73,831 research outputs found

    Conditional Random Fields as Recurrent Neural Networks

    Full text link
    Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate mean-field approximate inference for the Conditional Random Fields with Gaussian pairwise potentials as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.Comment: This paper is published in IEEE ICCV 201

    Stochastic Methods for Fine-Grained Image Segmentation and Uncertainty Estimation in Computer Vision

    Get PDF
    In this dissertation, we exploit concepts of probability theory, stochastic methods and machine learning to address three existing limitations of deep learning-based models for image understanding. First, although convolutional neural networks (CNN) have substantially improved the state of the art in image understanding, conventional CNNs provide segmentation masks that poorly adhere to object boundaries, a critical limitation for many potential applications. Second, training deep learning models requires large amounts of carefully selected and annotated data, but large-scale annotation of image segmentation datasets is often prohibitively expensive. And third, conventional deep learning models also lack the capability of uncertainty estimation, which compromises both decision making and model interpretability. To address these limitations, we introduce the Region Growing Refinement (RGR) algorithm, an unsupervised post-processing algorithm that exploits Monte Carlo sampling and pixel similarities to propagate high-confidence labels into regions of low-confidence classification. The probabilistic Region Growing Refinement (pRGR) provides RGR with a rigorous mathematical foundation that exploits concepts of Bayesian estimation and variance reduction techniques. Experiments demonstrate both the effectiveness of (p)RGR for the refinement of segmentation predictions, as well as its suitability for uncertainty estimation, since its variance estimates obtained in the Monte Carlo iterations are highly correlated with segmentation accuracy. We also introduce FreeLabel, an intuitive open-source web interface that exploits RGR to allow users to obtain high-quality segmentation masks with just a few freehand scribbles, in a matter of seconds. Designed to benefit the computer vision community, FreeLabel can be used for both crowdsourced or private annotation and has a modular structure that can be easily adapted for any image dataset. The practical relevance of methods developed in this dissertation are illustrated through applications on agricultural and healthcare-related domains. We have combined RGR and modern CNNs for fine segmentation of fruit flowers, motivated by the importance of automated bloom intensity estimation for optimization of fruit orchard management and, possibly, automatizing procedures such as flower thinning and pollination. We also exploited an early version of FreeLabel to annotate novel datasets for segmentation of fruit flowers, which are currently publicly available. Finally, this dissertation also describes works on fine segmentation and gaze estimation for images collected from assisted living environments, with the ultimate goal of assisting geriatricians in evaluating health status of patients in such facilities

    A deep learning approach for complex microstructure inference

    Get PDF
    Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning’s seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30–50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology

    Automatic Segmentation of Sinkholes Using a Convolutional Neural Network

    Get PDF
    Sinkholes are the most abundant surface features in karst areas worldwide. Understanding sinkhole occurrences and characteristics is critical for studying karst aquifers and mitigating sinkhole-related hazards. Most sinkholes appear on the land surface as depressions or cover collapses and are commonly mapped from elevation data, such as digital elevation models (DEMs). Existing methods for identifying sinkholes from DEMs often require two steps: locating surface depressions and separating sinkholes from non-sinkhole depressions. In this study, we explored deep learning to directly identify sinkholes from DEM data and aerial imagery. A key contribution of our study is an evaluation of various ways of integrating these two types of raster data. We used an image segmentation model, U-Net, to locate sinkholes. We trained separate U-Net models based on four input images of elevation data: a DEM image, a slope image, a DEM gradient image, and a DEM-shaded relief image. Three normalization techniques (Global, Gaussian, and Instance) were applied to improve the model performance. Model results suggest that deep learning is a viable method to identify sinkholes directly from the images of elevation data. In particular, DEM gradient data provided the best input for U-net image segmentation models to locate sinkholes. The model using the DEM gradient image with Gaussian normalization achieved the best performance with a sinkhole intersection-over-union (IoU) of 45.38% on the unseen test set. Aerial images, however, were not useful in training deep learning models for sinkholes as the models using an aerial image as input achieved sinkhole IoUs below 3%

    Binocular vision supports the development of scene segmentation capabilities: Evidence from a deep learning model

    Get PDF
    The application of deep learning techniques has led to substantial progress in solving a number of critical problems in machine vision, including fundamental problems of scene segmentation and depth estimation. Here, we report a novel deep neural network model, capable of simultaneous scene segmentation and depth estimation from a pair of binocular images. By manipulating the arrangement of binocular image pairs, presenting the model with standard left-right image pairs, identical image pairs or swapped left-right images, we show that performance levels depend on the presence of appropriate binocular image arrangements. Segmentation and depth estimation performance are both impaired when images are swapped. Segmentation performance levels are maintained, however, for identical image pairs, despite the absence of binocular disparity information. Critically, these performance levels exceed those found for an equivalent, monocularly trained, segmentation model. These results provide evidence that binocular image differences support both the direct recovery of depth and segmentation information, and the enhanced learning of monocular segmentation signals. This finding suggests that binocular vision may play an important role in visual development. Better understanding of this role may hold implications for the study and treatment of developmentally acquired perceptual impairments
    • …
    corecore