aim of the present study was to investigate children and adult CI users, in unilateral (UCI) and bilateral (BCI) implantation conditions, during three experimental situations of music exposure (normal, distorted and mute). Additionally, a study of functional connectivity patterns within cerebral networks was performed to investigate functioning patterns in different experimental populations. As a general result, congruency among patterns between BCI patients and control (CTRL) subjects was seen, characterised by lowest values for the distorted condition (vs. normal and mute conditions) in the AW index and in the connectivity analysis. Additionally, the normal and distorted conditions were significantly different in CI and CTRL adults, and in CTRL children, but not in CI children. These results suggest a higher capacity of discrimination and approach motivation towards normal music in CTRL and BCI subjects, but not for UCI patients. Therefore, for perception of music CTRL and BCI participants appear more similar than UCI subjects, as estimated by measurable and not self-reported parameters

    A unified coding strategy for processing faces and voices

    Get PDF
    Both faces and voices are rich in socially-relevant information, which humans are remarkably adept at extracting, including a person's identity, age, gender, affective state, personality, etc. Here, we review accumulating evidence from behavioral, neuropsychological, electrophysiological, and neuroimaging studies which suggest that the cognitive and neural processing mechanisms engaged by perceiving faces or voices are highly similar, despite the very different nature of their sensory input. The similarity between the two mechanisms likely facilitates the multi-modal integration of facial and vocal information during everyday social interactions. These findings emphasize a parsimonious principle of cerebral organization, where similar computational problems in different modalities are solved using similar solutions
    • …
    corecore