
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Dissertations (1934 -) Dissertations, Theses, and Professional
Projects

Stochastic Methods for Fine-Grained Image Segmentation and Stochastic Methods for Fine-Grained Image Segmentation and

Uncertainty Estimation in Computer Vision Uncertainty Estimation in Computer Vision

Philipe Ambrozio Dias
Marquette University

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Ambrozio Dias, Philipe, "Stochastic Methods for Fine-Grained Image Segmentation and Uncertainty
Estimation in Computer Vision" (2020). Dissertations (1934 -). 1029.
https://epublications.marquette.edu/dissertations_mu/1029

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1029&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/1029?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1029&utm_medium=PDF&utm_campaign=PDFCoverPages

STOCHASTIC METHODS FOR FINE-GRAINED IMAGE SEGMENTATION
AND UNCERTAINTY ESTIMATION IN COMPUTER VISION

by

Philipe Ambrozio Dias, B.S., M.S.

A Dissertation submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

December 2020

ABSTRACT
STOCHASTIC METHODS FOR FINE-GRAINED IMAGE SEGMENTATION

AND UNCERTAINTY ESTIMATION IN COMPUTER VISION

Philipe Ambrozio Dias, B.S., M.S.

Marquette University, 2020

In this dissertation, we exploit concepts of probability theory, stochastic meth-
ods and machine learning to address three existing limitations of deep learning-
based models for image understanding. First, although convolutional neural networks
(CNN) have substantially improved the state of the art in image understanding, con-
ventional CNNs provide segmentation masks that poorly adhere to object boundaries,
a critical limitation for many potential applications. Second, training deep learning
models requires large amounts of carefully selected and annotated data, but large-
scale annotation of image segmentation datasets is often prohibitively expensive. And
third, conventional deep learning models also lack the capability of uncertainty esti-
mation, which compromises both decision making and model interpretability.

To address these limitations, we introduce the Region Growing Refinement
(RGR) algorithm, an unsupervised post-processing algorithm that exploits Monte
Carlo sampling and pixel similarities to propagate high-confidence labels into regions
of low-confidence classification. The probabilistic Region Growing Refinement (pRGR)
provides RGR with a rigorous mathematical foundation that exploits concepts of
Bayesian estimation and variance reduction techniques. Experiments demonstrate
both the effectiveness of (p)RGR for the refinement of segmentation predictions, as
well as its suitability for uncertainty estimation, since its variance estimates obtained
in the Monte Carlo iterations are highly correlated with segmentation accuracy.

We also introduce FreeLabel, an intuitive open-source web interface that ex-
ploits RGR to allow users to obtain high-quality segmentation masks with just a few
freehand scribbles, in a matter of seconds. Designed to benefit the computer vision
community, FreeLabel can be used for both crowdsourced or private annotation and
has a modular structure that can be easily adapted for any image dataset.

The practical relevance of methods developed in this dissertation are illus-
trated through applications on agricultural and healthcare-related domains. We have
combined RGR and modern CNNs for fine segmentation of fruit flowers, motivated
by the importance of automated bloom intensity estimation for optimization of fruit
orchard management and, possibly, automatizing procedures such as flower thinning
and pollination. We also exploited an early version of FreeLabel to annotate novel
datasets for segmentation of fruit flowers, which are currently publicly available. Fi-
nally, this dissertation also describes works on fine segmentation and gaze estimation
for images collected from assisted living environments, with the ultimate goal of as-
sisting geriatricians in evaluating health status of patients in such facilities.

i

ACKNOWLEDGEMENTS

Throughout these four years of doctoral studies, I had the privilege of ex-

changing experiences with many remarkable people, in multiple parts of the world.

First, I would like to thank my advisor Dr. Henry Medeiros, who provided me

with all the support needed for a successful period of studies. In contrast to many

unfortunate stories of absent and/or abusive advisor-advisee relationships, I would

like to thank Henry for his respect, trust, kindness during these years of partnership.

I would like to express my gratitude to Dr. Amy Tabb, Dr. Francesca Odone,

Dr. Dong Hye Ye, and Dr. Richard Povinelli for being part of my dissertation

committee and providing greatly beneficial feedback, despite the time constraints in

such a complicated period. My special thanks to Amy, for her mentorship as well as

many valuable career/life advices, as well as Francesca for the mentorship and kind

reception during my time at the University of Genoa (Italy).

Within the Marquette community, I would like to thank Tony for the conver-

sations that brightened many stressful days during these years, as well as Ms. Katie

Tarara, for her work and her kind, compassionate approach towards students of the

EECE department. I am also very grateful to all my colleagues during these four

years at the COVISS lab. Thank you Andres, Yev, Sam, Reza, Siddique, Jamir,

Scott, Zhou, Paris, German, and Miguel.

Many people outside the university were crucial for my academic success and

quality of life during this process. I would like to thank all my friends from soccer

in Milwaukee, with special thanks to Jameson, Cesar, and Dan who helped me in

many occasions. My gratitude also towards all my italian colleagues for receiving me

so well in Genova, in special Enrico, Francesco, Vanessa and Veronica for making me

feel at home.

Moreover, I would like to thank Xie, for all her support and affection over the

last year, as well as Sydney and Alexandre Martins for making my life in Milwaukee

ii

much better. A special thanks to Alexandre, for his support and friendship that were

crucial for my success and continually make me a better human being.

My eternal love and gratitude towards all my family and friends back in Brazil

and Germany, who have been at my side during all my journey despite the difficulties

related to the geographical distance.

Finally, I would specially like to thank my parents Elisabeth and Ademir for

their love and for supporting me in all my decisions in such an international journey,

with immeasurable efforts that I will be always indebted for.

Dedication

To Mother Nature, Pachamama, Gaia, Universe or any of the possible nick-

names for the beautifully complex and unified system of which we are part of.

May you continue to inspire me. May I have the resilience and ability to apply

my capacities for the benefit of society and of nature. May the difficult times we are

currently facing, and the ones that are yet to come, teach us to live according to you,

and to do our best to show you some gratitude for the privileges we experience as

living rational beings within such a complex chain of events.

iii

CONTENTS

List of Tables . vii

List of Figures . ix

1 INTRODUCTION . 1

1.1 Problem statement #1 . 2

1.2 Problem statement #2 . 3

1.3 Problem statement #3 . 4

1.4 Objectives . 4

1.4.1 Specific objectives . 5

1.5 Dissertation timeline . 6

1.5.1 Dissertation organization 11

2 BACKGROUND . 12

2.1 Basic concepts of computer vision 12

2.1.1 Image representation . 12

2.1.2 Features . 13

2.1.3 Basic concepts on image processing 14

2.2 Basic concepts of machine learning and pattern recognition 18

2.2.1 Machine learning . 18

2.3 Neural networks . 27

2.3.1 Convolutional neural networks (CNNs) 30

2.4 Image semantic segmentation . 35

2.4.1 Datasets . 35

iv

2.4.2 Evaluation metrics . 39

2.4.3 Approaches based on hand-engineered feature
descriptors . 42

2.4.4 Weak and unsupervised segmentation 44

2.4.5 Deep learning-based approaches 47

2.4.6 Post-processing techniques 53

2.5 Basic concepts of probability theory and stochastic methods . . . 54

2.5.1 Monte Carlo estimation and variance reduction
techniques . 55

2.6 Uncertainty estimation techniques for computer vision 58

3 SEMANTIC SEGMENTATION REFINEMENT 61

3.1 Region Growing Refinement (RGR) 62

3.1.1 Proposed approach . 63

3.1.2 Experiments . 69

3.2 probabilistic Region Growing Refinement (pRGR) 80

3.2.1 Proposed approach . 81

3.2.2 Algorithm implementation 94

3.2.3 Experiments . 98

4 SEMI-AUTOMATED ANNOTATION OF IMAGE SEGMENTATION
DATASETS . 113

4.1 Related work . 115

4.1.1 Good practices for design of annotation tools 117

4.2 FreeLabel annotation tool . 118

4.2.1 FreeLabel functionality 119

v

4.2.2 Implementation . 121

4.3 Experiments and results . 123

4.3.1 Annotation of unlabeled images 127

4.4 Active learning and semi-supervised annotation 131

5 FRUIT FLOWER SEGMENTATION . 141

5.1 Related Work . 143

5.2 Apple flower detection using deep convolutional networks 146

5.2.1 Proposed approach . 146

5.2.2 Comparison approaches 152

5.2.3 Experiments and results 154

5.3 Multispecies fruit flower detection using a refined semantic
segmentation network . 170

5.3.1 Proposed approach . 171

5.3.2 Datasets . 177

5.3.3 Experiments and results 181

6 VISION-BASED ANALYSIS OF ACTIVITY OF DAILY LIVING 187

6.1 Fine segmentation for Activity of Daily Living analysis in a
wide-angle multi-camera set-up 188

6.1.1 Related work . 190

6.1.2 Proposed approach . 192

6.1.3 Assessment on benchmark data 195

6.1.4 Application to ADL . 198

6.1.5 Preliminary experiments using FreeLabel and RGR . . . 201

vi

6.2 Gaze estimation for assisted living environments 202

6.2.1 Related work . 204

6.2.2 Proposed approach . 205

6.2.3 Experiments and results 209

7 CONCLUSION . 222

7.1 Objective 1a: segmentation refinement 222

7.2 Objective 1b: applications of semantic segmentation 223

7.3 Objective 2: image annotation . 226

7.4 Objective 3: uncertainty estimation 228

Bibliography . 229

A REGION GROWING REFINEMENT - SUPPLEMENTARY MATERIAL 250

A.1 Qualitative examples - MS COCO 2016 validation set 250

A.2 Qualitative examples - DAVIS 2016 dataset 252

A.3 Analysis of sensitivity to parameters 253

A.4 Repeatability despite randomness 255

B GAZE ESTIMATION - BASELINE GEOM 257

B.1 Estimating facial normal . 257

B.2 Estimating head pitch . 259

B.3 Cases of missing keypoints . 261

C COPYRIGHT . 262

vii

LIST OF TABLES

3.1 Comparison between results obtained by FCIS, FCIS+SNIC and
FCIS+RGR on the COCO 2016 (val), the PASCAL VOC 2012 (val),
and the DAVIS datasets [1] (c©2018 IEEE). 71

3.2 Comparison between different refinement methods for different
networks [1] (c©2018 IEEE). 78

3.3 Summary of pRGR configurations for each network 100

3.4 Comparison and combination of pRGR and baselines on PASCAL dataset. 101

3.5 Effect of RGR and pRGR for refinement of DeepLabV3+ predictions. . . 105

5.1 Statistics of the training and validation dataset (AppleA). 151

5.2 Classification performance according to the number of selected
principal components. 155

5.3 Classification performance according to the CNN layer at which
features are collected - Methods A, B, C. 158

5.4 Summary of results obtained for our approach and the three baseline
methods. 162

5.5 Summary of results obtained for our approach and the best baseline
method for the three additional datasets. 169

5.6 Datasets specifications. 177

5.7 HSV statistics of images composing each dataset [2] (c©2018 IEEE). . . . 180

5.8 HSV statistics of flowers composing each dataset. 180

5.9 Summary of results obtained for each method [2] (c©2018 IEEE). 183

6.1 Jaccard index (J) / Contour accuracy (F) Per-Sequence 196

6.2 Analysis of 50 frames - View 1 . 201

6.3 Analysis of 50 frames - View 2 . 201

viii

6.4 Comparison in terms of angular errors between our method and
baselines on the GazeFollow test set. 213

6.5 Performance of our method on the MoDiPro dataset for different
combinations of training/testing sets. 219

ix

LIST OF FIGURES

1.1 Examples of annotations for each image understanding task, for an
image composing the PASCAL VOC dataset [3]. 1

1.2 Timeline depicting the chronological order in which the works
composing this dissertation were developed. 7

1.3 Illustration of how the concepts exploited and developed in this work
are related to one another and to the objectives proposed for this
dissertation. 7

2.1 Visualization of the representation of images as arrays, as well as
illustrations of the RGB, HSV and CIELab color representations. 12

2.2 Example of histogram matching and equalization. 16

2.3 Example of image thresholding. 17

2.4 Illustration of different affine transformations. 18

2.5 Illustration of a cross-validation process for N folds. Drawing inspired on 1 20

2.6 Basic representation of SVM approaches for classification. 24

2.7 Basic structure of an unit or neuron composing a neural network. 27

2.8 Diagram illustrating the basic architecture of a fully connected deep
neural network. 28

2.9 Diagram illustrating the architecture of the model introduced in [4],
now widely known as AlexNet. 31

2.10 Diagram illustrating the typical composition of a convolutional layer . . . 31

2.11 Examples of common data augmentation strategies in computer vision. . 33

2.12 Representation of the concept of skip-connections. 35

2.13 Examples of images composing the ImageNet dataset. 36

2.14 Examples of images and annotations composing the PASCAL dataset. . . 37

x

2.15 Examples of images and annotations composing the a) COCO [5] and
b) COCO-Stuff [6] datasets. 37

2.16 Examples of images and annotations composing the DAVIS [7] dataset. . 38

2.17 Confusion matrix and common performance metrics calculated from it. . 39

2.18 Example of usage of Precision-Recall (PR) curves for comparison of
different methods on a segmentation tasks. 40

2.19 Example of superpixel segmentation of an image. 44

2.20 Representation of a fully convolutional network (FCN). 48

2.21 Representation of fractional convolutions, commonly used for upsampling. 49

2.22 Basic representations of encoder-decoder (SegNet) and U-Net architectures. 50

2.23 Representation of the concept of dilated convolutions. 50

2.24 Representations of DeepLab and DeepLabV2 architectures. 51

3.1 Diagram illustrating the sequence of tasks performed by the proposed
RGR model for segmentation refinement. 64

3.2 Additional examples of imperfect ground-truth annotations in the
COCO 2016 dataset. 69

3.3 AP obtained by FCIS and FCIS+RGR for each of the 80 COCO
categories [1] (c©2018 IEEE). 72

3.4 Examples of detections on the COCO, PASCAL and DAVIS datasets. . . 73

3.5 Mean IoU of FCIS, FCIS+SNIC and FCIS+RGR on PASCAL on
regions near object boundaries. 74

3.6 Results obtained obtained by FCIS and FCIS+RGR on transfer
learning experiments. 76

3.7 Examples of detections on the PASCAL VOC 2012 dataset. From left
to right: original image, ground truth, Deeplab detection, GrabCut
refinement, DT-EdgeNet refinement, CRF refinement, RGR
refinement [1](c©2018 IEEE). 77

xi

3.8 Runtime and performance of RGR according to the number of MC
iterations. 80

3.9 Diagram illustrating the sequence of steps performed by the proposed
pRGR model for segmentation refinement. 83

3.10 Example of non-parametric estimation of the probability that a pixel
is part of the region labeled with high-confidence. 86

3.11 Diagram illustrating the steps performed by Algorithm 2. 96

3.12 Qualitative results on PASCAL val images. 101

3.13 Summary of mIoU on PASCAL for regions of varying width near the
object boundaries. 102

3.14 Improvements on segmentation accuracy (∆mIoU(%)) provided by
each refinement method according to specific categories on PASCAL
dataset. 104

3.15 Improvements on segmentation accuracy provided by each refinement
method according to specific sequences of the DAVIS dataset. 106

3.16 Examples of details recovered through pRGR refinement of
DeepLabV3+ predictions for images in the DAVIS dataset. 108

3.17 Correlation between segmentation accuracy and left) original CNN
prediction scores; right) variance across pRGR Monte Carlo refinement
iterations. 109

3.18 Correlation between rankings according to accuracy and pRGR’s
uncertainty estimate, for refinement of predictions collected from
different DeepLab models. 110

3.19 Runtime analysis of pRGR’s current implementation. 112

4.1 Example of annotation using FreeLabel. 114

4.2 Illustration of how traces are propagated to neighboring pixels. 119

4.3 FreeLabel’s graphical user interface. 120

4.4 Diagram summarizing how the different modules of FreeLabel interact
with one another [8] (c©2019 IEEE). 122

xii

4.5 Score chart presented as reference for the game where users are asked
to label PASCAL images in an accurate and timely manner [8]
(c©2019 IEEE). 124

4.6 Distribution of the accuracies, annotation times, number of Refine
calls and average image area covered by user traces for annotating
images from the PASCAL dataset [8] (c©2019 IEEE). 126

4.7 Distribution of average accuracy (top) and annotation time (bottom)
for objects of different categories in the PASCAL dataset [8] (c©2019
IEEE). 127

4.8 Examples of annotations provided by users for the PASCAL dataset
using FreeLabel. 128

4.9 Examples of flower annotations provided by users using FreeLabel. 129

4.10 Distribution of the average accuracy obtained by the users for
annotation of flower datasets [8] (c©2019 IEEE). 130

4.11 Sparsification curves of the different evaluated techniques for ranking
images of the PASCAL trainaug dataset according to uncertainty. . . . 133

4.12 Illustration of the three sampling strategies considered for
uncertainty-based sample selection. 135

4.13 Curves of segmentation quality for models trained on subsets of the
PASCAL trainaug dataset. 136

4.14 Mean intersection over union on the validation sets of a) the Shanghai
AOI and b) the Paris + Khartoum AOIs. 138

4.15 Cross-model active learning performance illustration. 140

5.1 Example of image from a flower detection dataset used in this work [9]
(c©2018 IEEE). 142

5.2 Diagram illustrating the sequence of image analysis tasks performed
by the proposed model for flower identification. 147

5.3 Examples of images composing the AppleA dataset, with the
corresponding detections provided by the proposed algorithm. 151

5.4 Example of data augmentation. 152

xiii

5.5 Projections of samples on 2D feature spaces. 156

5.6 Diagram illustrating how classification scores are computed using the
extracted features. 158

5.7 PR curves illustrating the performance on the validation set according
to the CNN layer at which features are collected. 159

5.8 Example of the three types of portrait evaluated. 160

5.9 Classification performance according to the portrait adjustment strategy. 160

5.10 Examples of superpixels incorrectly classified for Original and Blur
portraits. 161

5.11 Precision-recall (PR) curve illustrating the performance of our
proposed approach in comparison with the three baseline methods 163

5.12 Example of classification results obtained using the baseline
HSV+SVM method and our proposed CNN+SVM method. 164

5.13 Examples of images composing the additional datasets. 165

5.14 Example of image before and after histogram adjustment. 168

5.15 PR curves expressing the performance of our method and the optimal
baseline approach on the three additional datasets. 168

5.16 Example of incorrect detections caused by poor superpixel segmentation. 169

5.17 Diagram illustrating the sequence of tasks performed by the proposed
method for flower detection. 173

5.18 Illustration of the sliding window and subsequent fusion process that
comprise our segmentation pipeline. 175

5.19 Example of segmentation refinement for a given pair of scoremaps. 175

5.20 Utility vehicle used for imaging. 178

5.21 Examples of flower detection in one image composing the AppleA dataset 179

5.22 Examples of flower detection in one image composing the AppleB
dataset [2] (c©2018 IEEE). 179

xiv

5.23 Example of ground truth obtained from freehand annotations. 181

5.24 Examples of flower detection in one image composing the Peach dataset. 183

5.25 Examples of flower detection in one image composing the Pear
dataset [2] (c©2018 IEEE). 184

5.26 Segmentation performance in terms of F1 measure on each dataset
according to the parameter t0 [2] (c©2018 IEEE). 185

6.1 Images and layout of the instrumented assisted living facility; in color,
the fields of view of the video cameras. 189

6.2 Example of frame containing perspective- distortion. 190

6.3 Diagram illustrating the sequence of image analysis performed by the
proposed model for semantic segmentation of objects of interest. 193

6.4 Performances on video sequences selected from the DAVIS 2016 dataset. 198

6.5 Examples of segmentation accuracy for scenarios including unusual
poses, occlusion, depth and appearance changes. 199

6.6 Examples of segmentation obtained for images acquired with cameras
view1 and view2. 200

6.7 Preliminary assessment of FreeLabel and RGR on images from a
discharge facility. 202

6.8 Overview of our apparent gaze estimation approach. 203

6.9 The proposed Confidence Gated Unit (CGU) [10] (c©2020 IEEE). 207

6.10 Angular distribution of gaze annotations composing the training set of
the GazeFollow dataset. 210

6.11 Examples of gaze direction estimations provided by the different
models evaluated on GazeFollow. 213

6.12 Cumulative mean angular error according to uncertainty predicted by
our model for each sample [10] (c©2020 IEEE). 215

6.13 Distribution of gaze direction and uncertainty predictions provided by
our proposed model. 216

xv

6.14 Examples of results for our gaze direction estimation approach in the
MoDiPro dataset [10] (c©2020 IEEE). 218

A.1 Additional examples of detections on the COCO 2016 dataset. 250

A.2 Noteworthy example of segmentation refinement on the COCO 2016
dataset. 251

A.3 Examples of detections on the DAVIS dataset. From left to right:
original image, ground truth, FCIS detection, FCIS+RGR. 252

A.4 Mean intersection over union on the PASCAL VOC 2012 dataset
according to the distance normalizing factor θm. 254

A.5 Mean intersection over union on the PASCAL VOC 2012 dataset
according to the average spatial distance between samples γ. 254

A.6 Mean intersection over union on the PASCAL VOC 2012 dataset
according to the maximum distance allowed between pixels composing
a cluster dMax. 255

A.7 Repeatability of RGR runs in terms of mIoU variation. Left : average
over all categories for each run. Right: standard deviation of mIoU
per category. 256

B.1 Computing facial facial symmetry axis ~s and facial normal ~n. 258

B.2 Illustration of how the pitch angle ω is computed according to eyes
and ears coordinates, and then applied to ~n to estimate ~g. 260

1

CHAPTER 1
INTRODUCTION

Computer vision is an interdisciplinary field that focuses on extracting mean-

ingful information from images and videos. Information obtained through image un-

derstanding can be used for several applications, ranging from activity recognition [11]

to object tracking [12], autonomous navigation [13], security and surveillance [14],

among many others.

One of the most important aspects of image understanding is the identifica-

tion of the objects present in an image, which can be carried out at different levels of

granularity. In this context, there are four well-known subproblems of image under-

standing: image classification, object detection, semantic segmentation, and instance

segmentation. Figure 1.1 illustrates each of these tasks.

Image
Classification

Object
Detection

Semantic
Segmentation

Instance
Segmentation

Figure 1.1: Examples of annotations for each image understanding task, for an image
composing the PASCAL VOC dataset [3].

The objective of image classification is to label the scene at the image level, or,

in simpler terms, identify what is present in an image. Meanwhile, object detection

attempts to fit bounding boxes around specific objects, which in terms of granularity

can be seen as the simplest answer to the question of where each meaningful entity

2

is located in the scene. Segmentation tasks aim at pixel-wise classification of known

objects or of different instances of these objects. While semantic segmentation focuses

on labeling each pixel according to the class that the corresponding object belongs

to, instance segmentation requires unique labels for each instance of the given objects

present in the scene.

In recent years, systems based on deep learning have remarkably improved

the state of the art in many computer vision tasks. The combination of deep Convo-

lutional Neural Networks (CNN) and increasingly larger publicly available datasets

has led to substantial improvements to image classification techniques [4]. Currently,

CNNs are at the core of facial recognition algorithms used in social networks [15],

drones capable of following a person [16], and self-driving cars [13] – all applications

considered unfeasible a decade ago.

This dissertation aims to contribute to the advancement of computer vision

methods based on deep convolutional neural networks. More specifically, it intends

to address the three problems described below.

1.1 Problem statement #1

For segmentation tasks, the performance of conventional CNN ar-

chitectures is intrinsically limited, providing segmentation masks that poorly

adhere to object boundaries . CNNs exploit downsampling strategies to learn hi-

erarchical features (from low-level to high-level features), an operation that compro-

mises pixel-level details and ultimately leads to imprecise, coarse segmentation in

scenarios that require pixel-wise predictions.

For many potential applications of computer vision, segmentations with high

boundary adherence are crucial for correct scene interpretations. In action and activ-

ity recognition, relevant visual cues for human-human and human-object interactions

include contact between agent and object, particular body silhouettes and orientation,

3

and locations of body parts such as the hands [11, 17, 18]. Moreover, many automa-

tion tasks often require manipulation of objects or instruments, where the quality of

object pose and morphology estimation directly impact success rate [19,20]. The wide

range of image segmentation applications also includes image editing, self-driving ve-

hicles [13], virtual clothing try-on for online shopping [21], and medical imaging. As

explained in detail in Objective 1 below, we intend to use local image information

and stochastic techniques to improve boundary adherence of segmentations provided

by modern CNNs.

1.2 Problem statement #2

While abundant and reliable data has been crucial for the advances

on image understanding tasks achieved by deep learning models, large-scale

annotation of image segmentation datasets is often prohibitively expensive.

Depending on the image understanding task, the required dataset annotations may

range from tags at the image level (image classification), to bounding boxes (object

detection) or pixel-level annotations (image segmentation). For all cases, varied and

high-quality image annotations are crucial for both training and evaluation of models

that are accurate and robust.

Currently, most Convolutional Neural Network (CNN) models successful at

image understanding tasks [22–24] are pre-trained on the ImageNet [25] and COCO [5]

datasets, due to their large variability. However, manually labeling large datasets is

challenging and time-consuming. As an example, the compilation of the COCO

dataset – one of the largest and most popular datasets for object detection and image

segmentation – required 55k worker hours for annotation of instance segmentation

labels. As explained in detail in Objective 2 below, we intend to exploit outcomes from

our first objective to design an open-source image annotation interface that generates

high-quality segmentation masks from simple and fast user-provided inputs.

4

1.3 Problem statement #3

Conventional deep learning models do not provide measurements

of uncertainties of their own estimations, an information that is tightly

associated with model robustness and interpretability. Models based on rep-

resentation learning are commonly portrayed as black-boxes: since they comprise

a very large amount of parameters that are optimized based on the data, for the

most part, they do not offer sufficient insights to understand how the given task is

being solved. Such lack of interpretability further demonstrates the importance of

uncertainty estimation to indicate the reliability of a model in different scenarios.

For many real-world applications, high-quality uncertainty estimation can

therefore be as crucial as task accuracy for decision making. Self-driving vehicles

are an example: to increase the overall system’s robustness to challenging scenar-

ios for detection of pedestrians and other obstacles, assorted types of sensors are

exploited. In such cases, uncertainty estimates determines the reliability of the pre-

dictions provided by each component, and therefore guide critical decision making

that can be fatal in case of failures. As explained in detail in Objective 3 below, we

intend to apply modern concepts of Bayesian deep learning as well as techniques from

stochastic processing to design image understanding frameworks that are capable of

estimating uncertainties associated with their own predictions, with special emphasis

on image segmentation tasks.

1.4 Objectives

This dissertation has three specific research objectives, each associated with

one of the three problems stated above: image segmentation, image annotation and

uncertainty estimation.

5

1.4.1 Specific objectives

Objective 1: Devise and apply algorithms for semantic segmentation re-
finement

Within the image segmentation domain, this work proposes to advance the

field in two principal aspects. First, we envision a general unsupervised post-processing

algorithm for segmentation refinement that, different from pre-existing techniques,

does not require any task- or dataset-specific training. Second, we plan to combine

this novel algorithm with modern semantic segmentation networks for novel real-

world applications where segmentations with high-quality at pixel-level are crucial

for task automation.

Objective 2: Devise alternative methods that facilitate the annotation of
image segmentation datasets

In the context of image annotation, this dissertation proposes the development

of an open-source image annotation tool that facilitates the compilation of high-

quality segmentation masks. To benefit the computer vision community, we envision

an interface that can be used for both crowdsourced or private annotation, with a

modular structure that can be easily adapted for any image dataset.

Objective 3: Devise mechanisms for uncertainty estimation from deep
learning-based predictions

Finally, to indicate the reliability of semantic segmentation predictions in its

many possible application scenarios, we envision designing the post-processing algo-

rithm proposed in Objective 1 in such a way that, in addition to refined segmentation

labels, it also outputs its own confidence on the quality of the refined score for each

pixel in the image. This information can then be exploited to devise uncertainty es-

timation metrics that shall ideally show a high correlation with actual segmentation

6

quality, indicating potential scenarios of failure and guiding further model improve-

ments.

1.5 Dissertation timeline

So far, the outcomes from the research described in this dissertation have

been published in the form of the six following peer-reviewed manuscripts, with an

additional manuscript currently under review:

• [1] P. A. Dias, A. Tabb, and H. Medeiros, “Apple flower detection using deep

convolutional networks,” Computers in Industry, vol. 99, pp. 17-28, 2018.

• [2] P. Dias, H. Medeiros, and F. Odone, “Fine segmentation for Activity of Daily

Living analysis in a wide-angle multi-camera set-up,” in 5th Activity Monitor-

ing by Multiple Distributed Sensing Workshop (AMMDS) in conjunction with

British Machine Vision Conference, 2017.

• [3] P. A. Dias and H. Medeiros, “Semantic segmentation refinement by Monte

Carlo region growing of high confidence detections,” in Asian Conference on

Computer Vision. Springer, 2018, pp. 131-146.

• [4] P. A. Dias, A. Tabb, and H. Medeiros, “Multispecies fruit flower detection us-

ing a refined semantic segmentation network,” IEEE Robotics and Automation

Letters, vol. 3, no. 4, pp. 3003-3010, 2018.

• [5] P. A. Dias, Z. Shen, A. Tabb, and H. Medeiros, “FreeLabel: A Publicly

Available Annotation Tool based on Freehand Traces,” in Winter Conference

on Applciations of Computer Vision (WACV), 2019.

• [6] P. A. Dias, D. Malafronte, H. Medeiros, and F. Odone, “Gaze Estimation

for Assisted Living Environments,” in Winter Conference on Applications of

Computer Vision (WACV), 2020.

• [7] P. A. Dias and H. Medeiros, “Probabilistic semantic segmentation refinement

by monte carlo region growing,” arXiv preprint arXiv:2005.05856, 2020.

7

Figure 1.2 provides a timeline depicting the chronological order in which these

works were developed and our plan for future research. Figure 1.3 illustrates how the

concepts exploited and developed in this work are related to one another and to the

objectives of this dissertation.

Figure 1.2: Timeline depicting the chronological order in which the works composing
this dissertation were developed.

Figure 1.3: Illustration of how the concepts exploited and developed in this work
are related to one another and to the objectives proposed for this dissertation. Solid
circles indicate the first contact with the corresponding topics, while arrows indicate
the connection and chronological order in which these concepts were exploited across
the different works. Colors and legend on the right side of the image indicate the
objectives related to each work/concept.

8

With financial and technical support from our collaborators at the United

States Department of Agriculture (USDA), the segmentation of fruit flowers has been

exploited as a case study for the application of the methods investigated and devel-

oped in this research. Critical crop management decisions in fruit production are

guided by the number of flowers present in an orchard, but bloom intensity is still

typically estimated by means of human visual inspection [26]. Previous automated

computer vision systems for flower identification were based on hand-engineered tech-

niques that work only under specific conditions and with limited performance. To

the best of our knowledge, our work in [1] was the first to employ CNNs for flower

detection, combining superpixel-based region proposals with a classification network

to detect apple flowers.

The second application domain of this research is part of a collaboration with

the University of Genoa, in which we have been investigating vision-based strate-

gies to monitor automatically and unobtrusively the health status of patients in an

assisted living environment equipped with cameras. Activities of Daily Living as-

sessments can be done by observing how patients interact with one another as well

as with surrounding objects, which requires addressing multiple tasks such as pose

estimation, object segmentation and gaze estimation. After our first work on apple

flower segmentation, we employed in [2] similar techniques for semantic segmenta-

tion in assisted living environments, combining a CNN and knowledge about camera

configuration to extract segmentations of people and objects of interest.

This latter work provided insights that led to the development of the Region

Growing Refinement (RGR) module [3], a general post-processing algorithm for seg-

mentation refinement that can be considered a core element of this dissertation. From

the segmentation scores provided by any CNN, RGR samples multiple sets of seeds

from within regions classified with high confidence by the CNN, propagating their la-

bels into regions where the classification is uncertain. This is done by region growing

9

based on pixel spatial and color similarity, a quick and effective process that allows

increasing boundary adherence of originally coarse segmentation masks.

In [4], we exploited RGR and modern end-to-end residual CNNs to increase

the segmentation quality of our original model for flower segmentation, in addition

to extending it for segmentation of multiple species of flowers without requiring any

preprocessing or dataset-specific training. Since the segmentation of fruit flowers is a

rather new domain for application of computer vision and deep learning techniques,

our research also included the collection and processing of multi-species fruit flower

datasets [27].

We leveraged the knowledge gathered during the annotation of flower datasets

to design FreeLabel [5], a web-based tool that allows user to trace lines or “freehand”

scribbles of different thicknesses for the different categories present in an image. These

scribbles are propagated to the remaining unlabeled pixels using the RGR algorithm,

since RGR has the advantages of being fully unsupervised (thus category agnostic),

simple to implement, with computational time and parameterization that allow quick

and simple user interactions. Our tool allows users to obtain high-quality segmenta-

tion masks with just a few freehand scribbles, in a matter of seconds.

Described in [6], a more recent development for our second application domain

consisted of a simple neural network regressor that estimates the gaze direction of

individuals in a multi-camera assisted living scenario. In conjunction with object

detection [2], gaze direction could define mutual relationships between objects and

their users (e.g. the user is sitting on a chair with a book on his/her lap vs. sitting

on a chair reading the book) and classify simple actions (e.g. mopping the floor,

reading a book). We propose an approach that relies solely on the relative positions

of facial keypoints to estimate gaze direction, with these features extracted using an

off-the-shelf model. From the perspective of the overall framework for ADL analysis,

leveraging the facial keypoints is beneficial because a single feature extractor module

10

can be used for two required tasks: pose estimation and gaze estimation. Moreover,

this work represented a first contact and application of concepts of uncertainty esti-

mation for neural networks. Gaze estimation is a task with levels of difficulty that

vary according to the scenario of observation. Even for humans, it is much easier to

tell where someone is looking if a full-view of the subject’s face is available, while

the task becomes significantly more challenging when the subject is facing backwards

with respect to the observer’s point of view. For this reason, we leverage concepts

used by Bayesian neural networks to design a model that provides an estimation of

its uncertainty for each prediction of gaze direction.

More recently, we developed the probabilistic Region Growing Refinement

(pRGR) algorithm [7], an extension of RGR that provides it with a solid mathemat-

ical foundation that exploits a probabilistic framework to guide all the steps of the

algorithm. Combining techniques from Bayesian estimation, many parameters that

were previously determined in an ad-hoc manner are now initialized using Bayesian

conjugate priors and updated as assignments of pixels to clusters occur. Moreover,

variance reduction techniques are exploited to optimize the sampling steps within

the Monte Carlo refinement iterations, and a novel parameterization allows for the

emulation of varied receptive field sizes, such that pRGR further improves segmen-

tation refinement performance by recovering finer boundary details and attenuating

the effects of false-positive pixel labels. In [7], we also provide an important contribu-

tion in the context of uncertainty estimation, as we experimentally demonstrate that

the variance of pRGR’s Monte Carlo estimations can be exploited as an uncertainty

estimation mechanism that is highly correlated with segmentation accuracy values.

In summary, this dissertation details a collection of methods that were mo-

tivated by challenges faced when applying the most modern image understanding

techniques for real-world applications. In addition to filling gaps such as extending

deep learning methods for novel scenarios that include fruit flower segmentation and

11

analysis of activities of daily living, this application-oriented research strategy pro-

vided us with insights that led to the design of novel methods that are rather general,

advancing the state of the art on segmentation refinement, image annotation, and

uncertainty estimation.

1.5.1 Dissertation organization

This dissertation consists of seven chapters. Chapter 1 contains a brief in-

troduction to the field of computer vision and the three main problems addressed

by methods proposed in this dissertation. In Chapter 2, we provide background in-

formation on basic concepts of computer vision, machine learning (including neural

networks), probability theory, stochastic methods, as well as an overview of the main

datasets and methods proposed in the literature for image semantic segmentation,

and a summary of existing techniques for uncertainty estimation for computer vi-

sion tasks. Chapter 3 describes our proposed techniques for segmentation refinement,

namely the RGR and the pRGR algorithms. In Chapter 4, we describe FreeLabel,

our open-source, web-based interface for annotation of image segmentation datasets.

Chapter 5 focuses on our first application scenario, describing our two works for fine

segmentation of fruit flowers. Chapter 6 describes our proposed techniques for fine

image segmentation and gaze estimation for assisted living environments, which is

the second application scenario for techniques developed in this dissertation. Finally,

Chapter 7 concludes this dissertation with an overview of its findings and a discussion

of possible directions for future work.

12

CHAPTER 2
BACKGROUND

2.1 Basic concepts of computer vision

2.1.1 Image representation

Digital images are composed of picture elements known as pixels, typically

arranged in the form of 2D spatial arrays as illustrated in Figure 2.1. Spatial coordi-

nates are commonly referenced to as x and y coordinates, corresponding to column

and row positions in this 2D array, respectively. The resolution or size of an image is

most commonly expressed in the form height×width, i.e., the number of rows times

the number of columns composing the image array. Hence, a gray-scale image I is

represented in a I ∈ R
w×h domain.

Figure 2.1: Visualization of the representation of images as arrays, as well as illus-
trations of the RGB, HSV and CIELab color representations.

Color spaces

Color can be represented using a variety of color spaces. The most well-

known representation is the RGB, where colors are represented as combinations of

13

Red, Green and Blue components or color channels. As illustrated in Figure 2.1,

representations of RGB images consist of three 2D arrays of the same size H ×W ,

each array corresponding to a color channel.

While the RGB representation is convenient for printing and digital visualiza-

tion, alternative color representations are frequently used in computer vision tasks

to better emulate the human perception of colors. The HSV color-space describes

colors in terms of Hue, Saturation and Value components. It has the advantage of

dissociating brightness (expressed as value) from chromaticity (hue) and saturation.

Intuitively, chromaticity can be understood as the color tone, while saturation in-

dicates the purity of the color [28]. Studies on human vision and color-based image

retrieval have demonstrated that most of the color information is contained in the hue

channel, with saturation playing a significant role in applications where identifying

white (or black) objects is important [29,30].

Among many other representations introduced by the Commission Interna-

tionale de l’Éclairage (CIE), the CIELab color space, illustrated in Figure 2.1, ex-

presses colors in terms of three channels: lightness, where 0 corresponds to black and

100 indicates diffuse white; channel a indicating color position in a range between

red/magenta and green (negative values indicate green while positive values indicate

magenta); and channel b indicating color position between yellow and blue (nega-

tive values indicate blue and positive values indicate yellow). Designed to approxi-

mate human vision, the CIELab representation is a relatively perceptually-uniform

space [31], such that Euclidean distances between any two colors in this space are

commonly considered good approximations of human perception differences.

2.1.2 Features

In computer vision and image processing, feature corresponds to information

that is meaningful for describing an image and its regions of interest for further pro-

14

cessing. Feature extraction is therefore crucial in image analysis, since it represents

the transition from pictorial (qualitative) to nonpictorial (quantitative) data repre-

sentation [28]. Starting from representation and analysis at pixel-level, features are

commonly described as low-level when they describe patterns at each individual pixel

and/or only its immediate neighbors. This can range up to analysis and descriptions

of regions that cover most (or the whole) of an image, which are then referred to as

high-level features. The concept of low-, mid- up to high-level features is particularly

relevant for understanding the success of modern methods that are capable of learning

hierarchical features, where descriptors at a higher-level can be obtained through the

successive combination of lower-level descriptors. We provide in Section 2.3 a more

detailed explanation on hierarchical features, in the context of modern convolutional

neural networks.

2.1.3 Basic concepts on image processing

Approaches based on mathematical morphology compose an important subset

of traditional image processing techniques [28,29]. Operations are typically performed

in local neighborhoods around pixels, which can be of variable sizes and shapes accord-

ing to designed structuring elements or “windows”. Basic operations such as erosion

and dilation have the effect of “growing” or “shrinking” objects in a binary image,

and can be combined into operations such as opening and closing to fill holes or open

weakly-connected objects, or image enhancement techniques as top-hat and bottom-

hat operations that combines opening and closing procedures to enhance contrast and

details in presence of shading [29].

Kernels and convolutional filters

Other popular operations performed at local neighborhoods are filtering using

kernels or convolutional filters. They can range from simpler strategies such as basic

15

Gaussian kernels for image smoothing and Laplacian kernels for edge detection, up

to more complex hand-engineered wavelets for analysis of textures and other pat-

terns of relevance [29]. Analogously to signal processing operations on 1D signals,

convolutional filters are applied over the whole image in a sliding window fashion, a

procedure exploited by modern approaches described in the next sections.

Histograms transformations and thresholding

While the basic concepts behind these techniques are easier to understand us-

ing binary and gray-scale images as examples, most of them are naturally extended

to analysis of color images. In this domain, image processing techniques using his-

togram representations are also very common. Exemplified in Figure 2.2, histogram

equalization aims at spreading the histogram components to improve image contrast,

while histogram matching consists in approximating its distribution to the charac-

teristic form of a pre-existent reference distribution [28], which can be of particular

relevance to aid computer vision algorithms with robustness to variation on image

acquisition conditions.

Moreover, color thresholding is one of the most basic approaches for identifi-

cation of objects or regions of interest, where pixels are labeled according to intensity

values larger or lower than pre-defined values named threshold [28]. Figure 2.3 illus-

trates the output of a thresholding operation on the hue channel of the input image.

Geometric transformations

In contrast to such operations that alter intensity values of pixels, another set

of image processing techniques known as geometric operations focus instead on alter-

ing the spatial relationship between pixels. Studies and techniques on geometry for

computer vision constitute an important and vast field of research, with the “Multiple

16

0

5

10
10

4 a) Original S

0 0.2 0.4 0.6 0.8 1

b) Training Set average S

0 0.2 0.4 0.6 0.8 1

0

1

2
10

5

0

5

10

10
4 c) Matched S

0 0.2 0.4 0.6 0.8 1

0

5

10

10
4 d) Matched & Equalized S

0 0.2 0.4 0.6 0.8 1

Figure 2.2: Example of histogram matching and equalization. Histogram c) is ob-
tained by matching a) to b), while histogram d) is the result of equalizing histogram
c).

view geometry in computer vision” book by Hartley & Zisserman [32] as a widely used

reference discussing its major concepts. For this dissertation, the following concepts

are of particular relevance to understand modern state-of-the-art techniques as well

as novel approaches herein introduced.

17

Figure 2.3: Example of image thresholding. Left: input image; middle: hue channel
after transforming the image to the HSV color space; right: binary image obtained
by thresholding the hue channel.

As summarized in [29], geometric transformations consist of two main opera-

tions: i) a spatial transformation of coordinates, and ii) an interpolation of intensity

values that define final values of transformed pixels. Spatial transformations known

as scaling, rotation, translation and shearing form a set of coordinate transforma-

tions referred to as affine transformations, which can be formulated using affine or

transformation matrix such as the one in Eq. 2.1.








x′

y′

z′









=









t11 t12 t13

t21 t22 t23

t31 t32 t33

















x

y

z









, (2.1)

where x, y, and z are the original coordinates of the original image point in homo-

geneous form [32], tij are the coefficients of the transformation matrix, and x′, y′,

and z′ are the coordinates of the transformed point. In general terms, affine transfor-

mations preserve linear relationships between points, straight lines and planes, such

that a given pair of parallel lines remains parallel after the transformation. Fig-

ure 2.4 illustrates each transformation, with the corresponding parameterization of

transformation matrices for each case.

As described in following sections, the concept of invariance to affine trans-

formations has been of great importance for the development of computer vision

18

Figure 2.4: Illustration of different affine transformations.

algorithms that aim at robustness against different acquisition conditions. The intu-

ition for such cases is that, ideally, a descriptor of an object or any entity of interest

should provide the same output regardless if the entity is subjected to translation,

rotation or other affine transformations.

2.2 Basic concepts of machine learning and pattern recognition

In this section, we provide definitions of techniques and concepts of machine

learning and pattern recognition that are exploited in many modern computer vision

systems.

2.2.1 Machine learning

As defined in [33], machine learning algorithms can be defined as “computa-

tional methods using experience to improve performance or to make accurate predic-

tions”. In this context, experience refers to information already accessible to the

learner, and according to the different types of experience, the learning scenarios can

be divided in three main categories:

19

• supervised learning: scenario where models (or “learners”) are trained using data

examples for which labels or ideal output values are available, targeting good

predictions on unseen data points;

• unsupervised learning: in contrast to the supervised case, in this scenario models

are designed to learn meaningful information from input data without accessing

output labels;

• reinforcement learning: models are designed to learn based on experience, by

means of interactions with an environment that yields associated rewards. In

this scenario, learners must be designed to properly balance between exploiting

information already available versus exploring novel, unknown domains.

Data subsets: training, validation, testing

Since the main goal of machine learning algorithms is to provide accurate

predictions for unseen inputs, datasets used for designing and evaluating efficient

algorithms are commonly structured with training, validation and testing subsets.

Compared to the training samples used to learn internal model parameters (such as

weights), the validation samples are used to tune parameters commonly known as

hyperparameters, which are free parameters that guide the learning process. Ideally,

parameters adjusted using a validation set will allow learned models to generalize

well to the fully unseen testing samples, which are ultimately used to evaluate the

performance of models in the task of interest.

In cases where limited data is available, cross-validation strategies are of par-

ticular relevance. In such scenarios, a single subset is randomly divided into N folds

(i.e., partitions) of equal sizes, and N iterations are performed such that each fold

is used exactly once as validation data. At the end, the final performance measure

corresponds to the average of the values obtained in each iteration, with the goal

20

of better assessing how well predictions will generalize to an independent data set.

Figure 2.5 illustrates a cross-validation process using N = 10 folds.

Figure 2.5: Illustration of a cross-validation process for N folds. Drawing inspired on
1

Overfitting, underfitting and model complexity

Proper selection of training, validation and testing subsets critically impacts

model behaviors known as overfitting or underfitting of data. These problems typi-

cally occur when the data subset used for model training has a different distribution

from the unseen data composing the target test set. Overfitting refers to the scenario

in which the model learns parameter values that fit very well the underlying training

distribution but fails to generalize well to the unseen testing subset. The opposite

case is underfitting, the scenario in which the learner fails to properly capture the

underlying distribution of the training data.
1https://scikitlearn.org/stable/modules/cross_validation.html

21

The concept of model complexity is crucial for the design of machine learning

models that avoid under/overfitting. Informally, it can be understood as a function

of the number of learnable parameters a model has, which in turn defines the size of

the hypothesis space a model can exploit for decisions. Learners with more parame-

ters than available training samples tend to overfit data, while models with too few

parameters might fail to capture complex structures of data.

Loss functions and optimization

Learning is framed as an optimization problem where loss (or cost) functions

play a critical role. In simple terms, loss functions measure the distance or differ-

ence between the outputs predicted by a model and the true outputs or labels [33].

Moreover, loss functions often incorporate regularization parameters, whose goal is

to reduce the chance of overfitting without increasing the amount of training data or

reducing the learner’s capacity in terms of learnable parameters.

The optimization process then consists of adjusting the models’ parameters

such that the corresponding loss function is minimized (or maximized, if formulated

in terms of similarity). As such, many optimization approaches are based on methods

that resort to derivatives or gradients to reach the optimal cost function value. The

most widely known family of optimizers are gradient descent methods, which minimize

costs by adjusting parameters (or weights) according to the cost (or error) gradients

with respect to them. In this context, an important challenge in machine learning

processes is the localization of the global minimum without settling in local minima,

which are non-optimal solutions for corresponding problems [34].

Classification problems are usually formulated based on maximum log-

likelihood to guide optimization. We detail the favorable aspects of maximum like-

lihood estimators in Section 2.5. As for the logarithm, some of the main reasons

for its widespread usage include the fact that multiplications can be handled in the

22

form of summations, and numerical problems can be avoided (e.g., very small values

that could lead to divisions by zero). Moreover, as the log function monotonically

increases, both likelihood and its log-likelihood counterpart share the same maxima

and minima.

Building upon the concept of Shannon’s Entropy in information theory (we

refer the reader to [35] for details), the cross entropy function is widely used in loss

functions for classification models. Defined according to Eq. 2.2, in a multi-class

classification task the cross-entropy H(·) is computed with yc corresponding to the

one-hot label for each class c, while pc is the model’s prediction for the corresponding

class. As detailed in Section 2.3, cross-entropy functions are a particularly good

match for outputs using activation functions of the exponential family (e.g. sigmoid

and softmax).

H(y, p) = −
∑

c

yclog(pc). (2.2)

2.2.1.1 Traditional machine learning approaches

Machine learning algorithms are exploited for multiple application scenarios,

with corresponding learning goals commonly categorized into: classification, ranking,

regression, dimensionality reduction and clustering [33]. In the following paragraphs,

we provide basic definitions of each category, as well as brief introductions to widely

used techniques that are of particular relevance for this dissertation.

Classification

Classification tasks consist of categorizing each data entry into a predefined

class. Linear classifiers are a simple example of classification models, where data

points are classified based on linear combinations of available features. That is,

for data inputs x and a set of learnable parameters (or weights) w, a linear model

23

generates output values ỹ according to Eq. 2.3. Defined as in Eq. 2.4, logistic

classifiers yield instead non-linear lines separating classes, by exploiting the logistic

sigmoid function, represented as σ(·) and defined according to Eq. 2.5.

ỹ = wTx, (2.3)

ỹ = σ(wTx), (2.4)

σ(a) =
1

1 + e−a
. (2.5)

Perceptrons and Neural Networks (NNs) are additional examples of classi-

fier/regressor models closely related to the concepts of linear and logistic regression.

Since NNs and their modern derivations are of central importance for this dissertation,

we discuss these models in detail in Section 2.3.

First introduced in [36], Support Vector Machines (SVMs) are supervised

learning models that search for a hyperplane that maximizes the margin distance

to each class. As illustrated in Figure 2.6, the optimization process of an SVM model

for a classification task does not only focus on finding a “line” (hyperplane) that as-

signs each training data point to the correct class, but instead a hyperplane whose

distances to the nearest points of each class are as large as possible. This character-

istic allows SVM models to generalize better than classifiers such as those based on

logistic regression.

However, for most applications the data is not linearly separable, requiring

SVM formulations using soft margin. In such cases, additional variables named slack

variables (represented with ξi) are added to measure and allow adjusting the influence

of data outliers. Moreover, kernel functions such as the popular radial basis function

(RBF, or Gaussian) are used within SVMs for handling non-linearly separable data.

Basically, the difference between a linear kernel and a RBF one consists in the way

distances between samples are computed in the feature space. For two samples x and
2https://gdcoder.com/support-vector-machine-vs-logistic-regression

24

Figure 2.6: Basic representation of SVM approaches for classification (drawing in-
spired on 2). Simple regressors are optimized based only on classification error, which
is maximum for any of the separation line in the left plot. The SVM selects instead
the hyperplane that yields the largest separation margin to all classes. In cases where
the data is not linearly separable, soft margins based on the concept of slack variables
ξ are learned.

x′, the kernel function is given by k(x,x′) = φ(x)T · φ(x′). A linear kernel computes

the distance between them according to Equation 2.6, while a RBF kernel computes

it according to Equation 2.7.

k(x,x′) = (xT · x′ + 1), (2.6)

k(x,x′) = e(−γ||x
T·x′||2). (2.7)

The weights of an SVM classifier are adjusted according to the following cost

function:

min
w,b

1

2
‖w‖2 + C

n∑

i=1

ξi, subject to: yi(wT · φ(xi) + b) ≥ 1− ξi, ξi ≥ 0,

where w corresponds again to the vector of weights, b is a bias, xi is an input vector

(i.e., a sample in the feature space), yi are the corresponding labels and ξi can be

understood as the error margin that defines whether an example is within the margin

or is misclassified.

25

The regularization cost C and the width γ of the Gaussian kernel are the

two main parameters controlling the performance of SVMs with a Gaussian kernel

function. By regulating the penalty applied to misclassifications, the parameter C

controls the trade-off between maximizing the margin with which two classes are sep-

arated and the complexity of the separating hyperplane. The parameter γ regulates

the flexibility of the classifier’s hyperplane. For both parameters, excessively large

values can lead to overfitting.

The optimization of C and γ is a problem without straightforward numerical

solution. Therefore, it is typically solved using grid search strategies [37,38] in which

multiple parameter combinations are evaluated according to a performance metric.

We refer to [37,38] for further details on the formulation of SVMs.

Regression

Regression tasks consist of associating a value in the real, continuous domain

to each data input. Similarly to classification domain, formulations using linear and

logistic functions are common examples of regression algorithms, where the learned

functions are used for interpolation of regression values instead of as separation be-

tween classes [33, 35].

Clustering

Clustering tasks focus on grouping data entries according to some similarity

criteria. K-means is a popular approach for clustering, where entries composing a

dataset are grouped into a predefined K number of clusters. Let X = {x1, ...xN}

represent a dataset with N samples, and S represent the set of clusters {s1, .., sK}.

Each cluster sj ∈ S is initialized at a unique centroid position, and an iterative

process is conducted with the goal of assigning each entry xi ∈ X to a cluster in

S, in such a way that an optimization criterion is met. As assignments occur, the

26

centroid µj of each cluster sj is updated as the mean of the data points assigned to sj.

One common criterion is to minimize the Euclidean distance between data points and

cluster centroids, such that the optimization process aims to find the set of clusters

that satisfies Eq. 2.8.

argmin
S

N∑

n=1

K∑

j=1

‖xn − µj‖
2 . (2.8)

Hence, the algorithm consists of a two-stage optimization process where data points

are iteratively re-assigned to clusters, and clusters centroids (or means) are re-

computed as assignments are updated until a convergence criterion is met.

Another well-known optimization strategy used for clustering is the

Expectation-Maximization (EM) algorithm, which is based instead on a probabilistic

framework. As detailed in [35], it is associated with the concept of Gaussian Mixture

Models (or GMMs), where a superposition of Gaussian densities is used to capture

more complex distributions. For clustering, EM is employed as optimization strategy

to learn parameters associated to GMMs describing multiple clusters, such that while

K-means employs a hard assignment of data points to a single cluster, GMMs allows

soft assignments through its probabilistic formulation.

Dimensionality reduction

Principal Component Analysis (PCA) is one of the most widespread techniques

for dimensionality reduction. It consists of projecting N -dimensional input data

onto a K-dimensional subspace in such a way that this projection minimizes the

reconstruction error (i.e., the L2 norm between the original and the projected data)

[33]. The problem is therefore expressed as

min
P∈PK

‖PX−X‖22, (2.9)

where X corresponds to the mean-centered data matrix and Pk is the set of orthogonal

projection matrices. PCA can be performed by computing the eigenvectors and

27

eigenvalues of the covariance matrix and ranking principal components according

to the obtained eigenvalues [39].

2.3 Neural networks

Neural Networks were originally designed with the basic working process of the

human brain as inspiration. Similar to their biological analogue, they are collections

of interconnected activation elements called neurons. As represented in Figure 2.7,

these elements consist of a set of learnable parameters named weights and biases,

followed by a pre-defined activation function that emulate, in simpler intuition terms,

the synapses generated by neurons in our brains. Mathematically, the output or

Figure 2.7: Basic structure of an unit or neuron composing a neural network.

activation a of a given neuron can be expressed as in Eq. 2.10, where φ represents a

chosen activation function, while w and b denote the set of weights and the associated

bias parameter, respectively.

a =
M∑

i=1

φ(wTx) + b. (2.10)

Stacked into layers, neurons composing artificial NNs are thus interconnected

such that, apart from the ones composing input layers, their input signals are

“synapses” or activations from each element connected to it. As illustrated in Figure

28

2.8, the architecture of artificial NNs consists of a sequence of layers, most commonly

structured in a feedforward manner. That is, the information propagates in only one

direction, across three main types of layers: an input layer where neurons activate

according to a given data input (e.g. pixels composing an image); hidden layers that

compose the middle of the architecture and can be stacked in multiple numbers to

increase the network’s representation capacity; and finally an output layer, whose

neurons provide the activations used as final outputs of the model.

Figure 2.8: Diagram illustrating the basic architecture of a fully connected deep
neural network.

Activation functions

Activation functions are chosen according to the application and position in

the NN architecture. A large of set activation functions can be found in modern

NNs. We refer the reader to [34] for more details, and describe below the functions

employed by models relevant to this dissertation.

The sigmoids are a family of S-shaped curves that includes the logistic func-

tion defined as Eq. 2.5, with both names frequently used interchangeably. Sigmoids

29

are commonly used as activation functions for output neurons in binary classification

tasks, as it is a non-linear function whose values range are in the interval [0, 1]. Simi-

larly, the softmax or normalized exponential function is commonly used for scenarios

of multi-class categorization. Defined as in Eq. 2.11, it ensures that all outputs of a

model add to 1, such that its output can be loosely interpreted as the probabilities

that a given input belongs to the corresponding classes [34].

softmax(z) = e−zi
∑

j e
−zj

log softmax(z) = zi − log
(
∑

j e
−zj

)

(2.11)

Both sigmoid- and softmax-based output units are usually employed in con-

junction with loss functions defined in terms of maximum log-likelihood. As the

second part of Eq. 2.11 indicates, the log of this exponential-based function has a

linear component corresponding to the input zi, such that its gradient is particularly

suitable for learning procedures based on gradient descent: even when the sigmoid

or softmax saturates, this linear component ensures a non-zero gradient, and the

learning process can thus proceed.

While suitable for output units when paired with log-based losses, sigmoids

have a zero derivative for larger absolute input values, such that their usage in hid-

den layers makes NNs highly susceptible to learning problems related to vanishing

gradients. In these cases, rectifiers are used to compose the so called Rectified Linear

Units (ReLUs). For a given input z, the output of a rectifier corresponds simply

to max(0, zi). Hence, its derivative is 1 for values larger than 0, and 0 for negative

values (undefined for input equal 0), making ReLUs particularly suitable for hidden

layers.

Deep neural networks

Neural networks with architectures comprising multiple hidden layers are

called deep neural networks. As commonly described in textbooks [35], neural net-

30

works are said to be universal approximators, with observations such as the ones

made in [40] that networks with a single hidden layer have the capacity to approxi-

mate any bounded continuous function, while networks containing at least two layers

can approximate any function to an arbitrary accuracy.

While the concept was introduced decades ago, deep learning models became

feasible relatively recently, after the introduction of large publicly available datasets

such as ImageNet [25], of graphics processing units (GPUs), and of training algorithms

that exploit GPUs to efficiently handle large amounts of data [34,41].

2.3.1 Convolutional neural networks (CNNs)

Convolutional Neural Networks (CNNs) constitute the majority of current

deep learning architectures, especially for computer vision purposes. In contrast to

units composing fully connected layers, CNNs employ convolutional filters to create

sparse connections among layers. As an example, let us consider the model introduced

in [4] and commonly named “AlexNet”, whose architecture is illustrated in Figure

2.9: designed for image processing, its first convolutional input layer employs kernels

(illustrated in green) that assess only a 5 × 5 region of the input image at a time.

Each position in the kernel corresponds to a learnable weight that multiplies input

values and, as in any other neural unit, is then processed using an activation function

(typically a ReLU). Thus, the convolution operation will output a single activation

value for each evaluated input region. Similar to the signal processing counterpart

operation, the convolutional operation in a CNN evaluates all regions in the input

by sliding the kernel over all input data points, with step sizes corresponding to a

predefined stride value.

Importantly, the kernel weights are shared at every input location, i.e., the

same weight values are used for evaluation over the whole input. This strategy pro-

vides CNNs with the ability of learning representations that are invariant to trans-

31

Figure 2.9: Diagram illustrating the architecture of the model introduced in [4], now
widely known as AlexNet.

Figure 2.10: Diagram illustrating the typical composition of a convolutional layer,
combining a convolutional kernel, followed by an activation function (ReLU) and a
max-pooling layer.

lation, a powerful tool to describe sets of complex descriptors as described in detail

in the next paragraphs. As Figure 2.10 illustrates, the collection of kernel outputs at

the different input locations generates new representations commonly referred to as

feature maps.

32

Pooling

After each convolutional layer, most CNNs employ a pooling layer. Pooling

is another type of kernel-based operation which, instead of using learnable weights,

transform multiple input values into a single output by means of fixed operations like

averaging or max, with the latter being the most commonly used in CNNs. Figure

2.10 illustrates the typical composition of a convolutional layer, where a learnable

kernel is followed by a ReLU layer and also a max-pooling operator.

These operations are employed to increase the model’s receptive field, i.e., to

evaluate increasingly larger regions of the inputs. Intuitively, relying solely on kernels

of small sizes (e.g., 5× 5) pixels would lead to models only capable of learning local

feature descriptors, insufficient to characterize complex, larger structures. However,

increasing kernel sizes would imply more weight parameters to be learned, which in

turn tends to make training unfeasible as training data requirements increase. Thus,

pooling operations serve as a mechanism to downsample input representations and

allow the evaluation of increasingly larger receptive fields.

Hierarchical features

The combination of multiple convolutional layers and downsampling tech-

niques yields deep CNNs with their extraordinary ability to learn hierarchical fea-

tures. They are a key factor for the success of these models in comparison to previous

hand-engineered methods described in Section 2.4.3 [41]. As described in [42], the

convolutional layers C1-C2 in Figure 2.9 learn to identify low-level features such as

corners and other edge/color combinations. The following layers C3-C5 combine this

low-level information into more complex structures, such as motifs, object parts and

finally entire objects.

33

Data augmentation, fine-tuning, transfer learning

Traditional deep CNNs are composed of millions of parameters: as an example,

the early AlexNet [4] contained 60 million parameters. Thus, although many large

publicly available datasets have been introduced, gathering domain specific training

data to train such deep models is a daunting task. One alternative to reduce the

required amount of labeled data is data augmentation, a technique used to benefit

the training of multiple machine learning models. Data augmentation is typically

performed by applying transformations such as translation, rotation and color space

shifts to pre-labeled data, as illustrated in Figure 2.11 for an image composing the

PASCAL dataset [43].

Figure 2.11: Examples of common data augmentation strategies in computer vision,
using an image composing the PASCAL dataset [43] for illustration.

34

In addition, various transfer learning approaches such as fine-tuning have been

investigated [44, 45]. Earlier layers of a deep neural network tend to contain more

generic information (low-level features), which is then combined by the later layers

into task specific objects of interest. Thus, a network that can recognize different

objects present in a large dataset must contain a set of low-level descriptors robust

enough to characterize a wide range of patterns. Under this premise, fine-tuning

procedures typically aim at adjusting the higher-level part of a network pre-trained

on a large generic dataset, rather than training the full network from scratch. This

greatly reduces the need for task-specific data, since only a smaller set of parameters

has to be refined for the particular application [45].

Skip-connections

Increasing the number of layers is the most natural way of increasing the

capacity of deep neural networks. However, over time it has been observed that a

limit can be encountered where the performances of models start to decrease as their

number of layers becomes too large. In [46], He et al. introduces the concept of skip-

connections and residual learning to address this problem. As Figure 2.12 illustrates,

skip connections provide a direct pathway between the input and the output of the

corresponding layer. This pathway is equivalent to an identity layer, such that weights

composing the layer under consideration have only to learn a residual mapping with

respect to the identity function. Hence, if a shallower option is the optimal solution

for a certain part of the network, it is easier for the learning process to converge

to such a solution where weights would be set to approximately 0, while a pathway

for gradient backpropagation still exists. By exploiting skip-connections, the authors

introduced the ResNet model, one of the most popular network architectures used as

a backbone in many state-the-of-art models for various image understanding tasks.

35

Figure 2.12: Representation of the concept of skip-connections for the design of resid-
ual networks.

2.4 Image semantic segmentation

In this section, we first provide an overview of the main datasets and evaluation

metrics used for the design and assessment of image segmentation methods. Then, the

most relevant approaches introduced for such tasks are reviewed, including techniques

based on hand-engineered features as well as modern deep learning strategies.

2.4.1 Datasets

ImageNet

Introduced in [25], the ImageNet dataset contains over 14 million images la-

beled for > 21k categories defined according to the hierarchical structure of Word-

Net [47]. In addition to the dataset, the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) for object detection and image classification was held until 2017,

and was crucial for the development of deep CNNs that revolutionized image classi-

fication tasks. The AlexNet model [4] was introduced at the ILSVRC 2012, winning

the competition by a large margin and setting an important turning point where

36

CNN-based models started to be widely and successfully exploited for many tasks.

Figure 2.13 shows some examples of images composing the ImageNet dataset.

Figure 2.13: Examples of images composing the ImageNet dataset. From left to right,
these images contain annotations for the classes person, bird and banjo, respectively.

PASCAL VOC

Introduced in its first version in 2005, the PASCAL Visual Object Classes

(VOC) is still arguably the most widely used benchmark for semantic segmentation,

with the leaderboard of its 2012 version3 being constantly updated with the perfor-

mances of novel state-of-the-art approaches [43]. In all its versions, the PASCAL

VOC dataset consists of images collected from Flickr4 and annotated according to

the presence of the 20 different semantic categories listed below:

• Vehicles: airplane, bicycle, boat, bus, car, motorcycle, train;

• Household: bottle, chair, dining table, potted plant, sofa, tv/monitor

• Animals: bird, cat, cow, dog, horse, sheep

• Other: people

Figure 2.14 shows some examples of the annotations in the PASCAL VOC dataset.
3http://host.robots.ox.ac.uk:8080/leaderboard/
4http://www.flickr.com/

37

Figure 2.14: Examples of images and annotations composing the PASCAL dataset.

MS COCO and COCO-Stuff

Inspired by the success of the ImageNet dataset for image classification, the

Microsoft Common Objects In COntext (COCO) dataset [5] was introduced in 2015

to foster advances in object recognition, localization, and segmentation. For segmen-

tation tasks, the version of the COCO dataset released in 2014 is split into 82k train,

40k val and 40k test images, annotated for 80 different classes and with approxi-

mately 270k segmented people and 886k segmented object instances in the train+val

images alone [5].

(a) COCO (b) COCO-Stuff

Figure 2.15: Examples of images and annotations composing the a) COCO [5] and
b) COCO-Stuff [6] datasets.

The COCO dataset was recently augmented by Caesar et al. [6] into the

COCO-Stuff dataset. While the original COCO annotations covered only foreground

or “things” classes (e.g. animals, people, vehicles), this dataset includes pixel-level

38

annotations for background regions that are amorphous and/or considered as of lower

relevance, such as grass, sky, tree and flowers. Compared to “things”, identification

of “stuff” classes is of particular importance to identify acquisition conditions, physi-

cal/material types and contextual relationships between multiple “things” and “stuff”.

This is particularly relevant to extend image segmentation methods to novel applica-

tions where, in comparison to traditional datasets, rather unconventional classes and

scenarios are under investigation, such as the agricultural domains investigated in

this dissertation. Figure 2.15 illustrates examples from the COCO and COCO-Stuff

datasets.

DAVIS

Motivated by the successes of datasets such as PASCAL and COCO on acceler-

ating research in semantic segmentation, the Densely Annotated VIdeo Segmentation

(DAVIS) dataset was introduced in [7] to foment advances on Video Object Segmen-

tation. As illustrated in Figure 2.16, the DAVIS dataset comprises high quality video

sequences and, compared to the PASCAL and COCO datasets, contains ground truth

annotations with significantly higher quality at pixel-level for each frame.

Figure 2.16: Examples of images and annotations composing the DAVIS [7] dataset.

39

The first version DAVIS 2016 contained 50 video sequences with a total 3, 455

frames, which was extended in the DAVIS 2017 version [48] to a total to 10, 474

annotated frames composing 150 video sequences. Moreover, since 2017 the DAVIS

Challenge on Video Object Segmentation has been held. In addition to the original

semi-supervised tracking task where only the first frame of a video sequence is pro-

vided, the DAVIS 2018 [49] introduced an interactive track where annotations in form

of scribbles are provided for certain frames, while the DAVIS 2019 [50] introduced an

unsupervised task where object proposals must be generated without any input at

test time.

2.4.2 Evaluation metrics

Originally introduced for communication tasks [51], metrics defined in terms

of true positives (TP), true negatives (TN), false positives (FP), and false negatives

(FN) have become very popular in machine learning problems. Illustrated in Figure

2.17 by means of a binary Confusion Matrix, these definitions are used to compute

metrics such as Recall, Precision, Accuracy, and F1 score (or F-measure), as Eqs.

2.12-2.15 indicate.

recall =
TP

P
(2.12)

precision =
TP

TP + FP
(2.13)

accuracy =
TP + TN

P +N
(2.14)

F-measure =
2

1/precision + 1/recall
(2.15)

Figure 2.17: Confusion matrix and common performance metrics calculated from it.

40

In simpler terms, precision expresses how many of the returned results for a

certain task are relevant, while recall indicates how many of the existing relevant

instances of information were returned. To compare the overall performance of differ-

ent methods in classification tasks, recall and precision metrics can be combined into

the F-measure (F1) or Precision-Recall (PR) curves (example in Figure 2.18), whose

overall shape can be summarized in terms of the Area Under the Curve (AUC). One

of the most widely used metrics for object detection tasks, Average Precision (AP)

values summarizes the shape of PR curves by approximating its area under curve as

the mean precision at a set of equally spaced recall levels in the interval [0, 1].

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

HSV

HSV+Bh

HSV+SVM

CNN+SVM

Figure 2.18: Example of usage of Precision-Recall (PR) curves for comparison of
different methods on a segmentation tasks. Extracted from [9], one of the works that
are part of this dissertation.

Analysis in terms of precision-recall curves (PR) and the corresponding F1

score are of particular relevance in scenarios of imbalanced datasets. In such scenarios,

evaluations of performance using only accuracy measurements may be misleading,

since they are insensitive to changes in the rate of class distribution. In contrast, by

41

definition, the computation of precision gives to false positive detections the same

relative weight as true positives, such that PR metrics are more robust to dataset

imbalance.

Many evaluation metrics have been proposed for assessing performance of

image segmentation techniques. The simplest are global accuracy metrics, which

compute the overall percentage of pixels labeled correctly in a dataset. To better

handle potential class imbalance, in multi-class scenarios the average of accuracies

for each class is considered a better metric. Defined according to Eq. 2.16, the mean

Intersection over Union (mIoU) or Jaccard index is arguably the most widely used

metric for semantic segmentation tasks, as exemplified by the leaderboards in the

PASCAL VOC 2012 [43] and the DAVIS [7] datasets. It consists of dividing, for

each class in a set C = {1, ..., nc}, the number of pixels of the intersection between a

predicted mask M and the corresponding class ground truth G by their union, and

finally averaging the results over all classes.

mIoU =
1

nc

∑

C

|M ∩G|

|M ∪G|
=

1

nc

∑

C

TP

TP + FP + FN
. (2.16)

Contour-oriented metrics

For scenarios where boundary adherence is of particular interest, evaluation

strategies that focus on contour accuracy have been introduced. In addition to the

conventional Jaccard J index, the DAVIS dataset [7] proposes a Contour Accuracy

metric F defined according to

F =
2PcRc

Pc +Rc

, (2.17)

where Pc and Rc correspond to precision and recall metrics as in the conventional F1

score computation, respectively, with the difference that both values are computed

42

only at pixels composing the contour c(M) of a given prediction mask M with respect

to the contour c(G) of a ground-truth mask G.

Moreover, assessments of boundary adherence quality can be also performed

by computing segmentation accuracy only on narrow regions closer to the ground-

truth boundaries. Ghiasi et al. describes in [52] such an approach for evaluations

using mIoU for the PASCAL dataset, where a performance curve is constructed by

computing segmentation mIoU for varied thicknesses around the boundaries of the

ground-truth masks.

2.4.3 Approaches based on hand-engineered feature descriptors

Initial methods proposed for image segmentation were based on bottom-up

approaches, where pixels were labeled based on low-level features such as color, tex-

ture or other morphological characteristics [28]. While different levels of quantization

have been exploited (pixels, segments, superpixels), these methods achieve only lim-

ited success on tasks requiring the identification of complex structures/objects, since

higher-level context information is required to characterize elements such as people

and animals, among many others.

Introduced in [53] and still popular in image matching tasks, the Scale Invari-

ant Feature Transform (SIFT) generates a large dictionary of local feature vectors

called SIFT keys for each image. Evaluating images in a scale-pyramid manner, key

locations are identified as regions where extreme values of a difference-of-Gaussian

function are present. For each keypoint, image gradients and orientations are ex-

tracted such that features invariant to scaling, translation and rotation are obtained.

Sets of SIFT keypoints can then be used as descriptors of structures of interest, such

that object detection can be performed by comparing the similarity between the

keypoint in these sets.

43

As reported in [43], methods based on the concept of aggregating features

into bag-of-visual-words (BOW) [54] achieved at the time the best performances on

the PASCAL VOC 2007 classification tasks. Each BOW corresponds to a histogram

of the frequency of pre-defined patterns in patches of an image, using, say, SIFT as

descriptors of selected affine regions. In [55], Dalal and Triggs introduced the concept

of locally normalized Histogram of Oriented Gradients (HOG) computed instead on a

dense grid of uniformly spaced cells as an object descriptor for human detection. As

in described in [54], detection is performed by combining descriptors with a Support

Vector Machine (SVM) classifier, with results significantly outperforming detectors

based on previous descriptors such as the Haar wavelet [56].

In [57], mixtures of multiscale deformable part models are combined with

SVMs formulated using latent variables to overcome difficulties of training part-based

models while using labels in the form of bounding boxes. Applied to images using

sliding windows, this method combines a coarse scale HOG representation with a

set of finer-scale HOG part filters. Outperforming previous methods, it became the

standard approach exploited by state-of-the-art models for object detection in the

PASCAL dataset between 2008 and 2012 [43]. To reduce computational costs asso-

ciated with exhaustive search using sliding windows over the whole image, methods

such as selective search [58] attempt to optimize the selection of regions to be evalu-

ated through a data-driven approach. Such strategies represent a return to bottom-up

approaches, which merge initial regions using complimentary grouping criteria, mul-

tiple color spaces, and different invariance properties. In this way, a diversified set of

region proposals is obtained for further classification.

While for segmentation tasks such bottom-up approaches were originally most

popular, to exploit object modeling at higher (global) levels many works pursued top-

down strategies where object detection was first performed, followed by the segmen-

tation of structures inside the returned bounding boxes. Following earlier attempts

44

that focused on learning average masks for each object category [3], works such as [59]

proposed coupling global and local representations to refine average class masks using

an optimization approach that includes as final constraints the concept of superpixels,

explained in the following Section 2.4.4. As reviewed in [43], until 2012 combinations

and extensions of techniques based on multiple bottom-up segmentations, hierarchi-

cal random field models and part-based feature descriptors were the core components

of state-of-the-art entries on the PASCAL VOC leaderboard.

2.4.4 Weak and unsupervised segmentation

Clustering techniques

Superpixels are perceptually meaningful clusters of pixels generated by group-

ing together pixels that share similar appearance and spatial distribution. The simple

linear iterative clustering (SLIC) superpixel algorithm is one of the most widely-used

algorithms for superpixel segmentation. It adapts k -means clustering to group pix-

els according to a weighted distance measure that considers both color and spatial

proximity [60]. Figure 2.19 illustrates the segmentation of an image using the SLIC

algorithm.

Figure 2.19: Example of superpixel segmentation of an image using the SLIC algo-
rithm introduced in [60].

45

In [61], Stutz et al. provide a review of existing superpixel approaches, with a

comprehensive evaluation that ranked 28 state-of-the-art algorithms according to sev-

eral metrics such as average recall, average undersegmentation error, boundary recall

and also realtime capability. In addition to clustering-based algorithms, alternative

formulations for segmentation into superpixels include, for example, energy based

optimization. The Extended Topology Preserving Segmentation (ETPS) method [62]

is one example, standing out in their evaluation with high performance in terms of

boundary adherence, recall, stability and runtime.

Some limitations of conventional superpixel algorithms include lack of adap-

tiveness in terms of adjusting to local features and generating clusters of flexible sizes,

as well as poor robustness to mistakes in the initialization of parameters.

Models exploiting Bayesian estimation have been introduced to overcome these

limitations of superpixel algorithms, with strategies that range from pixel-related

Gaussian Mixture Models (GMMs) [63, 64] to non-parametric mixture models [65].

In such approaches, previously fixed normalization hyperparameters are replaced by

Bayesian priors, which are updated in conjunction with other cluster statistics in the

form of covariances as assignments of pixels to clusters take place.

Graph cuts

Energy minimization approaches using the graph cuts paradigm are suited

to interactive segmentation where hard constraints are specified via squiggles for

background and foreground classes [66–68]. The popular GrabCut algorithm [69]

improved over interactive tools such as Intelligent Scissors (Magnetic Lasso) [70],

relaxing some of the labeling burden on the user. The user selects a bounding box of

background pixels and can further edit the generated segmentation by drawing firm

background/foreground traces. Gaussian Mixture Models (GMMs) are used for color

modeling and a Gibbs energy is iteratively minimized using minimum cut.

46

Level sets

The level set approach has been used in segmentation since the 1990s, and

can also be formulated as an energy minimization problem. Given an initialization, a

boundary is evolved in the direction of a local minimum found via front propagation

by solving partial differential equations [71]. An issue with level set implementations

in the 2000s was runtime, and interactive approaches focused on reducing runtime

using GPU implementation [72, 73]. One approach [72] allowed user input to adjust

model parameters, while in [73] the authors reformulated energy functionals to in-

corporate user input. In [74], bounding-box initialization and the level set formalism

were used for interactive segmentation. The TouchCut [75] interface exploits level-sets

to grow segmentation masks from single points, which is effective when foreground

and background colors are significantly different.

Propagation by pixel-affinity

In a similar fashion that superpixel algorithms segment input images into

clusters [61], several matting and segmentation algorithms use low-level information

such as texture, color affinity and spatial proximity to classify unlabeled regions based

on sparse annotations [76–78].

Joint propagation and CNN training

Recent approaches aiming at interactive or weakly-supervised semantic seg-

mentation focus on architectures in which the propagation of sparse annotations and

the optimization of network parameters are performed jointly. Different works com-

bine Fully Convolutional Networks (FCNs, described in Section 2.4.5 below) with:

GrabCut [79]; superpixels and graphical modeling [80, 81]; novel loss functions and

training strategies for weakly-supervised and interactive learning [80, 82,83]. In [84],

47

the idea of Laplacian matting matrices is combined with superpixels and a DeepLab-

ResNet (described in Section 2.4.5 below) [22] to identify layers (soft segments) that

are semantically meaningful. For annotation of video sequences, in [85] an FCN is

used to map input pixels onto an embedded space where pixels belonging to the same

instance are close together, followed by a nearest-neighbor approach that classifies

pixels based on reference masks provided at the first frame and on sparse user inputs.

2.4.5 Deep learning-based approaches

Following the success of CNNs on image classification tasks, the work of

Girschick et al. [86] introduced the concept of region-based CNNs (R-CNN), outper-

forming by a large margin previous hand-engineered methods for object detection.

In that work, a CNN pre-trained on a large auxiliary dataset (ImageNet) and then

fine-tuned using a smaller but more specific dataset (PASCAL dataset for object

detection) is used to classify region proposals generated using the selective search

algorithm from [58]. The Faster R-CNN proposed in [87] improved this model by re-

placing selective search with the concept of Region Proposal Networks (RPNs), which

share convolutional layers with the classification network. Both modules compose a

single, unified network for object detection.

Yet, tasks requiring image labeling at pixel-level are particularly challenging

for CNN-based systems. The combination of max-pooling and striding operations

constitute a standard strategy for learning hierarchical features, which are a deter-

mining factor in the success of deep learning models. They explore the transition

invariance favored by image-level labeling tasks, i.e., the fact that only the presence

of an object matters, not its location. Such premise, however, does not hold for pixel-

dense classification tasks, which require precise object localization. As pointed out

by Chen et al. in [88], such spatial insensitivity and image downsampling inherent to

48

Figure 2.20: Representation of a fully convolutional network (FCN). In comparison
to an original classification network such as AlexNet [4], fully convolutional networks
replace fully connected classification layers by further convolutional layers and an
upsampling step to return segmentation masks.

conventional CNNs are two major hindering factors for their performance in image

segmentation.

This is clearly exemplified by segmentation predictions generated by models

such as the ones introduced by Eigen & Fergus [89] and the earlier Fully Convolutional

Networks (FCNs) [90]. As represented in Figure 2.20, FCN architectures essentially

consist of image classification CNN models with their fully connected layers replaced

by further convolutions, followed by a bilinear upsample of the feature maps to gener-

ate a pixel-dense prediction. These models generate coarse segmentation masks with

limited boundary adherence, an open problem that has driven many advances in the

field.

Different strategies have been proposed to alleviate the effects of downsam-

pling [91]. Many approaches focus on developing better upsampling strategies to

improve segmentation accuracy. In this context, the concept of fractional convolu-

tions is exploited to define learnable deconvolution layers. Represented in Figure 2.21,

fractional convolutions differ from conventional ones as they use fractional strides < 1

49

in order to expand the receptive field. Since in CNNs they are used to achieve up-

sample while traditional convolutions provide downsampling, fractional convolutions

are also often called transposed convolutions.

Figure 2.21: Representation of fractional convolutions, commonly used for upsam-
pling (inspired on drawing available at 5).

Architectures designed with encoder-decoder schemes are at the core of many

recent models proposed for image segmentation. With a basic representation of their

architectures provided in Figure 2.22, the U-Net [92] and the SegNet [93] models

are examples of improved strategies that focused on encoder-decoder architectures

where the decoder path includes skip-connections to convey information from encoder

layers to better guide upsampling. While SegNet guides upsampling according to the

indices associated with positions that yielded the pooling outputs, U-Net copies and

concatenates resized versions of feature maps from earlier encoding layers to provide

the decoding layers with low-level details available before downsampling.

Another direction concentrates on reducing the amount of details lost through

downsampling. The DeepLab model introduced in [22] is one of such models, and

currently one of the most successful approaches for semantic image segmentation using

deep learning. It combines the ResNet-101 [46] model with the concept of atrous or
5http://d2l.ai/chapter_computer-vision/transposed-conv.html

http://d2l.ai/chapter_computer-vision/transposed-conv.html

50

Figure 2.22: Basic representations of encoder-decoder (SegNet [93]) and U-Net archi-
tectures [92].

dilated convolutions. Illustrated in Figure 2.23, this concept was first exploited in [94]

for the design of convolutional filters in CNNs.

Figure 2.23: Representation of the concept of dilated convolutions, for different dila-
tion rates d. Illustration inspired on figure present in [22].

51

Figure. 2.24 provides a simplified illustration of the DeepLab architecture, as

well as a representation of the second version DeepLabV2. Similar to works such as

PSPNet [95], DeepLabV2 also exploits the concept of spatial pyramid pooling (SPP)

for detection of objects at multiple scales. Introduced in [96], SPP adapts for the

design of CNNs the concept of scale pyramid introduced in [97] for image evaluation.

More specifically, Chen et al. introduces in [22] the concept of atrous spatial pyramid

pooling (ASPP), where representations at multiple scales are obtained using dilated

(or atrous) convolutions with varied dilation rates.

Figure 2.24: Representations of DeepLab [88] and DeepLabV2 [22] architectures, in-
cluding the concept of atrous spatial pyramid pooling (ASPP), where multiple dilated
convolutions are performed with different dilation rates.

52

By combining these strategies, the DeepLab models significantly reduce the

downsampling rate and achieve state-of-the-art performance in challenging semantic

segmentation datasets such as the PASCAL VOC [43] and COCO [5]. More re-

cently, the current state-of-the-art DeepLabV3+ model [98] was introduced, combin-

ing ASPP strategies (adjusted to exploit image-level features) with a decoder module

to refine segmentation along boundaries.

The RefineNet model [99] adopts similar strategies. As most of the best per-

forming recent approaches, it leverages the ability of residual networks [46] to learn

deeper and more complex representations of images. RefineNet [99] employs a multi-

path refinement structure such that long-range residual connections are formed. Each

block has as input two of the feature maps collected from the residual network at res-

olutions of 1/4, 1/8, 1/16 and 1/32 of that of the original image. The inputs are

combined through a sequence of adaptive convolutions for task-specific fine tuning,

upsampling for multi-resolution fusion and residual pooling to capture background

context.

A variation of the semantic segmentation problem is instance segmentation,

which requires detecting and segmenting individual object instances. Coarse segmen-

tations significantly hamper this type of task, since neighboring instances of objects

of the same class are frequently merged into a single segmentation. Dai et al. in [100]

introduced the concept of instance-sensitive FCNs, in which an FCN is designed to

compute score maps that determine the likelihood that a pixel belongs to a relative

position (e.g. right-upper corner) of an object instance. FCIS [24] is an extension of

that approach, which achieved the state-of-the-art performance and won the COCO

2016 segmentation competition.

53

2.4.6 Post-processing techniques

In addition to adjustments in CNN architectures, some studies focus on inves-

tigating techniques that employ low-level image features to aid CNN-based models

in image segmentation tasks. Examples include exploiting superpixels [61] as a pre-

processing step, where pixels are grouped based on low-level properties (e.g. color sim-

ilarity) and each group is evaluated using hand-engineered hierarchical features [101]

or CNNs [102, 103]. Another possible approach consists of adapting the GrabCut

model [69], which is a well-known method for interactive segmentation based on the

minimization of an energy function that models the background and foreground as

Gaussian mixture models (GMM).

Likewise, techniques such as superpixels and conditional random fields (CRFs)

have also been employed for the post-processing of segmentations generated by deep

CNN models. In [104], Krähenbühl and Koltun introduced the DenseCRF, which is

an efficient algorithm for fully connected CRFs containing pairwise potentials that

associate all pairs of pixels in an image. In contrast to conventional fully connected

CRFs implementations, DenseCRF improves computational efficiency thanks to an

approximate inference algorithm in which pairwise potentials are modelled as com-

binations of Gaussian kernels. More specifically, an appearance kernel captures the

aspect that pixels similar in terms of color and spatial location are likely to share

the same labels, while a smoothness kernel is designed to remove spurious regions.

Crucially, such kernels are designed with hyperparameters that require supervised

optimization.

As previously mentioned, the DeepLab paper [88] proposes to integrate its

novel architecture with the DenseCRF model from [104] to refine segmentation masks

especially along boundaries. Chen et al. introduced the DT-EdgeNet model in [105],

which is a computationally cheaper alternative that replaces the DenseCRF with a

54

domain-transform approach that refines segmentation using a modern edge-preserving

filtering method. Similarly to CRF, however, DT-EdgeNet also comprises parameters

that have to be optimized in a supervised manner when applied to different datasets.

2.5 Basic concepts of probability theory and stochastic methods

This section covers concepts from probability theory that are directly appli-

cable to the methods proposed in this dissertation. We assume the reader is familiar

with basic concepts such as expected values, variances, and covariances, as well as the

basic normal (or Gaussian) distribution. For detailed explanation of these concepts,

we refer to [106].

Bayes’ rule

As mentioned in [34], machine learning systems can benefit from concepts of

probability theory to properly reason and make decisions in the presence of uncer-

tainties. Expressed in Eq. 2.18, Bayes’ rule is of particular relevance, as it provides

a systematic approach to update prior knowledge about the probability distribution

of a state or, in machine learning configurations, a set of model parameters θ, ac-

cording to new evidences or observations y. The Bayes’ rule allows this computation

as a function of the likelihood P (θ|y) that an evidence y is observed, given a model

according to θ

P (θ|y)
︸ ︷︷ ︸

Posterior

=

Likelihood
︷ ︸︸ ︷

P (y|θ)

Prior
︷︸︸︷

P (θ)

P (y)
︸︷︷︸

Evidence

. (2.18)

The component P (y) corresponds to the probability of the observation for all possible

values of θ, i.e., P (y) =
∫
P (θ)P (y|θ)dθ in the case of continuous θ. Therefore, it is

a constant value that is often omitted, such that the unnormalized posterior density

55

given in Eq. 2.19 below is commonly used [107]

P (θ|y) ∝ P (y|θ)P (θ). (2.19)

In the context of machine learning, Bayes’ rule is commonly used by framing

data measurements or predictions as observations. In other words, it allows estimating

the probability that a hypothesis or configuration given by θ is correct, based on

data inputs (observations) and the likelihood of such observations given that set of

parameters θ.

Estimators

A popular strategy for designing predictive models is to frame the model’s

output as the likelihood, such that model optimization focuses on finding the set of

parameters that yield the maximum likelihood [35]. For models where no reliable

prior knowledge is available, the maximum likelihood estimator (MLE) has also the

advantage of relying solely on measurements to find a set of parameters that is most

likely to explain the data distributions being used for training.

Least square estimators are another family of estimators widely used in ma-

chine learning frameworks. In particular, the mean squared error (MSE) or squared

Euclidean distance is a popular choice, as it has important characteristics such as

linearity, positive-definiteness and is differentiable for all input values, which makes

it suitable for optimization approaches based on gradient computation.

2.5.1 Monte Carlo estimation and variance reduction techniques

As described in [35], in many scenarios it is unfeasible to obtain exact esti-

mations of desired properties such as expected values. Possible root causes include

high dimensionality of certain distributions, or the fact that they have highly complex

forms for which expectations do not have an analytical solution.

56

In such cases, approximate inference strategies are exploited in many machine

learning systems to provide estimations within a certain range of uncertainty. Deter-

ministic approximation schemes include the concept of variational inference [34, 35],

where an approximate distribution is used for estimation of a distribution of interest,

with their differences minimized through strategies commonly based on Kullback-

Leibler (KL) divergence.

In this dissertation, we focus instead on stochastic approximation schemes

based on numerical sampling, which provide approximate estimations with a reduced

cost. More specifically, we exploit the concept of Monte Carlo sampling for ap-

proximate inference in the algorithms described in this work. Let f(x) represent

some function of interest for which the expected value E[f(x)] cannot be efficiently

computed analytically. A numerical computation according to Eq. 2.20 requires eval-

uating all possible values of x, which is practically unfeasible in most cases. Hence, a

possible approximation scheme consists in sampling values of x instead of evaluating

it exhaustively.

E[f(x)] =

∫

f(x)P (x)dx. (2.20)

Following Eq. 2.21, approximation through Monte Carlo sampling consists in

randomly drawing N samples x1, ...,xN according to the distribution P (x) and com-

puting the associated empirical average µ̂ as approximation for the integral defining

E[f(x)].

E[f(x)] ≈ µ̂ =
1

N

N∑

i=1

f(xi) (2.21)

This approximation is justified through the law of large numbers. As ex-

plained in [108], for samples independent and identically distributed (i.i.d.) with

P (x) the weak law of large numbers states that limN→∞ P (|µ̂− µ| ≤ ǫ) = 1, for

any ǫ > 0. Assuming the mean µ exists, the strong law of large numbers state that

57

P (limN→∞ |µ̂− µ| = 0) = 1, which indicate that “Monte Carlo will eventually produce

an error as small as we like” [108].

Moreover, the estimator µ̂ obtained using a Monte Carlo framework has mean

and variance described according to Eqs. 2.22 and 2.23, respectively, with two conse-

quences: i) from Eq. 2.22, it follows that the estimator is unbiased; and ii) from Eq.

2.23, it follows that if the variance of each sample is lower than ∞, the estimator’s

variance decreases according to the number of samples and converges to zero [34,108].

E[µ̂] =
1

N

N∑

i=1

E[f(xi)] =
1

N

N∑

i=1

µ = µ, (2.22)

σ2[µ̂] =
1

N2

N∑

i=1

σ2[f(x)] =
σ2[f(x)]

N
. (2.23)

Hence, from the central limit theorem it follows that an approximation using

N samples converges to a normal distribution N ∼ (µ, σ2[f(x)]/N), which allows esti-

mating confidence intervals around the approximate estimation obtained for a given

number of samples [34,108].

2.5.1.1 Variance reduction techniques

In addition to the simplest strategy of randomly drawing samples according

to a uniform distribution, more sofisticated sampling strategies exist. Since the vari-

ance of the Monte Carlo estimator is given according to σ2/N, two directions can be

exploited to improve the quality of estimation: i) increase the number of samples,

which however increases the computational cost of the overall process; and ii) reduce

the variance associated to each estimation. The second direction is the focus of a

family of strategies called variance reduction techniques. In the paragraphs below

we briefly describe two popular variance reduction strategies that are exploited in

methods covered in this disseration, with [108] as a reference for further information.

58

Stratification

Stratified sampling consists in guiding the sampling process by dividing the

domain of interestD into separate regions, and sampling from each region according to

a pre-defined criteria. The most straightforward approach consists in sampling equal

numbers of samples from each region, which can be particularly helpful in scenarios

of data imbalance. Another strategy is systematic sampling, which consists in first

randomly selecting a sample, and then selecting every n− th element positioned with

respect to the first sample. The step size n is defined according to the pre-defined

number of samples and the population size, which can be done over the whole domain

or within pre-defined strata composing a stratified approach.

Antithetics

Antithetical sampling consists in selecting pairs of correlated samples that are

symmetric, opposite to each other according to some criteria. For example, if the

domain of sampling is within a range [0, 1], antithetical consists in first randomly

drawing a sample x, and then selecting an extra sample at the position 1 − x. For

zero-centered, symmetric distributions such as a normal distribution with zero-mean,

antithetic sampling corresponds to selecting a second sample that has the opposite

sign of the randomly selected one.

2.6 Uncertainty estimation techniques for computer vision

In statistical fields, uncertainty is commonly categorized into aleatoric and

epistemic uncertainties. The first refers to uncertainties whose root cause is observa-

tion noise, which might be intrinsic and remain constant for a given task (homoscedas-

tic uncertainty) or vary for different inputs (heteroscedastic). In contrast, epistemic

59

uncertainty refers to uncertainties in the model that attempts to explain the data,

which in machine learning corresponds to uncertainty on the parameterization [109].

Well-calibrated uncertainty estimations are crucial to indicate potential model

failures and provide insights towards model interpretability. However, modern neural

networks fail to capture the uncertainty of their own predictions. As reviewed in [110],

prediction scores provided by modern deep models are not calibrated with respect to

the expected error, in contrast to earlier architectures such as the well-known LeNet-

5 [111]. In other words, modern neural networks output confidence scores that do

not represent true probabilities, although many recent works refer to output values

normalized using a softmax function as prediction probabilities.

Therefore, recent works have been exploring multiple strategies to provide deep

learning models with the ability to predict their own uncertainties, with Bayesian

deep models in the spotlight. Kendall & Gal provide in [109] a discussion on types of

uncertainties that need to be modeled for computer vision, based on the distinction

between aleatoric and epistemic uncertainties.

While epistemic uncertainties can be explained away with more training data,

aleatoric uncertainties cannot, and as such are rather most effectively modeled to

guide decision making such as relying on an alternative method or consulting an

external oracle. In this context, concepts of Bayesian deep learning have become

increasingly popular to provide modern neural networks with the ability of uncertainty

estimation. In [109], outputs are modeled as corrupted with Gaussian random noise,

such that heteroscedastic aleatoric uncertainty can be estimated by designing models

with an extra output parameter trained using a customized loss function that learns

to regress the variances of this noise.

Eq. 2.24 is an example of such a loss function, where the mean squared error

is combined with components associated to the models’ own predictive uncertainty

provided as the extra output σ̂. Here, θ corresponds to the set of models’ parameters,

60

X is the set of data points, while y and ỹ indicate ground-truth and predicted labels,

respectively. Intuitively, the division by σ̂i
−2 in the first component on the right-

hand-side of the equation guides the optimization such that the model learns to output

higher uncertainties when the MSE component is large, while the logσ̂icomponent acts

as a regularization factor that prevents the model from outputting high uncertainty

values for all predictions.

L(θ) =
1

|X|

∑

i

1

2σ̂i
−2 ||yi − ŷi||

2 +
log σ̂i
2

. (2.24)

To identify epistemic uncertainties, approaches using ensembles [112] and vari-

ants of dropout at test time [113] have been exploited to estimate the uncertainties

associated with model parameters. We refer to the corresponding articles for more

details.

61

CHAPTER 3
SEMANTIC SEGMENTATION REFINEMENT

For many applications of computer vision, image segmentation with high accu-

racy at pixel-level is a key requirement. The agricultural field, where image segmen-

tation has been exploited as part of perception modules targeting pollination, orchard

management, and harvesting in horticultural scenarios is an example [2, 114,115].

Deep learning models based on convolutional neural networks (CNN) have

substantially improved the state of the art in image understanding. However, con-

ventional CNN-based segmentation models are limited by the typical downsampling

employed to learn hierarchical features. Pixel-level details are lost in this process,

resulting in segmentation masks that poorly adhere to object boundaries.

To mitigate these limitations, modern image segmentation models employ

strategies such as atrous convolutions [88], encoder-decoder architectures with skip-

connections [90,92,99], pyramid scaling [22], among others. Large improvements have

been achieved through these strategies in comparison to conventional CNN architec-

tures, but the segmentation they produce still tends not to be finely aligned with the

boundaries of objects. Post-processing approaches such as conditional random fields

(CRFs) [22, 104] have been successful in segmentation refinement, but their perfor-

mance depends on proper optimization of parameters for each specific dataset and

predictor module being used.

In this chapter, we describe two versions of the Region Growing Refinement

(RGR) algorithm, an unsupervised and easily generalizable post-processing module

that operates on the principle of appearance-based region growing to refine the pre-

dictions generated by a CNN for semantic segmentation. Both versions of RGR share

the same fundamental steps: in a Monte Carlo framework, initial pixels are sampled

as high-quality seeds from regions labeled with high-confidence scores and grown into

62

clusters for segmentation refinement. In the second version, named probabilistic Re-

gion Growing Refinement (pRGR) and released in [116], the original RGR algorithm

published in [1] is extended with a solid mathematical foundation where all steps are

guided by a probabilistic framework, as well as design improvements that increase its

segmentation performance in various benchmarks.

We provide next specific descriptions and discussions associated with RGR

and pRGR in Sections 3.1 and 3.2, respectively. At the beginning of each section, we

provide a list of the main contributions associated to each corresponding work.

3.1 Region Growing Refinement (RGR)

In this section, we describe the Region Growing Refinement (RGR) algo-

rithm [1], which provides the following contributions to the state of the art on image

semantic segmentation:

• RGR provides high-quality segmentation refinement without requiring any

dataset-specific parameter optimization, working in a fully unsupervised man-

ner. Based on the classification scores available from a detector (e.g. a seg-

mentation CNN), our method first divides the image into three regions: high

confidence background, high confidence object, and uncertainty region. The

pixels within the uncertainty region, which are the ones that tend to be mis-

classified by CNN-based methods, are then labeled by means of region growing.

We apply Monte Carlo sampling to select initial seeds from the high confidence

regions, which are then grown according to a distance metric computed in the

5-D space of spatial and color coordinates.

• we demonstrate the applicability of RGR with experiments using different CNNs,

datasets and baselines. We first employ the Fully Convolutional Instance-aware

Semantic Segmentation (FCIS) algorithm [24] as a predictor module as well

63

as the baseline for our performance evaluation. Since the ground truth anno-

tations composing the MS COCO dataset [5] contain non-negligible inaccura-

cies, we also assess RGR’s efficacy on the PASCAL VOC 2012 [43] validation

set and on selected video sequences from the DAVIS dataset [7]. As a result,

in addition to relatively small increases in segmentation accuracy for the MS

COCO (+1.5% in AP) and the PASCAL datasets (+0.5% in mIoU%), we re-

port significantly better quantitative results for the DAVIS sequences (+3.2%

in J (IoU)%), which more realistically reflect the segmentation improvement

observed through qualitative (visual) inspection.

• we also compare the RGR algorithm against the state-of-the-art but supervised

methods DenseCRF [104] and DT-EdgeNet [105], for refinement of DeepLab

[22] predictions. RGR provides both running time and segmentation refinement

performance comparable to the optimized versions of both supervised methods,

but without requiring neither dataset- nor model-specific fine-tuning.

3.1.1 Proposed approach

The method we propose for refinement of segmentation boundaries is a generic

unsupervised post-processing module that can be coupled to the output of any

CNN or similar model for semantic segmentation. Our RGR algorithm consists of

four main steps: 1) identification of low and high confidence classification regions; 2)

Monte Carlo sampling of initial seeds; 3) region growing; and 4) majority voting and

final classification. The operations that comprise these steps are described in detail

below. In our description, we make reference to Figure 3.1 and Algorithm 1, which

list the operations performed by our method for each proposed detection in an image.

If detections for multiple classes are present, the algorithm is executed on the score

maps associated with each class, and the final classification is defined by computing

the maximum likelihood across classes.

64

Figure 3.1: Diagram illustrating the sequence of tasks performed by the proposed
RGR model for segmentation refinement. Each task and its corresponding output
(shown below the arrows) are described in Algorithm 1.

1) Step 1 - Thresholding the image into three regions: Conventional models

typically infer a final classification by pixel-wise thresholding the scores obtained for

each class. Instead of relying on intermediate threshold values, our refinement mod-

ule directly exploits the available classification scores to differentiate between three

regions: a) high confidence foreground (or object) RF ; b) high confidence background

RB; and c) uncertainty region RU . As defined in Eq. 3.1, these regions are identified

65

using two high confidence thresholds tf and tb

RF = {pj|C(pj) ≥ tf} ,

RU = {pj|tb < C(pj) < tf} , (3.1)

RB = {pj|C(pj) ≤ tb} ,

where pj is the j-th pixel in the input image I, and C(pj) is its corresponding score

in the detection confidence map C computed by the original predictor (usually a

CNN). High confidence regions correspond to areas where pixels present scores near

the extremes of the likelihood range. For normalized score maps, values lower than

a threshold tb ∼ 0.0 identify pixels in the high confidence background, while val-

ues larger than tf ∼ 1.0 indicate high confidence foreground elements. To recover

possible false negatives, morphological shrinking is performed on the background RB

boundaries. The fourth leftmost image in Figure 3.1 illustrates the division of the

image into the three regions RF , RU , and RB.

Algorithm 1 RGR refinement algorithm
Input: Image I, confidence map C
Output: Refined semantic segmentation Ŷ of image I
1: Threshold C into three regions: background RB, foreground RF and uncertain

zone RU

2: Define a Region of Interest (RoI) according to Eq. 3.2
3: for i = 1 to ns do
4: Form a set S(m) of initial seeds by uniformly sampling from RB ∪RF

5: Generate a set of clusters π(m) by performing region growing using the SNIC
algorithm with S(m) as input

6: For each generated cluster ψ(m)
k ∈ π(m), compute confidence map C̄(m) accord-

ing to Eq. 3.4
7: end for
8: Compute the pixel-wise average C̄ of C̄(m), m = 1, . . . , ns
9: Generate Ŷ by pixel-wise thresholding C̄

66

2) Step 2 - Monte Carlo sampling of initial seeds: Inspired by the notion of

pixel affinity employed by many algorithms for superpixel segmentation, our method

applies a region growing approach to classify pixels within the uncertainty zone. More

specifically, we build on the simple non-iterative clustering (SNIC) algorithm [117].

SNIC selects seeds on a regular grid over the whole image. In contrast, our

algorithm selects seeds by Monte Carlo sampling only high confidence regions. Such

an adaptation provides three main advantages for segmentation refinement. First,

our random selection of seeds allows clusters of flexible size. This is beneficial for: i)

growing into larger regions that were missed by the predictor, and ii) forming smaller

clusters, rather than leaking into nearby pixels. Second, it enforces the classification

of unlabeled pixels to derive from high confidence information. And third, at each

Monte Carlo iteration, clusters are grown from different sets of randomly selected

seeds. Combined with majority voting per cluster and pixel-wise averaging across

iterations (detailed in Step 3), this procedure acts as a filter against false positives

detected with high confidence by the predictor.

Our Monte Carlo approach consists of ns iterations. At each iteration m, a

set S(m) of initial seeds is defined by uniformly sampling the high-confidence area

RH = RB ∪ RF . Let ph represent pixels within the region RH , where the index h =

1, . . . , |RH |. Uniform sampling of seeds can thus be performed index-wise according

to h ∼ U(1, |RH |). We determine the number of seeds to be sampled |S(m)| based

on the sampling domain area (i.e., |RH |) and the desired average spacing between

samples γ, i.e., |S(m)| = |RH |/γ. The spacing between seeds ensures the availability of

paths through which all the initial centroids can propagate throughout the uncertainty

region.

3) Step 3 - Region Growing: The dashed block at the bottom of Figure 3.1 il-

lustrates the sequence of operations performed by RGR for region growing. To reduce

the computation time, we restrict the region growing to a Region of Interest (RoI)

67

around the uncertain zone RU . Based on the spatial distance to RU , the background

RB can be split into two regions: far background RfB and near background RnB.

Since the far background is unlikely to influence the clustering of the uncertain re-

gion, RfB can be ignored during region growing. Hence, we define the RoI for region

growing as

RoI = RnB ∪RF ∪RU . (3.2)

Initial centroids are then grown according to an adaptation of the SNIC al-

gorithm. As in SNIC, we measure the similarity between a pixel and a centroid as

their distance in a five-dimensional space of color and spatial coordinates. Let the

spatial position of a pixel pj be represented by a vector xj = [xj, yj]
T , while its color

is expressed in the CIELAB color-space by cj = [lj, aj, bj]
T . The distance d (pj, ψk)

between the j − th pixel and the k − th centroid is given by Eq. 3.3, where θs and

θm are normalizing factors for spatial and color distances, respectively

d (pj, ψk) =

√

‖xj − xk‖
2
2

θs
+
‖cj − ck‖

2
2

θm
. (3.3)

Also as in SNIC, our region growing implementation relies on a priority queue,

which is constantly populated with nodes that correspond to unlabeled pixels 4- or

8-connected to a region being grown. This queue is sorted according to the similarity

between the candidate pixel and the average (centroid) of the growing region, given

by Eq. 3.3. While the queue is not empty, each iteration consists of: 1) popping

the first element of the queue, which corresponds to the unlabeled pixel that is most

similar to a neighboring centroid k; 2) annexing this pixel to the respective cluster

ψ
(m)
k ; 3) updating the region centroid; and 4) populating the queue with neighbors of

this pixel that are still unlabeled.

We add a constraint to the original SNIC algorithm in order to reduce the

incidence of false detections. A node is only pushed into the queue if its distance to

68

the corresponding centroid is smaller than a certain value dMax. This strategy ensures

that an unlabeled pixel within RU will only inherit information from high confidence

pixels that are sufficiently similar to it. This creates the possibility of “orphan”

elements, i.e., pixels for which no node is ever created. Such pixels are therefore

classified as background. For each set of initial seeds S(m), the region growing process

generates a cluster map π(m) that associates each pixel to a respective cluster ψ(m)
k .

4) Step 4 - Majority voting and final classification: Following the region grow-

ing process, RGR conducts a majority voting procedure to ultimately classify each

generated cluster into foreground or background. As expressed in Eq. 3.4, a pixel pj

contributes a positive vote for foreground classification if its original prediction score

C(pj) is larger than a threshold t0. We compute the ratio of positive votes across

all pixels pj ∈ ψ
(m)
k to generate a refined likelihood map C̄(m) for each set of clusters

according to

Y
(m)
k =

{

pj ∈ ψ
(m)
k |C(pj) > t0

}

, (3.4)

C̄(m)(pj) =
|Y (m)
k |

|ψ(m)
k |

. (3.5)

The likelihood maps C̄(m) obtained from the ns Monte Carlo samplings are

averaged to generate a final pixel dense score map C̄ = 1
m

∑m
i=1 C̄

(m). Finally, each

pixel is classified into foreground if more than 50% of its average votes are positive.

Otherwise, the region is labeled as background, that is,

Ŷ (pj) = ✶C̄(pj)>0.5, (3.6)

where Ŷ (pj) is the final binary classification map and ✶ is an indicator variable that

assumes the value 1 when the corresponding condition is satisfied.

69

Figure 3.2: Additional examples of imperfect ground-truth annotations in the COCO
2016 dataset. From left to right: original image, ground truth, FCIS detection,
FCIS+RGR. The obtained IoU with respect to the ground-truth is displayed above
each corresponding detection [1] (c©2018 IEEE).

3.1.2 Experiments

To the best of our knowledge, the COCO dataset is the largest publicly avail-

able dataset for semantic/instance segmentation, with a total of 2.5 million labeled

instances in 328, 000 images [5]. However, as discussed in Section 3.1.2.1 and further

illustrated in Figure 3.2, COCO’s ground truth annotations contain imprecisions in-

trinsic from its labeling procedure. To minimize the influence of dataset-specific

errors, we assess the performance of our algorithm on: i) the COCO 2016 valida-

tion set; ii) the PASCAL VOC 2012 dataset; and iii) selected video sequences of the

DAVIS dataset.

70

Since RGR is an unsupervised post-processing refinement module, it can be

coupled to any semantic segmentation network. In Section 3.1.2.1, we evaluate its

performance in comparison to SNIC superpixels for refinement of FCIS predictions. In

Section 3.1.2.2, RGR, CRF, DT-EdgeNet and GrabCut are compared for refinement

of DeepLab predictions.

3.1.2.1 Comparison Against Superpixel Refinement

We denote the combination of the publicly available FCIS model and the

refinement module RGR as FCIS+RGR. Since RGR works in a region growing manner

that is inspired by the concept of superpixel segmentation, our performance analysis

also includes FCIS+SNIC, a naive refinement method that consists of performing

majority voting within superpixels generated with SNIC.

Following a grid-search executed on the PASCAL VOC dataset, for all our

experiments FCIS+SNIC employs SNIC with θm = 0.1 and superpixel size of 100px.

RGR thresholds were defined as follows. First, t0 corresponds to the original detector

optimal threshold. For FCIS this value is 0.4, as reported in [24]. To identify the

high confidence foreground, we empirically selected a high confidence threshold tf

corresponding to 1.5× t0, hence 0.6. As for the background detection, we set the high

confidence lower threshold to tb = 0.0.

COCO 2016 Segmentation Dataset. Based on the COCO official guidelines, we

evaluate the performance obtained by FCIS, FCIS+SNIC, and FCIS+RGR on the

validation set composed of 40k images. Table 3.1 summarizes the performance of the

three methods according to the standard COCO metrics, including average precision

(AP) averaged over 0.5 : 0.95 intersection over union (IoU) thresholds and at different

scales. While increasing the number of true positive detections (+0.3% in AR) for all

71

the scenarios, the naive FCIS+SNIC approach also decreases the AP by introducing

a larger number of false positives.

Table 3.1: Comparison between results obtained by FCIS, FCIS+SNIC and
FCIS+RGR on the COCO 2016 (val), the PASCAL VOC 2012 (val), and the DAVIS
datasets [1] (c©2018 IEEE).

COCO 2016
VOC
2012

DAVIS

AP
(%)

AP50

(%)
AP75

(%)
APS
(%)

APM
(%)

APL
(%)

mIoU
(%)

J (IoU)
(%)

F
(%)

FCIS 35.1 60.1 36.5 9.8 38.4 59.8 70.6 71.2 69.9
FCIS + SNIC 34.9 59.0 36.4 9.3 38.2 59.6 70.6 72.8 70.4
FCIS + RGR 36.9 60.6 39.3 11.4 40.7 60.5 71.1 74.4 72.7

Our refinement model, RGR, on the other hand, increases the baseline FCIS

overall performance by 1.8%. Compared to the improvement of 0.5% in AP50, the

increase of 2.8% in AP75 demonstrates that RGR is particularly successful for cases

where the detections obtained from the input CNN are accurately located.

Figure 3.3 presents the average precision obtained for each of the 80 COCO

categories. Since its region growing is based on local affinity characteristics, it is

natural that the RGR refinement is especially effective for objects with more uniform

appearance (e.g. airplane, frisbee). Nevertheless, these results also demonstrate the

robustness of the refinement provided by RGR, since no object category shows a

noticeable decrease in average precision.

A closer visual inspection of the output labels also shows that the metrics

obtained might be misleading. Despite the extensive efforts described in [24] to create

such a massive dataset, for some instances the ground truth segmentation annotations

lack accurate adherence to real object boundaries. As a consequence, improvements

72

A
P

Figure 3.3: AP obtained by FCIS and FCIS+RGR for each of the 80 COCO categories
[1] (c©2018 IEEE).

obtained through RGR refinement are not reflected in the final metrics for a significant

number of images. Figure 3.4 provides examples of the imprecisions in ground truth

annotations, collected from different object classes. While for the airplane example

the segmentation obtained using RGR is clearly better in qualitative terms, its overlap

(IoU) with the ground truth is almost 7.0% lower than the one associated with the

FCIS output.

PASCAL VOC 2012 Segmentation Dataset. Table 3.1 also contains a summary

of the results obtained by FCIS, FCIS+SNIC and our method FCIS+RGR on the

PASCAL VOC 2012 validation set. The segmentation refinement generated using

RGR provides a final mIoU slightly better (+0.5%) than both FCIS and the refined

version using naive superpixel-wise majority voting.

However, such a small difference in performance does not properly reflect the

higher boundary adherence provided by RGR refinement. First, boundaries constitute

73

Image GT FCIS
scores

FCIS FCIS+SNIC FCIS+RGR

Figure 3.4: Examples of detections on the COCO (three top-most rows), PASCAL
(fourth and fifth rows) and DAVIS (two bottom-most rows) datasets. From left
to right: original image, ground truth, FCIS scores, FCIS detection, FCIS+SNIC,
FCIS+RGR. The obtained AP (COCO), mIoU (PASCAL) and IoU (DAVIS) are
displayed above each corresponding detection. Ground truth annotations in the first
and second rows are also examples of COCO annotations with poor boundary adher-
ence [1] (c©2018 IEEE). Appendix A includes additional qualitative examples.

only a small fraction of the total image pixels that are considered for performance

computation. Moreover, ground-truth annotations composing the PASCAL dataset

are structured such that the evaluation metrics disregard regions 5 pixels-wide around

74

the boundaries of each object. As a consequence, often clear improvements in terms of

boundary adherence are not reflected in overall mean intersection over union (mIoU).

Thus, we follow the strategy presented in [52] and also evaluate segmentation

accuracy on a narrow region closer to the boundaries to better quantify the improve-

ments obtained by RGR. Figure 3.5 shows the mean IoU obtained according to the

width of the evaluated region around boundaries. RGR outperforms FCIS+SNIC by

+2.0% in terms of mean IoU in regions 10-pixels near the boundaries, which bet-

ter reflects the more detailed segmentation provided by RGR that is clear in the

qualitative examples such as in Figure 3.4.

0 5 10 15 20 25 30 35 40

Width around boundaries (pixels)

50

55

60

65

70

m
Io

U
 (

%
)

FCIS

FCIS+SNIC

FCIS+RGR

Figure 3.5: Mean IoU of FCIS, FCIS+SNIC and FCIS+RGR on PASCAL on regions
near object boundaries [1] (c©2018 IEEE).

DAVIS 2016 Selected Video Sequences. Given the aforementioned inaccuracies

in the annotations available for the COCO and PASCAL datasets, we additionally

report quantitative results on selected video sequences of the DAVIS dataset. The

DAVIS dataset for Video Object Segmentation is composed of high quality video se-

quences [7], with pixel-accurate ground truth segmentation for each frame. From its

75

50 original video sequences, we selected a total of 24 sequences that contain target ob-

jects whose corresponding classes are contained within the 80 objects categories com-

posing the COCO dataset. These sequences encompass 13 different COCO classes,

including classes for which FCIS+RGR did not provide significant performance im-

provements on the COCO evaluation (e.g. person, bicycle, boat and bear).

As summarized in Table 3.1, segmentations obtained using FCIS+RGR have

an average J (IoU) 3.2% higher than those generated by FCIS, and 1.6% better

than the results obtained using a naive superpixel-wise majority voting for refine-

ment. As described in Section 2.4.2, the official metrics for performance evaluation

on DAVIS also include the contour accuracy metric F . Segmentations refined using

RGR yielded an increase of 2.8% in F , confirming its ability to improve boundary

adherence. Figure 3.6 presents the results obtained for each video sequence, with

FCIS+RGR providing improvements in the range between 1.1% and 6.9% depending

on the sequence. The fact that larger quantitative improvements are obtained for

the DAVIS sequences corroborates our argument that the annotations available for

the COCO and PASCAL datasets provide limited information regarding boundary

accuracy/adherence of segmentation methods.

3.1.2.2 Comparison Against CRF, DT-EdgeNet and GrabCut

We also compare the performance of our method against the state-of-the-

art DenseCRF [104], which has been successfully exploited by DeepLab models for

semantic segmentation refinement, as well as its alternative DT-EdgeNet [105] and the

GrabCut model [69]. We adopt the publicly available model of DeepLab-LargeFOV

as the base model for our comparison. This model is pre-trained on MS COCO and

fine-tuned on the augmented trainval PASCAL VOC 2012 dataset.

We perform our evaluation for the refinement of the segmentations produced

by the DeepLab-LargeFOV model on the PASCAL validation set. In this case, we

76

be
ar

bl
ac

ks
w

an

bm
x-

bu
m

ps
bm

x-
tr
ee

s
bo

at

br
ea

kd
an

ce
-f
la

re bu
s

co
w

s
do

g

do
g-

ag
ili

ty
el

ep
ha

nt
hi

ke

ho
rs

ej
um

p-
hi

gh

ho
rs

ej
um

p-
lo

w
ki

te
-s

ur
f

ki
te

-w
al

k
lib

by
lu

ci
a

m
al

la
rd

-f
ly

m
al

la
rd

-w
at

er
pa

ra
gl

id
in

g

pa
ra

gl
id

in
g-

la
un

ch
pa

rk
ou

r
ro

lle
rb

la
de

30

50

70

90

Io
U

 (
%

)

FCIS FCIS+RGR

b
a
ck

g
ro

u
n
d

a
e
ro

p
la

n
e

b
ic

yc
le

b
ir
d

b
o
a
t

b
o
tt
le b
u
s

ca
r

ca
t

ch
a
ir

co
w

d
in

in
g
ta

b
le d
o
g

h
o
rs

e
m

o
to

rb
ik

e
p
e
rs

o
n

p
o
tt
e
d
p
la

n
t

sh
e
e
p

so
fa

tr
a
in

tv
m

o
n
ito

r

30

50

70

90

m
Io

U
 (

%
)

FCIS FCIS+RGR

Figure 3.6: Results obtained obtained by FCIS and FCIS+RGR on transfer learning
experiments. Left: IoU for each of the PASCAL VOC 2012 classes (val). Right: IoU
obtained for each of the selected DAVIS video sequences [1] (c©2018 IEEE).

configure RGR to use a different tf sampled from the distribution U(0.5, 0.9) in each

MC region growing iteration. The other thresholds remain fixed at tb = 0.0 and

t0 = 0.5.

Figure 3.7 provides a visual comparison between segmentation refinements

obtained using GrabCut, CRF, DT-EdgeNet and our RGR algorithm. In the first

two images, we observe that RGR refinement recovers fine details of both the train’s

and the boat’s structures. Similarly, the person’s fingers on the third image, the bird’s

beak and feathers in the fourth one and the airplane’s gears in the fifth image highlight

the level of segmentation details recovered by RGR from the coarse segmentations

shown in the third column. We additionally point out the last two examples, where

the limbs of the person and the sheep are recovered from a very coarse segmentation.

77

Image GT DeepLab GrabCut DT CRF RGR

Figure 3.7: Examples of detections on the PASCAL VOC 2012 dataset. From left
to right: original image, ground truth, Deeplab detection, GrabCut refinement, DT-
EdgeNet refinement, CRF refinement, RGR refinement [1](c©2018 IEEE).

Quantitative results are summarized in Table 3.2. GrabCut demonstrated lim-

ited ability to refine the CNN predictions, which is expected since: i) it assumes that

all pixels initialized as background/foreground are correct, and ii) the formulation us-

ing GMMs shows limited performance when the background/foreground appearance

varies significantly. In contrast, by growing from a much higher number of seeds,

RGR forms multiple clusters that significantly differ in terms of appearance but can

share the same semantic labels.

78

The combination of an optimized CRF with DeepLab-LargeFOV culminates

in a mIoU of 80.1%, while the alternative using optimal DT-EdgeNet provides 78.9%.

Our fully unsupervised RGR algorithm yields 79.2% mIoU on this same scenario, be-

ing hence competitive with both optimized supervised models but with the advantage

of not requiring any dataset-specific fine-tuning.

Table 3.2: Comparison between different refinement methods for different networks [1]
(c©2018 IEEE).

VOC 2012
mIoU (%)

DeepLab 76.1
DeepLab+GrabCut 77.9 (+1.8)
DeepLab+DT 78.9 (+2.8)
DeepLab+CRF 80.1 (+3.9)
DeepLab+RGR 79.2 (+3.1)

DAVIS
IoU (%)

FCIS 71.2
FCIS+GrabCut 71.2 (+0.0)
FCIS+DT NA*
FCIS+CRF 73.9 (+2.7)
FCIS+RGR 74.4 (+3.2)

*implementation public available only for the DeepLab model.

The higher generalization capability of our method is highlighted by trans-

fer learning experiments. We compared RGR and CRF for the refinement of FCIS

detections in the scenario described in Section 3.1.2.1, i.e., on the same selected se-

quences of the DAVIS dataset but without performing any dataset-specific fine-tuning

for any method. While RGR again improves segmentation quality by 3.2%, in this

scenario CRF provides only 2.7%. This demonstrates the advantage of our unsuper-

vised approach, which can be employed on different datasets without the need for

fine-tuning. Albeit providing significant improvements in segmentation performance,

79

the DenseCRF is strongly dependent on supervised optimization of hyper-parameters

for specific datasets and predictor models.

3.1.2.3 Inference Time

Finally, we evaluate the inference time of RGR in comparison with dense CRF.

As explained above, our algorithm consists of four main steps: 1) thresholding, 2)

Monte Carlo sampling of seeds, 3) region growing, and 4) majority voting. Steps 1, 2

and 4 are currently implemented in MATLABR© (R2017a), while the region growing

step is implemented in C++ based on the SNIC algorithm. Runtime assessment was

performed on an Intel XeonTMCPU E5-2620 v3 @ 2.40GHz (62GB). The average

runtime per image in the PASCAL VOC dataset is ∼ 0.5 seconds with 3 Monte Carlo

iterations. This is lower than the 0.8 seconds average inference time of CRF’s publicly

available implementation, as reported in [105].

A breakdown of the runtime analysis shows that the region growing step re-

quires only ∼ 0.2 seconds per Monte Carlo (MC) iteration, which is comparable to

the 0.18 seconds required by the CPU-based implementation of the domain trans-

form method described in [105]. We highlight that the multiple MC iterations are

easily parallelizable. As summarized in Figure 3.8, using MATLAB’s Parallel Pool

the runtime obtained for 10 MC iterations is less than 0.1 seconds higher than the 0.5

sec/image obtained for 3 MC iterations, which corresponds to a segmentation perfor-

mance improvement of 0.1% in the scenario described in Section 3.1.2.1. Appendix

A includes further analysis of performance sensitivity to parameters.

3.1.2.4 Failure Cases

As demonstrated by the experimental results, the quality of the refinement

obtained using RGR depends on the accuracy of the detector model used as input,

especially in terms of localization. Although Monte Carlo sampling improves robust-

80

3 5 7 10

n
s

70.5

71

71.5

m
Io

U
 (

%
)

0.4

0.45

0.5

0.55

0.6

R
u
n
ti
m

e
 [
s
e
c
]

Performance

Runtime

Figure 3.8: Runtime (orange) and performance (blue) of RGR according to the num-
ber of MC iterations (ns) in the scenario described in Section 3.1.2.1 [1] (c©2018
IEEE).

ness against high confidence false positives, errors might be propagated if the score

maps generated by the detector module (CNN) contain regions with high concentra-

tions of false positives. An example of such a case is found in Figure 3.4. Given the

high confidence of false positives generated by the FCIS model for internal parts of

the bicycle wheels, RGR is unable to correct these mistakes and hence these regions

remain incorrectly segmented.

3.2 probabilistic Region Growing Refinement (pRGR)

In this section, we present the probabilistic Region Growing Refinement

(pRGR) algorithm [116], an extension of RGR that provides the following contri-

butions:

• a solid mathematical foundation that exploits a probabilistic framework to guide

all the steps of the algorithm;

• combining techniques from Bayesian estimation, many parameters that were

previously determined in an ad-hoc manner are now initialized using Bayesian

conjugate priors and updated as assignments of pixels to clusters occur. More-

81

over, variance reduction techniques are exploited to optimize the sampling steps

within the Monte Carlo refinement iterations;

• with a novel parameterization that allows for the emulation of varied receptive

field sizes, pRGR further improves segmentation refinement performance by

recovering finer boundary details and attenuating the effects of false-positive

pixel labels;

• we experimentally demonstrate the applicability of pRGR in a variety of sce-

narios that include state-of-the-art models such as DeepLabV3+ [98]. Such

experiments also suggest the combination of DenseCRF [104] and pRGR as a

powerful strategy for segmentation refinement;

• we observe that the variance of pRGR’s Monte Carlo estimations can be ex-

ploited as an uncertainty estimation mechanism, with experiments demonstrat-

ing its high correlation with final segmentation accuracy values;

• upon publication, code will be made available at coviss.org/code.

We report experiments using different CNNs, datasets and baselines. For easy

comparison against DenseCRF and RGR baselines, we first report experiments on

refinement of segmentation predictions provided by DeepLab [88] and DeepLabV2 [22]

for the PASCAL VOC 2012 [43] validation set. We then report experiments conducted

with the state-of-the-art DeepLabV3+ [98] segmentation model on the PASCAL val

set and also on selected sequences from the DAVIS dataset [7].

3.2.1 Proposed approach

In this section, we describe the sequence of steps and corresponding math-

ematical formulation that comprise our probabilistic Region Growing Refinement

(pRGR) method. Similar to RGR, the proposed pRGR algorithm is a generic unsu-

pervised post-processing module for refinement of segmentation boundaries that can

be coupled with the output of any CNN or similar model for semantic segmentation.

coviss.org/code

82

While sharing similar concepts, pRGR advances RGR by employing a probabilistic

formulation in which all the steps of the algorithm are derived using a mathemati-

cally coherent framework. In addition, concepts of variance reduction and Bayesian

estimation are used for the initialization and update of parameters in a principled

manner.

The main operations composing pRGR are summarized in Figure 3.9. At a

high level, the steps performed by both RGR and pRGR can be summarized as:

1. identification of high confidence classification regions;

2. Monte Carlo seed sampling from high-confidence regions;

3. region growing of seeds into clusters;

4. pixel-score averaging within clusters;

5. averaging across multiple Monte Carlo iterations.

In the case of multi-class segmentation, both RGR and pRGR perform these steps

on the scoremaps associated with each class, and the final classification is defined by

computing the maximum likelihood across classes. In the remainder of this section, we

justify these operations and derive the set of equations guiding the steps composing

our method.

3.2.1.1 Probabilistic seed sampling from high-confidence regions

Let the inputs for our refinement algorithm be represented as an observed

image I ∈ R
w×h and corresponding confidence maps C ∈ R

w×h×C. Here, w × h are

the dimensions of the input image I, and C are the scoremaps for each class in the

set C, generated by any modern segmentation CNN. For simplicity, we first introduce

the method for the binary case where |C| = 1, as all steps are performed on each class

scoremap independently in the multiclass scenario.

83

Figure 3.9: Diagram illustrating the sequence of steps performed by the proposed
pRGR model for segmentation refinement. Each step and their corresponding equa-
tions are discussed in detail in Section 3.2.1.

Let π represent the partition of I into a set of clusters π =
{
ψ1, ψ2, . . . , ψ|S|

}
,

which are grown from the set of seeds S =
{
s1, s2, . . . , s|S|

}
. To estimate the proba-

bility that a pixel pi should be sampled as a high-confidence seed si, let the thresholds

defining high-confidence background and high-confidence foreground be denoted by tb

and tf , respectively. From that, we define IH = {ci < tb or ci ≥ tf} as the event that

a pixel with confidence score ci belongs to a high-confidence background or foreground

84

region. The probability P (IH) is thus given by

P (IH) =P (ci < tb or ci ≥ tf)

=P (ci < tb) + P (ci ≥ tf)− P (ci < tb)P (ci ≥ tf)

=1− P (ci ≥ tb) + P (ci ≥ tf)− [−1− P (ci ≥ tb)]P (ci ≥ tf)

=1− P (ci ≥ tb) + P (ci ≥ tb)P (ci ≥ tf)

=1− Fb (ci) + Fb (ci)Ff (ci) , (3.7)

where Fb(·) and Ff (·) are the cumulative density functions (CDFs) corresponding to

the distributions of tb and tf , respectively.

As discussed in [1], sampling with a spacing γ between seeds ensures the

availability of paths for them to grow throughout the uncertainty region. That is,

seeds are uniformly sampled among γ × γ points within the high-confidence region,

such that, given the thresholds tf , tb and the inter-seed spacing γ, the probability of

sampling a seed si at a pixel with confidence score ci is

P (si|ci < tb or ci ≥ tf , γ) =
1

γ2
. (3.8)

While in RGR the seed spacing γ is fixed for all sample-grow iterations, for

pRGR we adopt a strategy where γ is itself sampled in a stratified manner from a

uniform distribution γ ∼ U(γl, γh), where γl and γh are the minimum and the max-

imum spacing values. As indicated by Eq. 3.8, the parameter γ directly impacts

the number of seeds to be sampled, which is inversely proportional to the expected

sizes of the clusters to be formed through seed growing. Hence, sampling γ using

a stratified approach allows for the emulation of the refinement process at multiple

receptive field sizes, a common practice exploited in many modern segmentation ar-

chitectures [95,98].

85

Since tl and th are independent of γ, we have

P (si, IH |γ) =P (si|IH , γ)P (IH)

=
1

γ2
[1− Fb (ci) + Fb (ci)Ff (ci)] . (3.9)

Marginalizing over the event IH ,

P (si|γ) = P (si, IH |γ) + P (si, ĪH |γ)

= P (si, IH |γ), (3.10)

where the second equation is based on the fact that seeds are sampled only from the

high-confidence region, i.e., P (si|ĪH , γ) = 0.

Let m = 1, ..., ns represent the index of a Monte Carlo growing iteration, such

that s(m)
i represents the i-th seed in iteration m, and let γ(m) be the corresponding

inter-seed spacing. Based on Eqs. 3.9 and 3.10, the seed samples are distributed

according to

s
(m)
i ∼

1

(γ(m))
2 [1− Fb (ci) + Fb (ci)Ff (ci)] . (3.11)

Thresholds distribution

Semantic segmentation methods based on deep-learning models typically com-

prise three main steps. First, a CNN computes unbounded scoremaps with the ac-

tivations of each pixel for each class. By applying a softmax function across all the

classes for each pixel, these scoremaps are then normalized into the range [0, 1]. Fi-

nally, class labels are assigned to each pixel through an argmax operation across the

normalized scoremaps.

Therefore, no single fixed threshold is applied to the class scoremaps for clas-

sification. Hence, to estimate the CDFs Fb, Ff required in Eq. 3.9, we approximate

them using two non-parametric distributions F̃b and F̃f . As depicted in Figure 3.10,

86

from the output of the argmax step we identify the pixels pf ∈ F labeled as fore-

ground and the pixels pb ∈ B labeled as background. For a scenario of multiple classes

such as the one illustrated in Figure 3.10, foreground corresponds to pixels labeled

as part of the category under evaluation (e.g. person), while background corresponds

to the union of all the remaining categories (i.e., non-person). Then, we estimate the

CDFs F̃f ≈ F (cf) and F̃b ≈ F (cb) of the scores cf and cb computed by the CNN for

the pixels predicted within foreground F and background B, respectively. To that

end, we use a normal kernel function that is evaluated at equally-spaced points over

the range [0, 1] of normalized scores predicted for each region.

Figure 3.10: Example of non-parametric estimation of the probability P (IH) that a
pixel is part of the region labeled with high-confidence. Left: original segmentation
collected from a CNN. Center: pixel scores predicted by the CNN for the person
category. Right: F̃b, F̃f are the cumulative density functions of scores for non-person
(i.e., “background”) and person (foreground) pixels, respectively.

3.2.1.2 Similarity measurement

Once in possession of high-confidence seeds, pRGR proceeds to grow these

initial pixels into clusters based on spatial and color similarity. Again, let each pixel

pj be described by a 5D feature vector zj = [xj, cj]
T , where xj = [xj, yj]

T are its

2D spatial features and cj = [lj, aj, bj]
T its 3D color (CIELab) features. Similarly,

let xk, ck represent the features of the centroid of a cluster ψk. Then, following

87

the formulation in [1] (which is based on the SLIC superpixel algorithm [60]), the

similarity between pj and a cluster ψk is given by

d (pj, ψk) =
‖xj − xk‖

2
2

σs
+
‖cj − ck‖

2
2

σm
, (3.12)

where we replace the θs, θm parameters in the original notation by σs, σm, respectively,

to adjust to our following notation based on variances.

Equation 3.12 can be generalized to

d (pj, ψk) =
1

σs
(xj − xk)

T (xj − xk) +
1

σm
(cj − ck)

T (cj − ck)

= (xj − xk)
TΣx

−1(xj − xk) + (cj − ck)
TΣc

−1(cj − ck), (3.13)

where Σx = σsI2, Σc = σmI3, and Ik is an identity matrix of size k. Furthermore,

let zk = [xk, ck]
T and

Σk =






Σx 02×3

03×2 Σc




 , (3.14)

where 0u×v is an u× v zero matrix. Then, Eq. 3.13 becomes

d (pj, ψk) = (zj − zk)
TΣk

−1(zj − zk). (3.15)

We assume that for each partition π, each pixel pj with features zj is best

described by one and only one cluster ψk which is normally distributed with a mean

(centroid) zk and covariance Σk. The distribution of zj is therefore given by

P (zj|zk,Σk) =
1

2π5/2|Σk|1/2
e

−1
2
(zj−zk)

TΣk
−1(zj−zk). (3.16)

The corresponding log-likelihood l(zj|zk) is then given by

l(zj|zk) = −
1

2
(zj − zk)

TΣk
−1(zj − zk)− ln

(
2π5/2|Σk|

1/2
)

= −
1

2
d(zj, zk)− α, (3.17)

where d(zj, zk) = (zj − zk)
TΣk

−1(zj − zk) and α = ln
(
2π5/2|Σk|

1/2
)
. Hence, with

zj ∼ N (zk,Σk
−1), the distance in Eq. 3.15 is equivalent to the log-likelihood of

88

the point zj (without the constant offset corresponding to the normalization factor).

Therefore, minimizing the distance d (pj, ψk) is equivalent to maximizing l(zj|zk).

3.2.1.3 Cluster assignment probability for growing

The probability that a pixel pj is assigned to a cluster ψi is then given by

P (pj ∈ ψi|S) = P

(

d(zj, z̄i) = min
ψk∈π

d(zj, z̄k)

)

, (3.18)

where z̄k = E [z|ψk] is the expected value of z within a cluster ψk. That is, the

probability that a pixel pj is assigned to cluster ψi is given by the probability that

the distance between zj and the centroid z̄i is the minimum distance among all the

clusters centroids z̄k. Since d(zj, z̄i) follows a chi-squared distribution with n degrees

of freedom, where n is the dimensionality of z, the cluster assignment probability

is the probability that the sample d(zj, z̄i) ∼ χ2
n is the minimum among the i.i.d.

samples d(zj, z̄k) ∼ χ2
n, ∀ψk ∈ π.

The distribution of the minimum over η samples of a distribution with CDF

F (·) is given by

F(1)(x) = 1− (1− F (x))η. (3.19)

For x ∼ χ2
n,

F (x) =
γ(n/2, x/2)

Γ(n/2)
, (3.20)

where Γ(·) is the gamma function and γ(·, ·) is the lower incomplete gamma function.

Equation 3.19 then becomes

F(1)(x) = 1−

(

1−
γ(n/2, x/2)

Γ(n/2)

)η

. (3.21)

With x = d(zj, z̄i) and n = 5, for our scenario F(1)(x) thus corresponds to the

probability that another cluster is closer than ψi to the pixel pj. Hence, it follows

89

that

P (pj ∈ ψi|S) = 1− F(1)(d(zj, z̄i))

P (pj ∈ ψi|S) =

(

1−
γ(2.5, d(zj, z̄i)/2)

1.33

)η

, (3.22)

which is thus the equation that guides pixel-cluster assignments for the region growing

process.

3.2.1.4 Pixel probability estimation

Given the set of clusters π(m) =
{

ψ
(m)
1 , ψ

(m)
2 , . . . , ψ

(m)
|S|

}

generated at the m-th

iteration of the algorithm, the expected class likelihood c̄(m)
i value within each cluster

ψ
(m)
i is estimated as the average of the scores cj associated to its pixels pj ∈ ψ

(m)
i ,

weighted according to the probability P (pj ∈ ψ
(m)
i |S

(m)) of pixel-cluster assignment.

That is,

c̄
(m)
i = P

(

ψ
(m)
i ∈ F|S(m)

)

=

∑

pj∈ψ
(m)
i

cjP (pj ∈ ψ
(m)
i |S

(m))
∑

pj∈ψ
(m)
i

P (pj ∈ ψi|S)(m)
. (3.23)

Then, c̄i(m) is the refined class probability for all pixels pj ∈ ψ
(m)
i , i.e.,

c̄
(m)
j = P (pj ∈ F|π

(m)) = c̄
(m)
i . (3.24)

In cases where no seed is sufficiently similar to a given pixel, the probabilities of

assigning this pixel to any cluster will be low and the growing process will end with-

out any assignment for this pixel. We refer to these elements as orphan pixels. In

iterations where a pixel po remains orphan, i.e., po /∈ ψ
(m)
i , ∀ψi ∈ π(m), we keep its

originally predicted score co as c̄(m)
o = P (po ∈ F|π

(m)).

Let Π = {π(1), ..., π(ns)} represent the set of all partitions generated by the

multiple Monte Carlo iterations. With enough iterations, we can approximate the

90

distribution

P (pj ∈ F|π) ≈
∑

π(m)∈Π

P (pj ∈ F|π
(m))δπ(Π), (3.25)

where δπ(Π) is the Dirac delta function, which is equal to one if π ∈ Π and zero

otherwise. Marginalizing over the set of partitions Π, we have

P (pj ∈ F) =

∫

Π

P (pj ∈ F|π)P (π)

≈
1

ns

∑

m

P (pj ∈ F|π
(m)) =

1

ns

∑

m

c̄j
(m), (3.26)

such that the final refined class probability for each pixel pj is given by c̃j = P (pj ∈

F).

Variance estimation

In addition to the average computed in Eq. 3.26, it is also possible to compute

for each pixel the variance of the estimations provided by the multiple Monte Carlo

iterations. Analogously to the computation of the average c̃j, the variance σ̃2
j across

partitions can be computed as

σ̃2
j = V ar [P (pj ∈ F|Π)] =

1

ns

∑

m

(
c̄j

(m) − c̃j
)2
. (3.27)

As demonstrated in Section 3.2.3, the variance can be exploited as a measure of

uncertainty that is highly correlated with segmentation accuracy. In practice, we

observe that for significantly coarse predictions, it is advantageous to run the overall

pRGR algorithm more than once to further improve the quality of segmentation. Let r

denote the ordinal index for each complete run in a set of runs R = {1, ..., |R|}. Then,

including the index r in Eq. 3.26, each run provides an estimate c̃j(r) = P (pj ∈ F|Π
(r))

for a pixel pj. To obtain a final estimation P (pj ∈ F), we exploit inverse variance

weighting to combine the estimations provided by each run. That is,

P (pj ∈ F) =

∑

r∈R

c̃j
(r)/σ̃2

j

(r)

∑

r∈R

1/σ̃2
j
(r)

. (3.28)

91

3.2.1.5 Initialization and update of cluster statistics

As mentioned above, we assume clusters are normally distributed according

to N (zk,Σk), which implies a normally distributed likelihood function. Moreover,

to allow for flexible clusters that adapt to local image and prediction characteristics,

similar to [64, 65], we update the terms in the spatial and color covariances in Eq.

3.14 separately, i.e.,

Σx =






σ2
x 0

0 σ2
y




 , Σc =









σ2
l 0 0

0 σ2
a 0

0 0 σ2
b









, (3.29)

where σ2
x, σ

2
y are the variances along the horizontal and vertical coordinates, σ2

l is the

variance of the L color channel and σ2
a, σ

2
b are the variances for the a and b channels,

respectively.

Initialization

To ensure normally distributed posteriors and facilitate the update process,

we initialize the mean zk and covariances Σk of each cluster using conjugate prior

distributions [107, 118]. Since the spatial and color variances are assumed to be

independent, we can define Normal-inverse-chi-squared (NIχ2) prior distributions of

the form

µ|σ2 ∼ N (µ0, σ
2/κ0)

σ2 ∼ Inv − χ2
(
v0, σ

2
0

)
, (3.30)

where µ and σ2 are the means and variances for each of the five dimensions of (zk,Σk),

with the subscripts dropped for simplicity. The means µ0 of the normal distributions

are initialized according to the locations and colors of the corresponding seeds, while

κ0 is fixed as 1 as a seed is worth one observation of variance σ2.

92

Spatial variances. Initializing the inverse-chi-squared parameters (vo, σ
2
0) associated

to the variances is more complex. Under the assumption of normally distributed

clusters, the expected size of a cluster is directly proportional to the expected values

of its spatial variances. Since the inter-seed spacing is known in the form of the

sampled parameter γ, we expect the average cluster sizes to be proportional to γ×γ.

Thus, the spatial variances can be initialized as

σ2
0,x = σ2

0,y = λ(γ × γ), (3.31)

where λ is an empirically defined proportionality constant. To allow clusters to grow

larger and reach lower confidence areas without nearby seeds, based on a grid search

performed on a subset of 350 randomly sampled images from the PASCAL dataset,

we use the fixed value of λ = 27 in all our experiments, regardless of the CNN model

used to generate the segmentation masks or the dataset under consideration.

As described in [118], the v0 parameters give a sense of how many observations

the corresponding prior knowledge is worth. Based on this intuition, we exploit again

the fact that average expected cluster sizes are proportional to γ × γ, such that

v0 ∝ γ2. Moreover, we note that the reliability of sample variance estimations is

directly proportional to the quality of the corresponding initial seed, since it defines

the initial mean values. Hence, it follows that in the case of lower quality seeds

more weight must be given to the prior with respect to subsequent sample variance

estimates. Combining both characteristics,

v0,x = v0,y ∝

[
γ

P (sk ∈ IH)

]2

, (3.32)

where P (sk ∈ IH) corresponds to the probability that a seed is within the high-

confidence region, obtained from Eq. 3.10.

93

Color variances. Determining an expected cluster color variance is not as straight-

forward. Hence, we first examined the color statistics of clusters formed using a

conventional superpixel algorithm (SLIC [60]) on the same subset of 350 images from

the PASCAL dataset. Multiple runs with a varying number of superpixels and com-

pactness values indicated variances of approximately σ2
l = 850 and σ2

a = σ2
b = 260

to cover 99% of the samples within the superpixels. Based on these observed val-

ues, we then conducted a grid-search that led to the optimal initialization values of

σ2
0,l = 1000 and σ2

0,a = σ2
0,b = 300, which are used in all our experiments.

Since the distribution of color similarities can change from image to image,

we employ an antithetic sampling variance reduction strategy [108] in which initial

color variance values are multiplied by a value 1± ρ. A value of ρ = 0.6 was defined

for all experiments after a grid search over the interval [0.1, 0.9] with a resolution of

0.1, using the same PASCAL subset described above. That is, we initialize σ2
0,l =

1000 × [1± ρ] and σ2
0,a = σ2

0,b = 300 × [1± ρ]. The equivalent sample size v0,{lab}

for the color variances is computed using the same approach as the one used for the

spatial variances, which is given by Eq. 3.32.

Finally, as explained in Section 3.2.2, in the region growing process all clusters

grow from the center outwards, as the first pixels assigned are the corresponding seed

neighbors, with subsequent tentative assignments of pixels neighboring the ones just

assigned. In terms of sample statistics, this means initial spatial sample variances are

heavily biased towards smaller values, as the first pixels assigned are the ones nearest

to the corresponding cluster’s centroid. To compensate for this bias, we increase the

v0 weight of prior variance knowledge by multiplying it with a constant, i.e., for all

the experiments we set v0 = α [γ/P (sk∈IH)]2. We use α = 5 for the spatial variances

and, since this bias is much lower for the color statistics, we empirically set α = 0.1

for the color variances.

94

Updates

As detailed in [118,119], from the combination of a NIχ2 prior with the corre-

sponding normal likelihood, the parameters of the corresponding posteriors are then

given by

vn = v0 + n; κn = κ0 + n; µn =
κ0µ0 + nx̄

κn
; (3.33)

σ2
n =

1

vn

[

v0σ
2
0 +

∑

i

(xi − x̄)
2 +

nκ0
κ0 + n

(µ0 − x̄)
2

]

, (3.34)

where x̄ denotes the sample mean and n is the total number of samples, which corre-

sponds to the cluster size, i.e., n = |ψk|. If sample sizes are not large enough, eventual

biases in the estimation of the sample variance may arise, leading to clusters with in-

correct sizes. We thus apply an update strategy in which sample variance estimations

are computed only after the expected cluster sizes are reached, i.e., |ψk| ≥ [γ/P (sk∈IH)]2.

Posterior

To compute the distances and the corresponding probabilities of assigning

pixels to clusters, the posterior predictive distribution is given by a Student’s t dis-

tribution with vn degrees freedom. Since for the vast majority of iterations v0 ≥ 30,

this posterior can be approximated as normally distributed according to N (µn, σn).

3.2.2 Algorithm implementation

We implement pRGR by means of a main function that invokes Algorithm 2,

which summarizes the proposed region growing process that assigns pixels to clusters.

Figure 3.11 provides an illustration of the steps performed by the overall refinement

algorithm. First, the main script performs the non-parametric estimation of thresh-

olds distributions and subsequent computation of seed sampling probabilities. This

95

script then samples an initial set of seeds S and invokes Algorithm 2 for region grow-

ing.

From the image features Z and the corresponding set of seeds S as inputs,

Algorithm 2 returns an array L where each pixel is mapped to its corresponding

cluster by means of an index.

Algorithm 2 Proposed cluster assignment algorithm.
Input: Z = {z1, ..., zw×h}: set of 5D pixels;

S : set of seeds
Define: L: cluster label assigned to each pixel

T : no. of times a pixel has been sampled
1: for all j = {1, ..., w × h} do
2: Initialize T [j] = 0 and L[j] = ∅
3: for all sk ∈ S do
4: Get pixel pj at sk position (xk, yk)
5: Push element ej = [j, k, 1] into priority queue Q1
6: while (Q1 6= ∅) or (Q2 6= ∅) do
7: Pop ej = [j, k, Pjk] from Q1
8: if (T [j] < κ) and (L[j] = ∅) then
9: Draw u ∼ U [0, 1]

10: Increment counter T [j]← T [j] + 1
11: if (u < Pjk) then
12: Assign pj to cluster ψk: L[j] = k
13: Update cluster statistics with Eqs. 3.33 and 3.34
14: for all pn 8-connected to pj do
15: if L[n] = ∅ then
16: Compute Pnk = P (pn ∈ ψk|S) Eq. 3.22
17: Push en = [n, k, Pnk] into Q1
18: else if T [j] < η then
19: Push ej into recycling queue Q2
20: if Q1 = ∅ then
21: while Q2 6= ∅ do
22: Pop element er = [r, k, Prk] from Q2
23: Recompute P̂rk = P (pr ∈ ψk|S) Eq. 3.22
24: Push element êr =

[

r, k, P̂rk

]

into Q1

25: return L

96

Figure 3.11: Diagram illustrating the steps performed by Algorithm 2.

Let an element ej = [j, k, Pjk] represent a tentative assignment of a pixel pj

to a cluster ψk, with the corresponding probability Pjk = P (pj ∈ ψk|S) given by

Eq. 3.22. For pixels sampled as seeds, elements are created with Pjk set to 1.0.

Inspired by the SNIC [117] implementation, such tentative assignment elements are

pushed into a priority queue Q1 that is sorted in descending order according to the

assignment probabilities Pjk. Assignments occur by popping elements from Q1 and

sampling according to the corresponding probability. Starting from the corresponding

seeds, when a pixel pj is effectively assigned to a cluster ψk, all its pn 8-connected

97

neighbors are evaluated: if they have not been clustered yet, elements en = [n, k, Pnk]

are pushed into Q1 as tentative assignments of these pixels to their now neighboring

cluster ψk.

With such 8-connectivity enforcement during growing, we ensure that a pixel is

visited (sampled) a maximum of 8 times. However, since that is only an upper-bound,

we opt for an implementation that ensures that each pixel will be visited at least 8

times before being considered orphan. This is achieved through a recycling process

using a recycle queue Q2. When an element is popped from Q1 but assignment does

not occur, this element is pushed into a recycling queue Q2 if the corresponding

pixel has been sampled less than 8 times. Whenever Q1 is emptied, all elements in

Q2 are updated according to the latest clusters’ statistics and re-pushed into Q1 for

processing. Using this strategy, we ensure a fixed η = 8 to be used in Eq. 3.22.

Therefore, the algorithm converges once all pixels have either been assigned to

a cluster or visited a maximum of 8 times. Once in possession of the corresponding

mappings of pixels to clusters returned by Algorithm 2, the main function proceeds

to compute pixel probability estimations according to Eqs. 3.23-3.28.

Gaussian filtering

Since we must approximate the posterior distribution using a finite number

of Monte Carlo iterations, pixels with high uncertainty might require additional re-

finement steps to produce accurate results. To avoid performing a large number of

iterations that would impact a relatively small number of pixels, we smooth out spuri-

uous pixel activations using a 3× 3 convolution with a Gaussian kernel on top of the

refined scoremaps obtained using Eq. 3.26.

98

3.2.3 Experiments

We evaluate the performance of pRGR on: i) the 1449 images composing the

val set of the PASCAL VOC 2012 dataset [43]; and ii) selected video sequences of

the DAVIS dataset [7, 48]. While the PASCAL dataset is arguably the most widely

used benchmark for semantic segmentation, its evaluation metrics disregard regions

5 pixels-wide around the boundaries of each object. As a consequence, often clear

improvements in terms of boundary adherence are not reflected in overall mean inter-

section over union (mIoU). For that reason, we also include results using the DAVIS

dataset [7], which is composed of high-quality video sequences with pixel-accurate

ground truth segmentation for each frame.

Baselines

We compare pRGR with its predecessor RGR and also against DenseCRF

[104], one of the most widely used post-processing module for semantic segmentation.

For conciseness, we refer to the DenseCRF model as CRF in the paragraphs that

follow. We also evaluate the combination of CRF+pRGR, in which our refinement

algorithm is run on top of the predictions refined using CRF.

Networks

To assess our method for input predictions of varied quality, four different pre-

trained, publicly available semantic segmentation models are considered. First, the

DeepLab-COCO-LargeFOV (here DeepLab-LargeFOV for conciseness) model [88], a

DeepLab model using large Field-Of-View that was also used for the evaluation of

RGR in previous sections. We also evaluate the refinement of predictions generated

by two DeepLabV2 models [22], one using a VGG [120] backbone and another using a

99

ResNet backbone [46]. Finally, we assess a DeepLabV3+ model [98] using an Xception

backbone [121].1

As summarized in Section 2.4.5, these models represent different stages of re-

cent developments in the state of the art of semantic segmentation. From their archi-

tectures, finer segmentations are expected as one moves from DeepLab to DeepLabV2

and finally DeepLabV3, both in terms of overall accuracy as well as boundary adher-

ence. The datasets with which these models were trained also play an important role

in their performance. We note that in terms of pre-training, the DeepLab-LargeFOV

model exploits annotations from the MS-COCO dataset, the trainaug subset of PAS-

CAL VOC 2012 and, unlike the others, the val set of PASCAL VOC 2012 in which

our evaluations are performed. In contrast, both the DeepLabV2 and DeepLabV3+

models we use in our evaluation are trained only on the trainaug subset of VOC. Of

the four models, only the DeepLabV2 (VGG) is not pre-trained on COCO.

Parameterizations

Since CRF relies on a grid-search of its hyperparameters for optimal per-

formance, as detailed below we opted for publicly available models for which the

optimal CRF configurations are also provided. Regarding RGR, for all experiments,

parameterization is done as reported in [1] and Section 3.2.3, where a different high-

confidence foreground threshold value tf is sampled from the distribution U(0.5, 0.9)

in each region growing iteration.

For all the cases described above, pRGR is configured to perform 20 Monte

Carlo iterations for each class scoremap. A total of 10 different values of the seed-

spacing parameter γ are sampled from the range [2, γh], using systematic stratified

sampling. For each γ, two iterations with antithetic color configurations are run
1The first three models are available at http://liangchiehchen.com/projects/

DeepLab_Models.html. The DeepLabV3+ model can be found at https://github.com/

tensorflow/models/tree/master/research/deeplab

http://liangchiehchen.com/projects/DeepLab_Models.html
http://liangchiehchen.com/projects/DeepLab_Models.html
https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/tensorflow/models/tree/master/research/deeplab

100

with ρ = 0.6 as explained in Section 3.2.1.5. According to their output strides, the

different networks under consideration require distinct levels of refinement in terms

of receptive field sizes. For pRGR, this corresponds to varying the upper-limit γh, as

it defines the maximum expected cluster sizes. Hence, γh is the only parameter of

pRGR that is empirically adjusted on a case-by-case basis. The values selected for

our experiments are listed in Table 3.3. For all the experiments with CRF+pRGR,

γh is set to 16.

Table 3.3: Summary of pRGR configurations for each network

DeepLab version
LargeFOV V2 (VGG) V2 (ResNet) V3+

Double refinement X X

γh 48 32 24 16

As illustrated in Figure 3.12, the segmentations provided by DeepLab-

LargeFOV and DeepLabV2 (VGG) are fairly coarse, such that for these cases we

perform two pRGR refinement steps using inverse variance weighing to combine the

estimation results of each step, as explained in Eq. 3.28.

3.2.3.1 Comparison with baselines on PASCAL

Table 3.4 summarizes the quantitative results provided by each combination of

refinement methods with the corresponding four variations of semantic segmentation

networks. Since boundaries constitute a small fraction of the total image pixels, to

better quantify boundary adherence, we follow the strategy presented in [52] and also

evaluate segmentation accuracy on narrower regions closer to the boundaries. Figure

3.12 presents qualitative examples of segmentation masks provided by each combina-

101

Image CNN +RGR +pRGR +CRF +CRF+pRGR

Figure 3.12: Qualitative results on PASCAL val images. In the second column,
overlaid names correspond to the CNNs used for each prediction.

tion of methods, while Figure 3.13 shows the mIoU values obtained by each method

as a function of the object boundary width considered in the evaluation. Finally,

Figure 3.14 details the performances of each method according to each category of

the PASCAL dataset.

Table 3.4: Comparison and combination of pRGR and baselines on PASCAL dataset.

VOC 2012 - mIoU(%)
CNN No ref. +CRF +RGR +pRGR +CRF+pRGR
DeepLab-LargeFOV 76.05 80.23 79.21 80.11 80.58
DeepLabV2 (VGG) 68.96 71.57 70.97 71.22 71.94
DeepLabV2 (ResNet) 76.46 77.65 77.39 77.54 77.86

102

Figure 3.13: Summary of mIoU on PASCAL for regions of varying width near the
object boundaries. Each color corresponds to a combination of the corresponding
CNN with a refinement method, according to the legend above the figures.

Boundary adherence

The results in Figure 3.13 highlight how all the methods under consideration

improve segmentation accuracy especially in regions near boundaries. In comparison

with the results shown in Table 3.4, even for scenarios such as DeepLabV2 (ResNet),

where overall mIoU improvements are slightly above +1.0%, the segmentation ac-

103

curacy in regions ≤ 5px near the boundaries is improved by approximately +3.5%

using pRGR.

RGR vs pRGR

Overall, our results demonstrate that pRGR consistently outperforms RGR

in all the scenarios under consideration. In comparison with its precursor RGR, the

probabilistic formulation of pRGR combined with refinement iterations at different

receptive field sizes reduces the occurrence of noisy predictions and minimizes the

impact of false positives. This is illustrated in Figure 3.12 near the bird’s wings and

beak, and also near the horse’s crest.

CRF vs pRGR

In terms of overall accuracy, pRGR provides mIoU values slightly lower than

the ones obtained with CRF. However, the results summarized in Figure 3.13 indi-

cate that predictions refined using pRGR are slightly better (FOV: +0.33%, VGG:

+0.14%, ResNet: +0.43%) than the ones using CRF for regions ≤ 5px near the

boundaries. This is also exemplified near the bird’s wings in Figure 3.12. On the

other hand, results detailed in Figure 3.14 for categories such as bicycles and chairs

suggest that the main failure case of pRGR corresponds to enclosed regions with high

amounts of false-positives, such as the internal areas of bicycles’ wheels and chairs’

spindles. Qualitatively, this is illustrated in the last example of Figure 3.12. As the

region growing procedure is based on 8−connectivity, it cannot correct such enclosed

regions containing high amounts of false positives. In contrast, CRF is able to recover

from such mistakes, which is reflected in the overall higher mIoU values. However, it

is important to note again that pRGR is entirely unsupervised, whereas CRF must

be fine-tuned to the dataset and segmentation network under consideration.

104

Figure 3.14: Improvements on segmentation accuracy (∆mIoU(%)) provided by each
refinement method according to specific categories on PASCAL dataset.

CRF+pRGR

Our analysis suggests that, while CRF and pRGR provide similar overall per-

formances, they have different success/failure cases. As such, combining CRF and

pRGR is a potential strategy for further refining segmentation masks, which is cor-

roborated by the results reported as CRF + pRGR in Table 3.4 and Figures 3.12

and 3.13. In all the evaluated scenarios, this combination significantly outperforms

105

CRF alone, especially in regions near boundaries as shown quantitatively in Figure

3.13 and can be noticed in the chairs’ and bird’s details in Figure 3.12. Moreover,

the fourth example in Figure 3.12 illustrates how pRGR can also mitigate some false

positives partially attenuated by CRF, such as misdetections near the saddle and

the horse’s knee. Finally, results combining CRF + pRGR also demonstrate that, if

the amount of false-positives is reduced and enough high-quality seeds are available,

pRGR can also improve segmentations in the failure case scenarios.

3.2.3.2 Refinement of DeepLabV3+ predictions

Table 3.5 summarizes the performances of DeepLabV3+ before and after

refinement using RGR and pRGR, for experiments on the PASCAL and DAVIS

datasets. Unlike the previous experiments, here the CRF baseline is not considered,

since no CRF implementation optimized for DeepLabV3+ is currently available.

Table 3.5: Effect of RGR and pRGR for refinement of DeepLabV3+ predictions.

CNN Dataset No ref. +RGR +pRGR

DeepLabV3+
VOC 2012 mIoU(%) 82.20 82.41 82.56

DAVIS 2017
J mean 76.29 80.19 80.47
F mean 76.41 80.10 80.30

From Table 3.5 and the results in the lower right corner of Figure 3.13, ex-

periments on the PASCAL dataset using DeepLabV3+ once again indicate that,

although the gains in overall mIoU are relatively small (≈ 0.36%), both RGR and

pRGR provide non-negligible improvements in terms of boundary adherence even

for state-of-the-art semantic segmentation networks (≈ 1.0% for regions ≤ 5px near

boundaries).

106

Figure 3.15: Improvements on segmentation accuracy provided by each refinement
method according to specific sequences of the DAVIS dataset. Top: variations in
Jmean. Bottom: variations in Fmean

To further validate this observation, we selected 53 video sequences listed in

Figure 3.15 from the DAVIS 2016 [7] and 2017 [48] datasets for further experimen-

107

tation with the same DeepLabV3+ model. Since this model is trained for the 21

PASCAL categories, we selected only sequences where the target objects are within

this set of categories.

As previously mentioned, the DAVIS evaluation metrics include both overall

intersection over union (or Jaccard-index) J and also a contour accuracy metric F

that assesses specifically the accuracy near object boundaries. Table 3.5 contains

the results obtained using both metrics for predictions before and after RGR and

pRGR refinement. Since the DAVIS annotations take into consideration all the pixels

composing object boundaries, in this dataset, improvements in terms of boundary

adherence have higher impact in final performance metrics than the ones observed

for experiments on the PASCAL dataset. The results reveal improvements in the

order of ≈ 4.0% by both refinement methods, with pRGR marginally yet consistently

outperforming its predecessor in both metrics.

Results for the F metric demonstrate that pRGR provides large improve-

ments in terms of boundary adherence, with a 3.9% increase in mean F . Figure 3.16

shows qualitative examples of such improvements. In all the examples, we observe

how the refined segmentation masks include fewer pixels comprising the surrounding

background. In the first two images, details such as the people’s hair and feet are

recovered. In the last image, the refined segmentation properly adheres to the dogs’

fur, and correctly separates the person from the dog.

From the results for the individual DAVIS sequence detailed in Figure 3.15,

lower performances are observed for some sequences containing vehicles and animals

as targets. For the first case, failures mostly arise from propagating false-positive

detections of shadows under vehicles. In the case of animals, limb extremities can be

lost when such elongated structures are detected with low confidence, are far from the

animal’s body, and share a similar color with the surrounding background. Yet, we

emphasize that significant improvements are observed for most scenarios evaluated.

108

Image DeepLabV3+ +RGR

Figure 3.16: Examples of details recovered through pRGR refinement of DeepLabV3+
predictions for images in the DAVIS dataset.

3.2.3.3 Uncertainty estimation

As noted by Kendall & Gal [109], the normalized scores provided by CNNs

do not necessarily reflect the uncertainties of these classification models. In [122],

Bayesian Deep Learning is exploited using Monte Carlo dropout [123] and Concrete

dropout [113] to capture uncertainties of a DeepLabV3+ model for semantic segmen-

tation. In our pRGR framework, the variance of estimations across multiple Monte

Carlo refinement iterations (computed using Eq. 3.27) can be exploited as a measure

of classification uncertainty. To validate this claim, we evaluated the mIoU values on

109

the PASCAL dataset for increasingly high thresholds of variance values. Similarly,

we establish a baseline for comparison by computing the accuracy of the original

network’s predictions for increasingly high thresholds of predicted class scores.

Figure 3.17 presents the results collected for experiments using DeepLab-

LargeFOV predictions. For both cases, the curves on the top row suggest a significant

correlation between prediction scores (for CNN predictions) and estimated variances

(from pRGR outputs) with the actual segmentation accuracy.

Figure 3.17: Correlation between segmentation accuracy and left) original CNN pre-
diction scores; right) variance across pRGR Monte Carlo refinement iterations.

However, for the CNN predictions, sharper slope variations are observed both

at the beginning and the end of the mIoU ’s curve. Since for both cases the fraction of

110

samples covered varies non-linearly as the threshold values increase, we also analyze

the accuracy vs. the fraction of samples to assess the correlation between segmenta-

tion quality and uncertainty estimations. More specifically, the graphs on the bottom

row of Figure 3.17 are obtained by plotting the left y-axis vs. the right y-axis for

each corresponding plot from the top row. This analysis corresponds to assessing how

segmentation accuracy decays as larger fractions of samples with increasingly high

uncertainty are considered.

Ideally, the confidence scores produced by the network should relate linearly

with the precision of the predictions. However, as the plot on the bottom left side of

the figure shows, the correlation coefficient between the output scores (blue crosses)

and the desired linear relationship (dashed red line) is relatively low (R2 ≈ 0.87).

As the graph on the bottom right side of the figure indicates, the variances of the

estimates produced by pRGR correlate almost perfectly with the ideal linear rela-

tionship (R2 ≈ 1.0). Figure 3.18 provides analogous plots for results obtained using

predictions from the DeepLabV2 (VGG), DeepLabV2 (ResNet) and DeepLabV3+

network configurations, with coefficients R2 ≥ 0.989 observed for all cases.

(a) DeepLabV2(VGG) (b) DeepLabV2(ResNet) (c) DeepLabV3+

Figure 3.18: Correlation between rankings according to accuracy and pRGR’s un-
certainty estimate, for refinement of predictions collected from different DeepLab
models.

111

3.2.3.4 Runtime analysis

All experiments reported in this section were performed with an implementa-

tion of the algorithm described in Section 3.2.2 that combines a main function written

in MATLAB R© with a C++ implementation of Algorithm 2, which is responsible for

region growing. Figure 3.19 summarizes average measurements of runtime observed

for refinement of predictions provided by a) a DeepLabV2 (VGG) model and b) a

DeepLabV2 (ResNet) model for the 1449 images composing the PASCAL validation

set. As described in Table 3.3, predictions provided by the VGG-based model are

refined using two refinement steps, in contrast to the single refinement loop performed

on predictions provided by the ResNet-based model.

Overall, these results indicate that an average of 0.95 second is required for

each refinement loop on each class-specific scoremap, with the overall runtime per

image scaling near linearly according to the amount of detected classes. A breakdown

of the average runtime according to the steps performed by the algorithm reveals that

data loading (image and scoremaps) requires ∼ 0.15 second, while the growing process

of pixel-cluster assignments requires nearly all the remaining 0.80 second. Since each

refinement iteration can be performed in parallel, in the near future, we intend to

accelerate the algorithm through a GPU-based implementation.

112

(a) (b)

Figure 3.19: Runtime analysis of pRGR’s current implementation. For predictions
collected for the PASCAL VOC val set, the plots summarize runtime according to
number of detected classes for: a) a double refinement procedure, and b) a single
refinement procedure.

113

CHAPTER 4
SEMI-AUTOMATED ANNOTATION OF IMAGE SEGMENTATION

DATASETS

The rapid rise in popularity of deep learning models in computer vision has

brought a corresponding demand for labeled data. Depending on the image under-

standing task, the required annotations may range from tags at the image level (image

classification), to bounding boxes (object detection) or pixel-level annotations (image

segmentation).

For all cases, varied and high-quality image annotations are crucial for both

training and evaluation of models that are accurate and robust. Currently, most

CNN models successful at image understanding tasks [22–24] are pre-trained on the

ImageNet [25] and COCO [5] datasets, due to their large variability.

However, manual labeling of large datasets is challenging and time-consuming.

The costs reported for the COCO dataset in [5] illustrate these difficulties. Containing

over 2.5 million object instances, its labeling using Amazon’s Mechanical Turk (AMT)

required: ≈ 20k worker hours for category labeling at image-level; ≈ 10k hours for

instance spotting; and staggering ≈ 55k hours for instance segmentation.

To meet the need for large, labeled datasets, several approaches have been pro-

posed. Different types of crowdsourcing strategies have been used to generate labeled

data quickly, from commercially available solutions such as the AMT, annotation par-

ties [3], volunteer/citizen science initiatives [124], and custom-built pipelines [125].

In the domain of image segmentation, rather than selecting individual pixels, a

popular strategy consists of approximating segmentations as polygons, which can be

problematic for objects with complex boundary structures. Other strategies focus on

labeling pre-segmented regions, such as superpixels [6,126]. Although these strategies

accelerate the annotation process, the segmentation quality is at risk in scenarios

where the pre-computed regions fail to properly attach to boundaries.

114

Figure 4.1: Our annotation tool generates high-quality segmentation masks using
simple freehand traces as input. From the few user traces illustrated in the left
image, FreeLabel outputs the object segmentations indicated by the yellow overlay
in the right image [8] (c©2019 IEEE).

To minimize the need for finely-annotated training data, the development of

weakly-supervised training methods is also an active field of research. Strategies for

the propagation of sparse annotations include graph cuts [69], level sets [75] and

graphical models [81]. As the leaderboard of the PASCAL VOC 2012 dataset1 shows,

the performance of models trained in this way is still noticeably worse than models

trained with fully annotated masks.

We combine ideas from both the existing annotation tools and the field of

semi-supervised learning to facilitate and minimize the amount of user interactions

for annotating image segmentation masks, ultimately reducing labeling costs. Our

contribution consists of a web-based tool, named FreeLabel [8], which allows the user

to trace lines or “freehand" scribbles of different thicknesses for the different categories

present in an image (Figure 4.1). These scribbles are propagated to the remaining
1http://host.robots.ox.ac.uk:8080/leaderboard/

115

unlabeled pixels using the Region Growing Refinement (RGR) algorithm for semantic

segmentation refinement, which was published in [1] and described in Section 3.1.

We assess the applicability of our tool in two contexts: the first is general ob-

ject segmentation, exemplified by the PASCAL VOC dataset that has pixel-accurate

labels for multiple different categories; and the second is the annotation of images of

fruit tree flowers, which has applications in precision agriculture [2, 9]. In the first

context, we analyze how long it takes for users to become familiar with our tool,

and also the average annotation time and the segmentation quality they obtain in

comparison with the official PASCAL ground-truth.

The first context serves as training for the second, where images of flowers

of multiple fruit tree species are annotated [9]. In this scenario, we evaluate how

well users can annotate images for which no ground-truth is available, and thus no

intermediate feedback is provided.

In summary, our contributions to the state of the art are:

• FreeLabel, an open-source, web-based tool for interactive annotation that is

shown to be intuitive and effective, allowing users to generate high-quality seg-

mentations in an average time of 60 seconds per object for the PASCAL dataset;

• FreeLabel can be easily configured for any object category or dataset, an advan-

tage inherited from the underlying unsupervised region growing algorithm and

the modular implementation of the tool;

• public release of the tool at coviss .org/ freelabel

• the web-based structure of FreeLabel allows crowdsourcing and, when data pri-

vacy is of concern, private annotation using a local deployment.

4.1 Related work

As reported in [3] and discussed in Section 2.4.1, the process of annotating

images composing the PASCAL dataset with pixel-level accuracy was extremely time-

coviss.org/freelabel

116

consuming, even though a 5-pixel wide tolerance margin was allowed around each

object.

Comprising 2.5 million objects instances in 328k images, the COCO dataset

was labeled by AMT workers using an adapted version of the OpenSurfaces inter-

face [127]. The OpenSurfaces interface resembles the LabelMe web-based annotation

tool [128], which was introduced in 2008 and is still widely used for segmentation an-

notation. Users provide object segmentations by tracing polygons along its boundary

and typing the object name after completing the polygon. However, as mentioned

in [5, 128], quality control is an important concern with this scheme. High-quality

segmentations of objects with complex boundary structures require large numbers of

vertices, leading to a trade-off between quality versus time spent to label each object.

For annotation of the COCO dataset, its authors opted to minimize costs by collect-

ing only one annotation for each instance, which required on average 79 seconds per

object. Yet, despite efforts such as quality verification steps, the dataset still contains

some segmentation masks that poorly attach to the object boundaries [1].

The Cityscapes dataset for semantic urban scene understanding [129] was also

annotated using layered polygons. To ensure that rich and high-quality pixel-level

segmentation masks were obtained, its corresponding 5k images were annotated in-

house. Over 1.5 hours were required on average for annotation and quality control of

each image with a restricted pool of high-quality annotators.

Alternative labeling strategies exploit superpixels to facilitate the annotation

process. The interface used for labeling the COCO-Stuff dataset [6] combines SLICO

superpixels [60] with a size-adjustable paintbrush tool that enables labeling of large

regions at once. As mentioned by Tangseng et al. in [126], superpixel errors can

lead to significant annotation errors with this kind of interface. To minimize these

artifacts, the authors described in [126] a interface that performs morphology-based

boundary smoothing and allows the annotator to select the desired superpixel size to

117

improve boundary adherence. However, this increases the complexity of the task, as

the user has to try different configurations and label each superpixel individually.

Recently, an alternative approach for interactive segmentation was introduced

in [130], where a CNN is trained to generate segmentation masks from extreme points

specified by the user. The tool is shown to provide annotations of good quality in a

timely manner, but requires supervised training and more computational resources.

4.1.1 Good practices for design of annotation tools

Vondrick et al. in [131] provide a set of best practices for crowdsourced video

annotation, based on a large-scale, three-year on image annotation approaches. A

critical observation is that annotating platforms must aim at minimizing the cognitive

load of the user. As backed by psychology studies [132], minimizing interruptions and

choices helps reduce user anxiety and increase efficiency. Moreover, they observed that

providing motivational feedback increases the workers’ confidence that their work will

not be rejected, which encourages them to continue annotating.

Games With A Purpose (GWAP) exploit the idea that adding game-like el-

ements to interfaces additionally motivates users to perform tasks of interest. The

ESP Game [133] for image labeling is a widely known example: an image is shown to

two players (users) and, without external communication, both enter possible words

until a word is agreed upon. The common word becomes a label for the image. Other

examples are the Peekaboom game for object localization [134], Verbosity to collect

commonsense facts about words [135], and Phylo for multiple sequence analysis [136].

Users play for the desire of being entertained, rather than for money or al-

truism [137]. Timed response, score keeping, and randomness are important features

for designing challenging and hence enjoyable games [137], as players are motivated

to play to increase their skill level or to score higher than other players. Compared

to subjective and verbal instructions, scores are a more intuitive form of feedback to

118

the user as they combine multiple aspects that are relevant to the task into a single

performance metric.

4.2 FreeLabel annotation tool

Our objective is to develop a web-based labeling interface that: i) is intuitive

to use, ii) allows users to quickly provide high-quality annotations, and iii) can be

easily adapted for different datasets and categories. As observed in Section 4.1.1, a

good user interface should minimize the cognitive load on the user. Thus, instead

of using propagation techniques that require supervised training or manual tuning of

different sets of parameters, our tool exploits the RGR algorithm for unsupervised

region growing. Based on related works, limitations of current tools, and our own

previous experiences with image annotation, we opted for designing a tool in which

the user input consists of simply drawing scribbles (freehand traces) or straight line

segments on the images.

By keeping all the parameterizations of the RGR algorithm fixed, we avoid

any non-intuitive burden on the users. The quality of the segmentation provided by

RGR is proportional to the amount and quality of initial seeds available. Hence, the

user interaction to guide the growing process is quite intuitive, with simple guidelines:

• traces are grown based on color similarity and must be provided within the

boundaries of the corresponding objects;

• thicker traces act as enforcement for the growing algorithm, since more seeds

are available than for thin traces;

• if any region is incorrectly labeled by RGR, the user can easily correct it by

adding a new trace of the correct category.

In addition to its simple formulation, we found the RGR implementation to

be notably suitable for multi-class segmentation annotation. Its growing process is

class agnostic, propagating initial seeds into clusters regardless of seed label. This

119

is advantageous in terms of running time, as the growing process has the same com-

putational complexity regardless of the number of classes present in the image (the

average runtime is lower than 1 second for PASCAL images [1]). After clusters are

formed for each set of seeds, they are classified into semantic categories by means

of simple majority voting. Figure 4.2 shows an example of this process, where each

cluster is assigned to the class for which it contains the most labeled pixels.

Figure 4.2: Illustration of how traces are propagated to neighboring pixels. Left:
input traces drawn by the user. Center: the brightness (intensity) of the color in each
pixel is proportional to the score computed for its most likely category. For better
visualization, background traces are shown in black, while the background likelihood
is in grayscale from black (lowest) to white (highest). Right: final segmentation
obtained using maximum category likelihood per-pixel, with transparent background
[8] (c©2019 IEEE).

4.2.1 FreeLabel functionality

Figure 4.3 shows a screenshot illustrating the functionality of our interface,

together with an example of high-quality segmentation masks obtained from only a

few user interactions.

120

Figure 4.3: FreeLabel’s graphical user interface.. Users can draw with a freehand
pencil or line segments. An eraser allows undoing small errors. Dialog boxes allow
the user to select the object categories associated with the current trace, as well as
adjust tool sizes. To help with visibility, other options such as opacity and masks are
available via slider bars [8] (c©2019 IEEE).

Three tools are available for drawing and adjusting traces using the mouse:

• Pencil : used for quickly tracing freehand scribbles. Once the user holds

down the mouse’s left-button, traces corresponding to the mouse trajectory are

drawn. It is especially useful for regions that do not require high precision;

• Line : traces straight lines connecting the point where the user clicked the

mouse button to the point where it was released. It is especially helpful for

straight and thin structures, such as chairs’ legs and animals’ limbs.

• Eraser : used to correct imprecisions in provided scribbles, such as small

portions protruding outside the corresponding object’s boundary.

121

Each tool can be configured with four different thicknesses: small (1px thick),

normal (2px), large (4px) or huge (8px). After tracing scribbles over the image, the

user can invoke the RGR algorithm by simply clicking the Refine button, which au-

tomatically grows segmentation masks from the provided traces. To annotate smaller

objects, the user can zoom in/out using the mouse scroll, as in any modern web-

browser. Finally, keyboard shortcuts are available for all the commands to facilitate

the annotation process.

In addition to intuitive commands, visualization is another key factor that

impacts the labeling experience and annotation quality. Similar to the PASCAL,

COCO, and other datasets, a specific color is associated to the traces and masks of

each category. For the background, traces are shown in black and the masks are

invisible. To handle scenarios where the image is too dark or contains colors with

poor contrast to traces and/or masks, our interface allows the user to control the

brightness (opacity) of both the image and the segmentation masks using the sliders

under the canvas. Moreover, masks and traces can be hidden/shown with the click

of the corresponding toggle buttons.

4.2.2 Implementation

Our FreeLabel tool for segmentation annotation relies on three main build-

ing blocks: a graphical user interface (GUI), the Django framework, and the RGR

algorithm. Figure 4.4 summarizes the relationships among these elements.

An important criterion for our design choices concerns how easily the user’s

inputs and the RGR algorithm can be combined for the computation of segmentation

masks. With an open-source web interface as ultimate our goal, we adapted RGR’s

original MATLAB R© implementation to Python and opted for the Django [138] plat-

form as the web framework.

122

AJAX

database

modelsourLib.py

RGR

static

Django)

(MVT)

user)interface)(browser)

template)(.html) urls.py

views.py

Figure 4.4: Diagram summarizing how the different modules of FreeLabel interact
with one another [8] (c©2019 IEEE).

Django is a free, open source Python framework that follows the Model-View-

Template architectural pattern. The Model layer allows access to database informa-

tion without requiring any knowledge of the intricacies of database rules. The View

logic layer of Django handles the communication between the Model and the Tem-

plates, which correspond to the exhibition layers that define what is shown to users

through the browser.

Using Figure 4.4 as guidance, a top-down walk-through of our tool’s imple-

mentation starts with the graphical interface displayed by the web browser to the

user. The design and functionality described in Section 4.2.1 and exemplified in Fig-

ure 4.3 are implemented as customized Django templates, using HTML/Javascript.

For actions requiring the execution of Python commands, the template (.html) file

triggers an AJAX call that is mapped to a corresponding function in views (.py).

This layer mediates the access to the database (through the Model layer), static files,

or any customized Python function.

123

Aiming at a modular implementation that can be easily tailored for different

datasets or configurations, we package the implementation of RGR and other custom

functions into a separate Python library (ourLib.py). This includes functions using

the OpenCV [139] library, which are responsible for image loading and converting the

outputs of RGR from mathematical arrays to images for visualization.

RGR is used as the core component of FreeLabel, and adapted in two minor

aspects to compose the annotation tool. The original algorithm described in Section

3.1 focuses on the refinement of a CNN’s semantic segmentation predictions, a sce-

nario with coarse segmentation masks as input. While for that case sampling fewer

seeds is beneficial to filter out false-positives, in our scenario we aim at minimizing

the required number of user interactions. Since the user inputs tend to be sparse but

highly-accurate, we increase the percentage of seeds sampled in each Monte Carlo

iteration to 75% of the annotated pixels, with 8 iterations per run. Moreover, we

remove RGR’s constraint that automatically classifies as background any pixel sig-

nificantly distant from labeled neighbors in terms of appearance and spatial position.

By removing this constraint, RGR will assign to each unlabeled pixel the category

provided for its nearest neighbor, regardless of how far they might be. If the propa-

gated label is incorrect, the user can easily improve the segmentation by tracing an

additional scribble in the corresponding region.

4.3 Experiments and results

We evaluate our tool in terms of: i) quality of the obtained segmentation

masks, and ii) time required by users to annotate images using FreeLabel. To that

end, we defined first a task in which users were asked to annotate images from the

PASCAL VOC 2012 dataset. We opted for this dataset as it contains good quality

segmentations of multiple object categories and is widely used by the computer vision

124

community, such that it represents a good reference standard for anyone searching

for a suitable annotation tool.

Inspired by the idea of GWAP, we designed a game-like version of FreeLabel

for the annotation of PASCAL images. Ideally, users must provide high-quality seg-

mentation but also be as quick as possible, which represents a trade-off for which it is

difficult to provide the annotators with clear guidelines. We therefore employ a game

with a simple unified score metric that combines annotation time and mean intersec-

tion over union (mIoU) between the obtained masks and corresponding ground-truth

annotations, which is computed according to the official PASCAL metrics. The qual-

ity of the segmentation must be the main priority, while the time spent on each image

is a secondary concern. Thus, as summarized in Figure 4.5, we use accuracy (mIoU)

as the base factor for score computation, with a “bonus” multiplying factor that is

proportional to the time spent on each image.

100
200
400
800
160095%

90%
80%
70%
60%

+1%=+100

300099%

%=+200

60%

How are scores calculated?
For each category

Final score = total x bonus factor

Figure 4.5: Score chart presented as reference for the game where users are asked to
label PASCAL images in an accurate and timely manner [8] (c©2019 IEEE).

125

The main goal of this metric is to provide feedback to the users regarding

how well they are performing the task, such that we do not focus on a more rigorous

formulation for score computation. Instead, we aim at motivating the user to obtain

the highest accuracy possible by increasing the base score progressively as the mIoU

approaches 100%.

Let N denote the number of objects in an image. Based on the performance

of expert labelers, we roughly estimated an expected time of 60 seconds for an image

with N = 1, plus an extra 30 seconds per object when N ≥ 2. To motivate users to

be quick, we thus multiply the base score with a bonus factor according to Eq. 4.1:

2× if the user annotates the image in no more than the expected time T , linearly

decaying to 1× if the annotation time t takes longer than 2T .

bonus = max

(

2 +
T − t

T
, 1

)

(4.1)

T = 60 + 30× (N − 1) [sec].

After showing the participants a training video, we asked seven different users

to label an average of 25 images each, in a task expected to take approximately 1

hour. We followed the official PASCAL annotation guidelines [3], indicating with

bounding boxes the objects to be annotated by the users.

Figure 4.6 summarizes the average quality (mIoU) and average time needed to

annotate the different objects in the images. Overall, users provided segmentations

with 92.8% overlap with the ground-truth masks, at a mean pace of 61.3 seconds

per object. As a reference, this is significantly faster than the average 79 sec/object

required for annotating the COCO dataset using the OpenSurfaces tool [5].

We also observed which strategies were adopted by the most successful users.

The two rightmost plots in Figure 4.6 summarize the frequency of usage of the Refine

button by each user and the average image area covered by their scribbles, respec-

tively. User #2 exemplifies the usefulness of interactivity using RGR: by frequently

126

1 2 3 4 5 6 7

User #

20

40

60

80

100

A
v
g
.
a
c
c
u
ra

c
y
 [
%

]

1 2 3 4 5 6 7

User #

0

50

100

150

200

250

300

A
n
n
o
ta

ti
o
n
 t
im

e
 [
s
e
c
/o

b
j.
]

1 2 3 4 5 6 7

User #

0

5

10

15

20

R
G

R
 c

a
lls

 p
e
r
im

a
g
e

1 2 3 4 5 6 7

User #

0

2

4

6

8

A
v
g
.
tr
a
c
e
s
 a

re
a
 [
%

 i
m

g
.]

Figure 4.6: Distribution of the accuracies, annotation times, number of Refine calls
and average image area covered by user traces for annotating images from the PAS-
CAL dataset [8] (c©2019 IEEE).

using the Refine option, this user obtained one of the highest accuracy averages, with

fewer low-quality outliers. This user also drew fewer traces and thus finished the task

faster than others who provided annotations of similar quality.

Figure 4.7 allows an analysis per object category that further highlights the

benefits of FreeLabel. As the median values of 95.5% overall accuracy and 50.1

seconds per object suggest, the presence of outliers is confirmed by inspecting results

for categories such as bicycle, chair and potted plant. These are notably harder to

label than instances from classes like airplane, cows and trains, which present fewer

enclosed regions or thin structures. However, despite requiring longer annotation

times, high-quality segmentations can still be obtained for such harder categories.

127

ba
ck

gr
ou

nd

ae
ro

pl
an

e

bi
cy

cl
e
bi
rd
bo

at

bo
ttl
e

bu
s

ca
r
ca

t

ch
ai
r
co

w

di
ni
ng

ta
bl
e do

g

ho
rs

e

m
ot

or
bi
ke

pe
rs

on

po
tte

dp
la
nt

sh
ee

p
so

fa
tra

in

tv
m

on
ito

r

20

40

60

80

100

A
v
g
.
a
c
c
u
ra

c
y
 [
%

]

Figure 4.7: Distribution of average accuracy (top) and annotation time (bottom) for
objects of different categories in the PASCAL dataset [8] (c©2019 IEEE).

Figure 4.8 is a compilation of annotation examples provided by the users, with the

bicycle example illustrating the quality of segmentation that can be obtained even

for complex objects.

4.3.1 Annotation of unlabeled images

To demonstrate the suitability of FreeLabel for the realistic scenario of anno-

tating unlabeled datasets, we performed experiments in which eight users were asked

to annotate images of a significantly different dataset. We chose the dataset made

128

Figure 4.8: Examples of annotations provided by users for the PASCAL dataset using
FreeLabel. For both columns, images in the left illustrate user annotations. In the
right, final grown mask generated by FreeLabel from the corresponding inputs [8]
(c©2019 IEEE).

publicly available in [2,27], which contains images of multiple species of fruit-flowers

that were acquired under varied conditions. Since these are high-resolution images

(2704×1520px) containing dozens of small flowers, we split each image into 16 blocks

of 676× 380 pixels to facilitate the annotation process.

With the lessons learned from the PASCAL experiments, we designed a new

training sequence (video available together with the tool) that emphasizes good strate-

gies for efficient labeling with FreeLabel. Before annotating the flowers, all users were

required to annotate 10 PASCAL images with a minimum accuracy of 90% per cate-

gory. Our rationale is that annotating the PASCAL images in a game-format works

as a training session in which the users become familiar with the interface and grasp

the main guidelines for annotating any type of image segmentation dataset.

Preliminary experiments indicated that the lack of performance feedback

harms the motivation of the users, and as consequence, the quality of the correspond-

129

ing segmentations. Hence, we structured the annotation sessions such that each user

was required to label 9 blocks of different flower images, in batches of 3 blocks each.

Each batch contained 2 non-annotated blocks and 1 block for which ground-truth was

available. We used the ground-truth image blocks as checkpoints: if the segmentation

provided by the user did not meet a certain accuracy threshold, the user would have

to redo the entire batch of 3 images. The ground-truth annotations are never shown

to the users, such that while only every third image is actually used to compute the

average accuracy, we “deceive” the users to believe that all images are verified and

must thus be accurately labeled. Moreover, we used a rather lower accuracy threshold

of 70%, as the main intent is just to avoid very poor annotations.

Figure 4.9: Examples of flower annotations provided by users using FreeLabel. From
left to right, images contain flowers of apple, peach and pear flowers, respectively.
The colormap boundaries illustrate how many users labeled the enclosed regions as
flower. Colors proportionally range from dark blue (one user) to dark red (all users
labeled it as flower) [8] (c©2019 IEEE).

The examples in Figure 4.9 demonstrate the effectiveness of this strategy for

the annotation of unlabeled images, illustrating for each enclosed region how many

users labeled it as flower. This representation qualitatively demonstrates how the

annotations provided by the different users for the three different datasets converge

to ideal segmentation masks. Such convergence suggests that majority voting can be

130

used to approximate the ideal masks, which we then use to statistically evaluate the

variability of the annotations provided for images without ground-truth.

Apple Peach Pear

Figure 4.10: Distribution of the average accuracy obtained by the users for annotation
of flower datasets [8] (c©2019 IEEE).

Figure 4.10 summarizes the average accuracy and deviations observed for the

images with and without ground-truth available (in green and purple, respectively).

The average overlap between the segmentations provided by the users and the avail-

able ground-truth masks were higher than 80% for the three different datasets, reach-

ing 95.5% for the Pear image. The higher deviations for the Apple and Peach datasets

are mostly associated with the annotation of small flower buds and mistakes related

to bright leaves on the apple images. Such mistakes are visible as well in the examples

in Figure 4.9. Finally, the deviations observed for ground-truth images are similar to

the ones observed for the images without ground-truth, which indicates a relatively

consistent user performance for both groups of images.

Acknowledgement. This work was supported by USDA ARS agreement #584080-

5-020. Mention of trade names or commercial products in this publication is solely

for the purpose of providing specific information and does not imply recommendation

or endorsement by the U.S. Department of Agriculture. USDA is an equal oppor-

131

tunity provider and employer. We thank our colleagues Abubakar Siddique, Enrico

Prampolini, Reza Mozhdehi, Jamir Jyoti, Brian Stumph, Scott Wolford, and Larry

Crim who collaborated with data collection. We thank NVIDIA for providing the

GPU used in this work.

4.4 Active learning and semi-supervised annotation

In addition to the design of tools such as FreeLabel to simplify the annotation

process, another research direction towards minimization of annotation costs focus

on designing better sample selection strategies. Training deep neural networks using

samples selected at random from a large annotated dataset is inefficient. While many

data entries may contain redundant information from the perspective of the features

that the network must learn to perform its job, other features of interest may be

underrepresented due to the lack of sufficiently diverse training samples.

Optimal selection of training data is relevant for reducing the computational

power required for data processing, as well as minimizing the human efforts required

for dataset labeling. In this context, the concept of Active Learning (AL) is of par-

ticular relevance. Instead of generating a training dataset by annotating all available

data at once, the AL process consists in the following sequence of steps that are per-

formed in a loop, until either all available data has been used or a satisfactory model

performance is obtained:

1. from a pool of unlabeled data, label a subset of data;

2. train the model using the available labeled data;

3. deploy the trained model generated by step 2) for inference on the remaining

unlabeled data entries;

4. based on the model’s inferences and a predefined sampling criteria, select an

extra subset of unlabeled data to be annotated by human experts.

132

In such AL frameworks, the sampling criteria thus play a key role on defining

which unlabeled data points shall be labeled by the human experts for further model

training. As summarized in [140], diversity sampling and uncertainty sampling are

two of the main strategies used to that end.

Diversity sampling focuses on covering a diverse set of data in order to expand

the model’s exposure to different characteristics of the data distribution. This is

of particular relevance for scenarios where knowledge about the model’s capabilities

is rather limited or unavailable, or, as summarized in [140], to handle “unknown

unknowns”. Meanwhile, another scenario is where uncertainty estimations provide

insights on the model’s “known unknowns”, i.e., data entries for which inferences

provided by the model itself indicate the need for further training.

In this context, we thus investigated strategies that use uncertainty estimation

techniques based on the probabilistic Semantic Segmentation Refinement (pRGR) al-

gorithm [116] to select the most informative samples for training a semantic segmen-

tation network, aiming at sample selection strategies that will lead to more balanced

training sets.

In Section 3.2.3.3, we demonstrated using the PASCAL dataset that pRGR

provides pixel-wise uncertainty estimations which highly correlate with the accuracy

of semantic segmentation predictions. Thus, our efforts towards an active learning

system focus on efficiently exploiting pRGR’s uncertainty estimations as a proxy to

select the most informative images for training the network. Specifically, we need to

identify principled strategies for: i) aggregating the pixel-wise uncertainty estimates

shown in Figure 3.17 into image-level estimates, and ii) identifying strategies to effec-

tively sample according to these estimates. The remainder of this section discusses

some of our efforts in that direction.

133

From pixel-level to image-level estimates.

We have considered two approaches to combine uncertainty estimates at pixel-

level into image-level descriptors. While the first strategy simply consists on com-

puting the average pixel uncertainty values across the whole image, the second ap-

proach exploits histograms of pRGR’s variance estimations across the images. More

specifically, we compute the frequency of estimated pixel-confidence values in a range

divided into 100 bins, and then compute the entropy of the obtained histogram.

To compare these different strategies for ranking images according to uncer-

tainty, we followed the approach described in [141] and generated sparsification plots

to quantify how well an uncertainty estimation rank correlates with an oracle rank

sorted by error (i.e., accuracy). As illustrated in Figure 4.11, sparsification curves

are generated with the intuition that when gradually removing the samples with the

highest uncertainty, the accuracy should monotonically increase.

Figure 4.11: Sparsification curves of the different evaluated techniques for ranking
images of the PASCAL trainaug dataset according to uncertainty.

134

More specifically, Figure 4.11 depicts rankings provided by mean and

histogram-based approaches after collecting pRGR’s variances generated from refine-

ment of predictions provided by a DeeplabV2 (ResNet) model trained on the PASCAL

dataset. These results show that while the mean of the pixel-wise variances performs

relatively poorly (i.e., it shows the lowest similarity with the oracle), the entropy of

the histograms of the variances shows improved performance for uncertainties higher

than approximately 0.2.

Sampling according to uncertainty.

Given a reliable ranking of images according to estimated uncertainties, the

next step towards active learning consists on identifying an effective sampling strat-

egy according to uncertainty. While the most straightforward approach consists of

selecting samples of highest uncertainty for training, some problems can arise from

this strategy. At early learning stages, when more general descriptors still have to be

learned, it can be difficult for the model to learn from the most challenging samples.

Moreover, a problem known as cold start can also occur [142], where a poor start-

ing training set can lead to inaccurately biased uncertainty estimations. Therefore,

we perform experiments considering three sampling strategies for uncertainty-based

ranking of images: i) sample the most uncertain images; ii) sample the least uncertain

images; iii) diversify the sampling over the whole rank of images, selecting samples

over equally spaced bins across the uncertainty-based ranking. We refer to the latest

strategy as stair-wise sampling, and provide in Figure 4.12 an illustration of the three

sampling strategies considered.

Figure 4.13(a) summarizes the results obtained for experiments combining

a ranking based on the histogram of pRGR uncertainties with each of these three

sampling strategies, with the goal of training a DeepLab-v3+ model on the PASCAL

dataset. In this experiment, we try to identify informative training images composing

135

Figure 4.12: Illustration of the three sampling strategies considered for uncertainty-
based sample selection. Cyan: select samples with lowest uncertainty; magenta:
select samples with highest uncertainty; purple: select samples in a stair-wise fashion
over the uncertainty-based ranks.

the PASCAL trainaug subset, by ranking them according to uncertainty estimations

provided by pRGR after refining predictions of a DeepLab-v2 model already trained

on the PASCAL dataset. In an approach inspired by transfer learning techniques,

our assumption is that a new model could then be more effectively trained using only

a subset of the most informative images.

As a baseline, we randomly sample three subsets of images, train the model

on them, and estimate their mean performances in terms of mIoU in the validation

set. In Figure 4.13, the plot on the left side demonstrates that training using a subset

defined according to stair-wise sampling leads to performances significantly better

than the ones observed by sampling the least or most uncertain images. Moreover,

the mIoU curves indicate that subsets sampled using this strategy allow on average

slightly more effective learning than randomly sampling images.

Our final experiment on the PASCAL dataset aimed at emulating the first

training loop of an active learning system. First, a DeepLab-v3+ model is trained on

a randomly selected subset containing 20% of the available training images. Then,

136

Figure 4.13: Curves of segmentation quality (in terms of validation mIoU) for models
trained on subsets of the PASCAL trainaug dataset. Left: evaluation of different sam-
pling strategies for training a DeepLab-v3+ model, based on uncertainty estimates
provided by a DeepLab-v2 model. Right: segmentation performance on validation
set after one active learning loop for a DeepLab-v3+ model.

our uncertainty-based sampling strategy is evaluated for the selection of an additional

subset containing 20% new training images. As baselines, we compare performance

with results obtained by training with five different randomly selected subsets of

images. Stair-wise sampling is used for the method based on uncertainty estimations,

as well as diversification to balance the number of samples per class. Results are

summarized in the plot shown at the right-side of Figure 4.13, indicating that an

histogram-based active learning strategy performs on average better than randomly

selecting samples, with the AL approach yielding a curve of validation mIoU clearly

above the upper-range provided by the multiple random runs.

Experiments with satellite imagery.

Finally, we performed AL experiments using satellite imagery, as part of col-

laboration with Dr. Dalton Lunga at the Oak Ridge National Laboratory (ORNL).

The identification and quantification of structures such as building footprints and

road maps from satellite images is of great importance for tasks that include disaster

137

response planning, geographical analysis of human occupation and mobility patterns,

and many other applications related to socio-economics studies [143]. In addition

to its potential applications, the increasing amounts of available high-quality remote

sensing imagery also contributes to making it a topic of great interest. In contrast to

conventional image datasets, satellite imagery is characterized by extra challenges re-

lated to the volume of data that has to be stored, annotated, and processed. Hence,

it constitutes a particularly relevant study-case for AL approaches that intend to

optimize the processes of data preparation and processing.

Part of the SpaceNet datasets and challenges [144], the SpaceNetV2 dataset

comprises images and annotations collected from five different areas of interest (AOI)

across the globe, which cover areas of the cities of Las Vegas, Rio de Janeiro, Shanghai,

Paris, and Khartoum. With the challenge focusing on building footprint detection,

SpaceNetV2 comprises over 685, 000 building footprints in total [145]. In the next

paragraphs, we describe AL experiments performed using the SpaceNetV2 dataset as

a simplified feasibility study for the domain of satellite imagery.

From an application perspective, one of the main potential benefits of an

active learning framework is to optimize transfer learning across different scenarios.

For a building segmentation model already trained on one AOI, high segmentation

quality for another AOI should be achievable at a cost of only a few extra scenario-

specific training samples. In this context, we performed experiments where a model

pre-trained on 600 images from the Vegas AOI is fine-tuned using selected training

samples from: a) the Shanghai AOI; and b) the Khartoum and Paris AOIs.

For the experiment using the Shanghai AOI, 1000 images were divided into an

available training pool of 600 images, and a subset of 400 images for validation. We

compare an uncertainty-based sampling strategy to random sampling to perform two

active learning loops using 200 images each. More specifically, our active learning

model uses the histogram of pRGR’s variances as uncertainty estimations, with stair-

138

wise sampling of the uncertainty-ranked images as well as stair-wise diversification

strategy based on the total pixel area detected as buildings by the pre-trained model

for each image. The baseline model consists of the average performance over three

models trained on randomly generated training sets.

(a) (b)

Figure 4.14: Mean intersection over union on the validation sets of a) the Shanghai
AOI and b) the Paris + Khartoum AOIs. The orange lines correspond to mod-
els trained using randomly selected samples. The blue lines show the results using
uncertainty-based sample selection.

Figure 4.14(a) demonstrates the benefits of our proposed active learning strat-

egy, which achieves a peak performance of 77.9% after two learning loops (i.e., 40%

of the training data). This corresponds to a mIoU 3.0% higher than the average

observed for the random baseline. Moreover, the first learning loop using only 200

images reaches an mIoU only 0.4% lower than the one obtained using 400 randomly

selected images. These results corroborate the potential of the active learning system

to reduce the number of training samples needed and their associated labeling costs.

139

For the same baseline and proposed active learning strategy, our second exper-

iment uses a total of 1500 from the Khartoum and Paris AOIs, split into 900 images

as the training pool and 600 images for validation. Similarly to the previous experi-

ment, we compare the strategies to perform two learning loops using 180 images (20%

of available training pool) each.

As illustrated in Figure 4.14(b), results once again indicate performance im-

provements by selecting training samples using the proposed strategy, with a peak

performance nearly 2.0% higher than the ones in average provided by randomly sam-

pling. Another noteworthy point are the levels of improvement after each step. For

both experiments, improvements after two steps are nearly two times higher than

the ones observed after a single step, suggesting that potential further improvements

could be obtained by either splitting the process into smaller steps and/or sampling

additional training samples. Figure 4.15 qualitatively illustrates the benefits provided

by active learning strategies for the different AOIs, which can be summarized as:

• Improvements with extra steps (left column): false positives such as

the court on upper left image are removed as more steps are performed, while

previously missed structures are detected in the bottom left example;

• Fewer samples needed to reach acceptable performances (middle col-

umn): as both examples in the middle column show, segmentations of nearly

equal quality can be obtained after a single active learning step using an

uncertainty-based sampling, which corresponds to half the samples used by

the random sampling approach;

• Active learning provides higher segmentation quality with the same

amount of training samples (right column): for the upper right example,

training through active learning (uncertainty based) leads to fewer false neg-

atives, better segmenting structures such as the buildings near upper left and

140

Figure 4.15: Cross-model active learning performance illustration. Left) Compari-
son of two uncertainty-based active learning steps on the Kharoum and Paris AOIs.
Middle) Comparison of two steps of model training using random sampling, and
one step model training using uncertainty-based sample selection on the Shanghai
and Paris AOIs. Right) Comparison of both approaches after two active learning
iterations on the Khartoum and Shanghai AOIs.

lower right image corners. In scenarios such as the bottom right example, false

positive such as detecting parts of the road as buildings become less frequent.

141

CHAPTER 5
FRUIT FLOWER SEGMENTATION

Bloom intensity corresponds to the number of flowers present in orchards dur-

ing the early growing season. Various studies have established the relationships be-

tween bloom intensity, fruit load, and fruit quality [146, 147]. Together with factors

such as climate, bloom intensity is especially important to guide thinning, which

consists of removing some flowers and fruitlets in the early growing season. Proper

thinning directly impacts fruit market value, since it affects fruit size, coloration,

taste and firmness. Moreover, accurate estimates of bloom intensity can also benefit

packing houses, since early crop-load estimation greatly contributes to optimizing

postharvest handling and storage processes.

Despite its importance, there has been relatively limited progress so far in

automating bloom intensity estimation. Currently, this activity is typically carried

out manually with the assistance of rudimentary tools. More specifically, it is gen-

erally done by visually inspecting a random sample of trees within the orchard and

then extrapolating the estimates obtained from individual trees to the remainder

of the orchard [148]. As the example in Figure 5.1 illustrates, obstacles that ham-

per this process are: 1) manual tree inspection is time-consuming and labor-intensive,

which contributes to making labor responsible for more than 50% of apple production

costs [149]; 2) estimation by visual inspection is characterized by large uncertainties

and is prone to errors; 3) extrapolation of the results from the level of the inspected

trees to the row or parcel level relies heavily on the grower’s experience; and 4) in-

spection of a small number of trees does not provide information about the spatial

variability in the orchard, although the benefits of precision agriculture practices are

known to optimize fruit quality and yield. [150]

142

Figure 5.1: Example of image from a flower detection dataset used in this work [9]
(c©2018 IEEE).

These limitations, added to the short-term nature of flower appearance until

petal fall, make an automated method highly desirable. Multiple computer vision

systems have been proposed to solve this problem, but most of these methods rely

on hand-engineered features [151], making their overall performance acceptable only

under relatively controlled environments (e.g., at night with artificial illumination).

Their applicability is in most cases species-specific and highly vulnerable to variations

in lightning conditions, occlusions by leaves, stems, or other flowers [26].

In the last decade, deep learning approaches based on convolutional neural

networks (CNNs) led to substantial improvements in the state of the art of many

computer vision tasks [152]. Recent works have adapted CNN architectures to agri-

cultural applications such as fruit quantification [125], classification of crops [153], and

plant identification from leaf vein patterns [154]. Yet, as reviewed in the following Sec-

tion 5.1, existing methods for fruit flower segmentation still rely on hand-engineered

approaches that focus mostly on color analysis. In this context, to the best of our

knowledge, our work in described in Section 5.2 and published in [9] was the first to

employ CNNs for flower detection.

143

5.1 Related Work

While previous techniques for flower detection were based only on color in-

formation, methods designed for fruit quantification have exploited more modern

computer vision techniques. For this reason, this section is divided into two parts:

first, the most relevant works on automated flower detection are reviewed; then, a

discussion of the relevant literature on fruit quantification is provided.

Flower quantification. Aggelopoulou and colleagues presented in [155] one of the

first works using computer vision techniques to detect flowers. That method is based

on color thresholding and requires image acquisition at specific daylight times, with

the presence of a black cloth screen behind the trees. Thus, although its reported

error in predicted yield is relatively low (18%), this approach is only applicable for

such controlled scenarios.

Similar to the work of Thorp and Dierig [156] for identification of Lesquerella

flowers, the technique described by Hočevar et al. in [157] does not require a back-

ground screen, but it is still not robust to changes in the environment. The image

analysis procedure is based on hard thresholding according to color (in the HSL color

space) and size features, such that parameters have to be adjusted whenever changes

in illumination (daylight/night), flowering density (high/low concentration), or cam-

era position (far/near trees) occur.

Horton and his team described in [158] a system for peach bloom intensity

estimation that uses a different imaging approach. Based on the premise that the

photosynthetic activity of this species increases during bloom period, the system relies

on multispectral aerial images of the orchard, yielding an average detection rate of

84.3% for 20 test images. Similarly to the aforementioned methods, the applicability

of this approach also has the intrinsic limitation of considering only color/spectral

144

information (thresholding near-infrared and blue bands). Hence, its performance is

also sensitive to changes in illumination conditions.

Fruit quantification. While early attempts for autonomous fruit detection also

relied on hand-engineered features (e.g. color, texture, shape) [26], recent works

have been exploring more advanced computer vision techniques. A multi-class image

segmentation system is proposed by Hung et al. in [159], classifying image pixels into

leaves, almonds, trunk, ground, and sky. Their method combines sparse autoencoders

[152] for feature extraction, logistic regression for label associations, and conditional

random fields to model correlations between pixels.

Other methods are based on support vector machine (SVM) classifiers that

use information obtained from different shape descriptors and color spaces as input

[160, 161]. Compared to previous techniques for flower detection, these methods are

more robust since morphological characteristics are taken into account. However, as

many other shape-based and spectral-based approaches [162–165], these techniques

are still limited by background clutter and variable lighting conditions in orchards

[148].

Metadata information has also been recently exploited for fruit quantification.

Bargoti and colleagues in [166] built on [159] to propose an approach that considers

pixel positions, orchard row numbers, and the position of the sun relative to the

camera. Similarly, Cheng et al. [167] propose the use of information such as fruit

number, fruit area, area of apple clusters, and foliage area to improve accuracy of

early yield prediction, especially in scenarios with significant occlusion. However, the

inclusion of metadata is highly prone to overfitting, particularly when limited training

data is available and the variability of the training set is hence low [166].

Following advances on the field of object detection, recent works adapt the

Faster R-CNN model [87] for fruit detection. Bargoti and Underwood in [168] present

145

a Faster R-CNN trained for detection of mangoes, almonds, and apples fruits on trees.

Stein et al. in [169] extend this model for tracking and localization of mangoes,

combining it with a monocular multi-view tracking module that relies on a GPS

system. Sa et al. in [170] applies the Faster R-CNN to RGB and near-infrared

multi-modal images, where each modality is fine-tuned independently and optimal

results are obtained using a late fusion approach. The method introduced in [125] for

counting apples and oranges employs a fully convolutional network (FCN) to perform

fruit segmentation and a convolutional network to estimate fruit count. Still in the

context of agricultural applications, CNNs have been also successfully used for plant

identification based on leaf vein patterns [154].

In summary, existing methods for flower identification are based on hand-

engineered image processing techniques that work only under specific conditions.

Color and size thresholding parameters composing these algorithms have to be read-

justed in case of variations of lightning conditions, camera position with respect to

the orchard (distance and angle), or expected bloom intensity. Recent techniques

employed for fruit quantification exploit additional features and machine learning

strategies, providing insights to further develop strategies for flower detection.

With the goal of devising a technique for flower segmentation that is robust

to clutter, changes in illumination and applicable for different flower species, the

present dissertation describes two novel approaches developed using CNNs for flower

segmentation. The first approach, published in [9], combines superpixel-based region

proposals with a classification CNN that is fine-tuned to become particularly sensi-

tive to apple flowers. The second approach, published in [2], combines instead an

end-to-end CNN with the RGR algorithm described in 3.1 to improve segmentation

quality. Trained only on a dataset of apple flowers, this approach provides high-

quality segmentations even in scenarios involving different acquisition conditions and

flower species.

146

5.2 Apple flower detection using deep convolutional networks

Inspired by successful works using convolutional neural networks (CNNs) in

multiple computer vision tasks, we propose a novel method for apple flower detection

based on features extracted using a CNN.

The main contributions of this work are:

• to the best of our knowledge, our method [9] is the first to employ CNNs for

flower segmentation. In our approach, an existing CNN trained for saliency

detection is fine-tuned to become particularly sensitive to flowers. This network

is then used to extract features from portraits generated by means of superpixel

segmentation. After dimensionality reduction, these features are fed into a pre-

trained classifier that ultimately determines whether each image region contains

flowers or not.

• our CNN-based method significantly outperforms state-of-the-art approaches,

which are based on color-based approaches;

• we provide an extensive evaluation on a challenging dataset acquired under re-

alistic and uncontrolled conditions, as well as an analysis of the generalization

capability of the proposed approach on additional datasets previously unseen by

the model.

5.2.1 Proposed approach

This section first describes the prediction steps performed by the proposed

method, i.e., the sequence of operations applied to an image in order to detect the

presence of flowers. Subsequently, we describe the fine-tuning procedure carried out to

obtain the core component of our model: a CNN highly sensitive to flowers. We con-

clude the section with a discussion of alternative flower detection approaches against

which we evaluate our proposed method and a brief discussion of relevant details

regarding the implementation of our method.

147

Figure 5.2: Diagram illustrating the sequence of image analysis tasks performed by
the proposed model for flower identification. Layers FC7-FC8, present in the original
architecture shown in Figure 2.9, are used only during fine-tuning (training). For
final prediction, features are collected from the output of layer FC6. Each task and
its corresponding output (shown above the arrows) are described in Algorithm 3.

In the discussion that follows, we refer to our proposed approach for flower

detection as the CNN+SVM method. As illustrated in Figure 5.2, our method

consists of three main steps: i) computation of region proposals; ii) feature extraction

using our fine-tuned CNN, which follows the Clarifai architecture [42]; and iii) final

classification of each region according to the presence of flowers. The operations

that comprise these steps are described in detail below. In our description, we make

reference to Algorithm 3, which lists the operations performed by our method on each

input image. The sensitivity of the method to specific design choices is analyzed in

Section 5.2.3.1.

1) Step 1 - Region proposals: The first step in the proposed method consists of

generating region proposals by grouping similar nearby pixels into superpixels, which

are perceptually meaningful clusters of variable size and shape (Line 1 of Algorithm 3).

To this end, we use the simple linear iterative clustering (SLIC) superpixel algorithm

[60], described in detail in Section 2.4.4. The second leftmost image in Figure 5.2

148

illustrates the superpixels si ∈ S generated by the SLIC algorithm when applied to a

typical image obtained in an orchard.

Although other approaches such as Faster R-CNN [87] provide a unified ar-

chitecture in which both region proposal and classification modules can be fine-tuned

for a specific task, they have more parameters that need to be learned in a supervised

manner. Since in most cases flowers are salient with respect to their surrounding

background, an unsupervised, local context-based approach such as superpixel seg-

mentation should be sufficient to obtain region proposals suitable for flower detection.

Algorithm 3 Proposed approach for flower detection
Input: Image I.
Output: Regions in I containing flowers.
1: Partition I into a set of superpixels S using SLIC.
2: for each superpixel si ∈ S do
3: Crop smallest square portrait pi enclosing si.
4: Generate p̂i by mean-padding the background surrounding si in pi.
5: Extract features fi from the mean-centered p̂i using the fine-tuned CNN.
6: Obtain f̂i by performing PCA analysis on fi.
7: Classify si by applying a pre-trained SVM on f̂i.

Once the image is segmented into superpixels, as Algorithm 3 indicates, we

iterate over each superpixel in the image. Since the input size required by the Clarifai

CNN model is 227 × 227, we first extract the smallest square portrait enclosing

the superpixel under analysis (Line 3), which we denote pi. The output of this

step is illustrated in the third leftmost image of Figure 5.2 for one superpixel. The

background surrounding the superpixel of interest within a portrait is then padded

with the training set mean, i.e., the average RGB color of all images composing the

dataset (greenish color). Finally, the portrait is resized to 227× 227px (Line 4). The

resulting region proposal, p̂i, is illustrated in the fourth image of Figure 5.2.

149

2) Step 2 - Feature extraction: In the feature extraction step (Line 5), each

of the portraits generated above is mean-centered and then evaluated individually by

our CNN. The mean-centering step consists of subtracting from the portrait the same

average training set RGB mean used for padding its background. This procedure is

commonly employed to facilitate training convergence of deep learning models, since

it ensures similarly ranged features within the network. For each input portrait, we

collect as features the output of the rectified linear unit (ReLU) associated with the

first fully connected layer of the network (FC6). With a dimensionality of N = 4, 096,

the feature vector fi ∈ R
N collected at this stage of the network encapsulates the

hierarchical features extracted by layers C1 − C5, which contain the information

required for accurate classification.

3) Step 3 - Classification: To classify each proposed region as containing a

flower or not, we first perform principal component analysis (PCA) to reduce the

feature dimensionality to a value k < N such that the new feature vector f̂i ∈ R
k

(Line 6). As demonstrated in our experimental evaluation in Section 5.2.3.1 a value

of k = 69, which corresponds to approximately 94% of the original variance of the

data, provides performance levels virtually identical to those of the original features.

Finally, based on these features, a pre-trained SVM model classifies superpixels ac-

cording to the presence of flowers (Line 7). Details on SVM training are provided in

the next section.

5.2.1.1 Network fine-tuning and SVM training

Based on the techniques introduced by Girshick et al. in [86] and Zhao et al.

in [171] for object and saliency detection, in our model an existing CNN architecture

is made particularly sensitive to flowers by means of fine-tuning. In the work of Zhao

et al. [171], the Clarifai model [42] was adopted as the starting point and fine-tuned

150

for saliency detection. We further tuned Zhao et al.’s model for flower identification

using labeled portraits from our training set, which we describe below.

The generation of training samples for network tuning takes place in a manner

similar to that used for prediction. For each labeled image composing the training

set, we compute region proposals according to Step 1 described above. Using these

training examples, 10, 000 backpropagation training iterations are performed in order

to minimize the network classification error. After fine-tuning, we compute the CNN

features of the training examples, reduce their dimensionality to k = 69, and use

them to train the SVM classifier.

Image dataset

Images of apple trees were collected using a camera model Canon EOS 60D

under natural daylight illumination (i.e., uncontrolled environment). This dataset,

which we refer to as AppleA, is composed of a total of 147 images with resolution of

5184 × 3456 pixels acquired under multiple angles and distances of capture. Figure

5.3 shows some images that comprise this dataset. For performance evaluation and

learning purposes, the entire dataset was labeled using a MATLAB GUI in which the

user selected only superpixels that contain parts of flowers in, at least, approximately

half of its total area. As summarized in Table 5.1, the labeled images were randomly

split into training and validation sets composed of 100 and 47 images, respectively.

This corresponds to a total of 91, 488 training portraits (i.e. superpixels) and 42, 430

validation ones. The training examples were used to fine-tune the network and train

the SVM, while the validation examples were used in the performance evaluation

discussed in Sections 5.2.3.1 and 5.2.3.2.

151

True Positives False Negatives False Positives

Figure 5.3: Examples of images composing the AppleA dataset, with the correspond-
ing detections provided by the proposed algorithm.

Table 5.1: Statistics of the training and validation dataset (AppleA).

Portraits (i.e., superpixels)

Images Positives Negatives Total

Training 100 3, 691 (4%) 87, 797 (96%) 91, 488
Validation 47 1, 719 (4%) 40, 711 (96%) 42, 430
Total 147 5, 410 (4%) 128, 508 (96%) 133, 918

Data augmentation

According to our labeling, only 4% of the samples contain flowers (positives).

Imbalanced datasets represent a problem for supervised machine learning approaches,

since overall accuracy measures become biased towards recognizing mostly the ma-

jority class [172]. In our case, that means the learner would present a bias towards

classifying the portraits as negatives. To overcome this situation and increase the

amount of training data, we quadrupled the number of positive samples using data

augmentation. As illustrated in Figure 5.4, this was accomplished by mirroring each

positive sample with respect to: (i) the vertical axis, (ii) the horizontal axis, and (iii)

both axes.

152

(a) (b) (c) (d)

Figure 5.4: Example of data augmentation. a) Original portrait. b) Portrait mirrored
with respect to the vertical axis, c) the horizontal axis, d) and both axes.

Parameters’ optimization

As reviewed in Section 2.2.1.1, support vector machines (SVMs) are supervised

learning models that search for a hyperplane that maximizes the margin distance to

each class. To optimize the regularization cost C and the width of the Gaussian

kernel γ, we use the grid search strategies described in [37,38] and Section 2.2.1.1.

Implementation Details

Most image analysis tasks were performed using MATLAB R© R2016b. Addi-

tionally, we used the open source Caffe framework [173] for fine-tuning and extracting

features from the CNN. To reduce computation times by exploiting GPUs, we used

the cuSVM software package for SVM training and prediction [174].

5.2.2 Comparison approaches

As has been noted in Section 5.1, current algorithms for automated identifi-

cation of flowers are mostly based on binarization by thresholding information from

different color-spaces (typically RGB or HSV) [155,156], occasionally combined with

size filtering [157]. We implement three alternative baseline approaches which reflect

the state of the art in fruit/flower detection. The first approach, which we call the

153

HSV method, replicates the algorithm described by Hočevar and his team in [157].

Images are binarized at pixel-level based on HSV color information, followed by fil-

tering according to minimum and maximum cluster sizes.

We refer to the second baseline implementation as HSV+Bh. Similar to our

proposed approach, the starting point for this method is the generation of superpixels

using the SLIC algorithm. We then compute a 100-bin histogram of each superpixel

in the HSV color space, detailed in Section 2.1. In our experiments, we construct a

single 1-D histogram consisting of 100 bins, which corresponds to the concatenation

of a 50-bin hue channel histogram, a 40-bin saturation histogram and a 10-bin value

histogram. Afterwards, we use the Bhattacharyya distance [175] to compare each

superpixel histogram against the average histogram of all positive samples composing

the training set. We compute the Bhattacharyya distance using a Gaussian kernel

function, as formulated in [176, 177]. The average Bhattacharyya distance is taken

as the likelihood that the superpixel includes a flower, and superpixels with distance

lower than a threshold are classified as flowers.

Since the technique described above is based on the average Bhattacharyya

distance in the HSV color space, it makes no distinction between poorly and highly

informative training sample features. Its ability to make accurate classification de-

cisions is therefore limited in such complex feature spaces. Inspired by works on

fruit quantification [160, 161], we extend this method by combining the same HSV

histograms with an SVM classifier for apple flower detection. That is, rather than

determining whether a superpixel contains a flower based on the Bhattacharyya dis-

tance, we train an SVM classifier that uses the HSV histograms as inputs. We call

this approach the HSV+SVM method.

154

5.2.3 Experiments and results

Experiments were performed with three main goals. Our optimal CNN+SVM

model extracts features from the CNN’s first fully connected layer (FC6), reduces

feature dimensionality to 69, and performs final classification using SVM. Thus, we

first evaluated the impact of these specific design choices on the final performance

of our method. We then compared it against the three baseline methods (HSV,

HSV+Bh and HSV+SVM). Finally, we evaluated the performance of the proposed

approach on previously unseen datasets to determine its generalization capability.

As described in Section 5.2.1.1, our datasets are severely imbalanced. We

therefore perform our analysis in terms of precision-recall curves (PR) and the cor-

responding F1 score [51], since as discussed in Section 2.4.2 such metrics are more

robust to imbalance than simple accuracy computation. While the maximum F1 score

indicates the optimal performance of a classifier, the area under the respective PR

curve (AUC-PR) corresponds to its expected performance across a range of decision

thresholds, such that a model with higher AUC-PR is more likely to generalize better.

5.2.3.1 Analysis of design choices

In order to validate our design choices, we performed experiments to evaluate

how the final performance of the classifier is affected by: (i) the dimensionality of the

feature space, (ii) the point where features are collected from the CNN, and (iii) the

type of input portrait.

Dimensionality analysis

As reviewed in Section 2.2.1.1, PCA is one of the most widespread tech-

niques for dimensionality reduction, projecting N -dimensional input data onto a k-

dimensional subspace in such a way that this projection minimizes the reconstruction

155

error [33]. In this application, the original dimensionality corresponds to the number

of elements in the CNN vectors extracted from a fully connected layer, i.e., N = 4, 096

as represented for the last layer in Figure 5.2. The first two columns of Table 5.2

show the reduced dimensionality k of the feature vector and the corresponding ratio

of the total variance of the N -dimensional dataset that is retained at that dimension-

ality for layer FC6. As the table indicates, the first most significant dimension alone

already covers almost half of the total variance, and 23 dimensions are sufficient to

cover nearly 90% of it.

Table 5.2: Classification performance according to the number of principal compo-
nents (dimensions) selected after applying PCA to the extracted features. Best results
in terms of F1 and AUC-PR are shown in boldface.

No. of
dimensions

Variance
ratio F1 Recall Precision AUC-PR

1 48.3% 90.4% 92.2% 88.6% 96.5%
2 63.7% 91.4% 92.7% 90.2% 94.0%
5 79.9% 91.9% 92.3% 91.5% 96.9%
15 87.4% 91.5% 92.6% 90.4% 94.3%
23 89.6% 92.1% 92.9% 91.2% 95.2%
69 93.8% 91.9% 92.6% 91.2% 97.2%
150 95.8% 91.3% 92.7% 90.0% 97.1%
300 97.2% 91.6% 91.6% 91.7% 97.2%
500 98.0% 91.8% 91.8% 91.8% 95.0%
1080 99.0% 91.7% 91.5% 91.8% 94.9%

We investigated then how samples are mapped into the lower dimensional

feature space. Figure 5.5 shows the projections in dimensions 1 and 2 as well as

dimensions 1 and 3. These plots illustrate how the convolutional network maps the

samples into a space where it is possible to differentiate between multiple clusters.

156

With dim. as an abbreviation for dimension, let ↓ denote low dimensionality values

and ↑ high values, respectively. The following clusters can be identified: flowers

(↓ dim.1, ↑ dim.2); grass/floor (↑ dim.1, ↑ dim.2); branches/leaves (↓ dim.2); sky

(↑ dim.3). This indicates that positive and negative samples are almost linearly

separable even for 2D projections of the original feature space.

Figure 5.5: Projections of samples on 2D feature spaces, with positive samples in
blue and negatives ones in red. Left: sample distribution on the plane corresponding
to dimensions 1 and 2 according to PCA. Right: sample distribution on the plane
corresponding to dimensions 1 and 3.

To quantitatively assess how the classification performance is affected by the

dimensionality of the feature space, we trained SVM classifiers for different numbers

of dimensions. For each dimensionality, Table 5.2 presents the optimal performance

metrics and the corresponding AUC-PR. As expected, these results demonstrate that

the impact of dimensionality on the optimal performance of our method is rather low.

A very good performance is already obtained using a 2D feature space, with both F1

score and AUC-PR only around 0.7% and 3.2% lower than the highest obtained values,

respectively. In terms of optimal recall and precision, this is equivalent to missing

157

four positive samples out of 1, 719, while including 19 additional false-positives out of

40, 711. Moreover, the table shows that a dimensionality of 69 is nearly optimal: the

performance in terms of optimal F1 score is only 0.2% lower than the highest value

obtained (23 dimensions) and it is optimal in terms of AUC-PR.

Although in the discussion above we present results obtained using SVMs,

such a high separability even for low dimensionalities indicates that the final predic-

tion accuracy of our model is almost independent of the type of classifier employed.

This conjecture is validated in the next subsection, where we demonstrate that the

performance of our system does not change significantly by either including an ad-

ditional fully connected layer to our CNN or by carrying out classification using the

using network’s softmax layer directly.

Feature analysis

As explained in Section 5.2.1, after fine-tuning the model, we use it to extract

features that allow the classification of superpixels according to the presence of flowers

within them. Three combinations of features and classification mechanisms were

investigated: (A) predict using solely the neural network, by means of its softmax

output layer, (B) train an SVM classifier on features collected after the last fully

connected layer (FC7), (C) train an SVM classifier on features collected after the

first fully connected layer (FC6). Figure 5.6 shows the points where features are

collected and how classification scores are computed using these features. Following

the notation used in Figure 5.2, C1-C5 correspond to the convolutional layers of the

fine-tuned Clarifai network, FC6-FC7 are the fully connected layers, and FC8 is the

softmax layer.

For approaches B and C, features are collected from the output of the rectified

linear units (ReLUs) located right after the respective fully connected layers. The

same sequence of operations is performed for both methods B and C, i.e., the frame-

158

Portrait

C1-C5 FC6 FC7 FC8

PCA
(1:4096) SVM

Scores

A (NN)

B (FC7)

C (FC6)

Figure 5.6: Diagram illustrating how classification scores are computed using the
extracted features.

work is the same regardless of whether the features are collected from the last (FC7)

or first fully connected layer (FC6). Based on the results obtained in the previous

section, for both cases 69 dimensions are kept after PCA analysis.

Results obtained for classification on the validation set are summarized in

Table 5.3 and Figure 5.7. As Figure 5.7 indicates, all three approaches show very

similar performance. A closer inspection of Table 5.3 reveals that the SVM-based

approaches slightly outperform the direct use of the neural network softmax layer

both in terms of optimal F1 score and AUC-PR. The performances obtained with

methods B and C are very similar for both metrics. We therefore opted for method C,

which uses features extracted from the earlier layer FC6 and provides slight increases

in both optimal F1 score and AUC-PR.

Table 5.3: Classification performance according to the CNN layer at which features
are collected - Methods A, B, C.

AUC-PR F1 Recall Precision

A (NN) 96.9% 90.6% 91.7% 89.6%
B (FC7) 97.2% 91.6% 91.8% 91.4%
C (FC6) 97.3% 91.9% 92.6% 91.2%

159

0 0.2 0.4 0.6 0.8 1

Recall

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

NN

FC7

FC6

Figure 5.7: PR curves illustrating the performance on the validation set according
to the CNN layer at which features are collected. NN stands for prediction using
solely the network softmax output layer, while FC6 and FC7 correspond to SVM
classifiers trained on features collected at the first and second fully connected layers,
respectively.

Different types of portraits

Using superpixels for region proposal computation and subsequent genera-

tion of portraits implies that our goal is to evaluate whether the superpixel itself

is composed of flowers or not. In order to assess the influence of the local context

surrounding the superpixel on the classification results, in addition to the approach

based on replacing the region around the superpixel with the mean RGB value, two

alternative approaches for portrait generation were considered. The first consists of

retaining the unmodified image area surrounding the superpixel, whereas the second

corresponds to blurring the background surrounding the superpixel with a low-pass

filter. For all three cases, the portrait is mean-centered before being fed into the

neural network. The three types of evaluated portraits are illustrated in Figure 5.8.

160

(a) (b) (c)

Figure 5.8: Example of the three types of portrait evaluated. a) Original ; b) Blurred
background (Blur); c) Mean padded background.

0 0.2 0.4 0.6 0.8 1

Recall

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Original

Blur

Mean padding

Figure 5.9: Classification performance according to the portrait adjustment strategy.
Original: portraits evaluated without any further adjustment; Blur: portraits where
the background is blurred; Mean padding: strategy of padding the background with
the training set mean.

Figure 5.9 shows the PR curves obtained for each portrait type. The best

performance is obtained with mean-padded portraits, a behavior explained by the

existence of cases such as the ones illustrated in Figure 5.10. The superpixels high-

lighted in the images on the top row do not contain flowers in more than 50% of their

area and should therefore not be classified as flowers. However, these superpixels are

surrounded by flowers, as depicted in the corresponding figures in the bottom row,

161

and hence the approach of simply cropping a square region around the superpixel

leads to cases in which the portrait contains a well-defined flower. As a consequence,

features extracted from the CNN for the entire portrait will indicate the presence

of flowers and therefore lead to high confidence false positives, which explain the

non-maximal precision values in the upper-left part of the respective PR curve. This

problem is eliminated by mean-padding the background.

Figure 5.10: Examples of superpixels incorrectly classified for Original and Blur
portraits. The superpixels are shown in the top row and the bottom row shows the
entire portraits enclosing the superpixels.

5.2.3.2 Comparison against baseline methods

The analysis in Section 5.2.3.1 above validates the design choices of our optimal

CNN+SVM model described in Section 5.2.1. That is, our optimal model uses mean-

padded portraits and 69-dimensional features obtained from the FC6 layer of the

CNN. In this section, we compare this optimal CNN+SVM model against the three

baseline methods described in Section 5.2.2.

The parameters of all four methods were optimized using a grid search, as

described in Section 5.2.1.1. Optimization of the SVM hyperparameters based on F1

162

score resulted in the following values for regularization factor (C) and RBF kernel

bandwidth (γ): HSV+SVM (C = 180; γ = 10); CNN+SVM (C = 30; γ = 10−4).

For the HSV+Bh method, we performed an analogous grid search to optimize the

standard deviation associated with the Gaussian kernel function, obtaining an optimal

parameter of σ = 5. For the HSV method, we performed an extensive grid search

on our training dataset to select an optimal set of threshold values. This procedure

indicated that pixels composing flowers are distributed over the entire H range of

[0, 255], with optimal ranges of S within [0, 32], V within [139, 255], minimum size of

1, 200 pixels and maximum size of 45, 000 pixels.

Once the optimal parameters for all the classification models were determined,

we evaluated the overall performance of each method using 10-fold cross-validation.

All the 133, 918 samples composing the full AppleA dataset were combined and di-

vided into 10 folds containing 13, 391 samples each. A total of 10 iterations was

performed, in which each subsample was used exactly once as validation data.

The PR curves associated with each method are shown in Figure 5.11. Table

5.4 provides the AUC-PR for each method along with the metrics obtained for the

optimal models as determined by the F1 score.

Table 5.4: Summary of results obtained for our approach (CNN+SVM) and the
three baseline methods (HSV, HSV+Bh and HSV+SVM). Best results are shown
in boldface.

AUC-PR F1 Recall Precision

HSV 54.9% 54.1% 58.3% 50.4%
HSV+Bh 61.6% 64.6% 56.9% 60.5%
HSV+SVM 92.9% 87.1% 88.4% 87.8%
CNN+SVM 97.7% 93.4% 92.0% 92.7%

163

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

HSV

HSV+Bh

HSV+SVM

CNN+SVM

Figure 5.11: Precision-recall (PR) curve illustrating the performance of our pro-
posed approach (CNN+SVM) in comparison with the three baseline methods (HSV,
HSV+Bh, and HSV+SVM).

The HSV method, which closely replicates existing approaches for flower de-

tection, performs poorly in terms of both recall and precision. Such low performance is

expected for methods that rely solely on color information. Since these techniques do

not consider morphology or higher-level context to characterize flowers, they are very

sensitive to changes in illumination and to clutter. Small performance improvements

are obtained using the HSV+Bh method, which replaces pixel-wise hard thresholding

by HSV histogram analysis at the superpixel level, thereby incorporating a limited

amount of context information into its classification decisions.

As illustrated by the results obtained with the HSV+SVM method, the use

of an SVM classifier on the same HSV color features leads to dramatic improvements

in both F1 and AUC-PR ratios (around 20% and 30%, respectively). Rather than

giving the same importance to all histogram regions, the SVM classifier is capable of

distinguishing between poorly and highly informative features. However, as depicted

in Figure 5.12, the precision of this method is still compromised by gross errors such

164

as classifying parts of tree branches as flowers, since it does not take into account any

morphological information.

True Positives False Negatives False Positives

Figure 5.12: Example of classification results obtained using (left) the baseline
HSV+SVM method and (right) our proposed CNN+SVM method. Some examples
of false positives generated by the HSV+SVM method that our approach correctly
classifies can be seen on the branches near the left border of the image.

The proposed approach (CNN+SVM) outperforms both baseline methods by

extracting features using a convolutional neural network. Differently from the previ-

ous methods, the hierarchical features evaluated within the CNN take into account

not only color but also morphological/spatial characteristics from each superpixel.

Our results demonstrate the effectiveness of this approach, with significant improve-

ments in both recall and precision which culminate in an optimal F1 score higher than

92% and AUC-PR above 97% for the evaluated dataset. Figure 5.3 shows examples

of the final classification yielded by this method.

165

True Positives False Negatives False Positives

Figure 5.13: Examples of images composing the additional datasets AppleB (left),
AppleC (middle) and Peach (right), overlaid with the corresponding detections ob-
tained by our method.

5.2.3.3 Performance on additional datasets

To evaluate the generalization capability of our method, we assessed its per-

formance on three additional datasets, composed of 20 images each and illustrated

in Figure 5.13. We compare the results of our method with the performance of the

best performing baseline approach (HSV+SVM). No dataset-specific adjustment of

parameters is performed for our method nor for the baseline, i.e., both methods are

assessed with the same optimal configuration obtained for the AppleA dataset.

Two of the additional datasets also correspond to apple trees, but with a blue

background panel positioned behind the trees to visually separate them from other

rows of the orchard, a common practice in agricultural vision systems. We denote

the first dataset AppleB, which is composed of images with resolution 2704× 1520px

acquired using a camera model GoPro HERO5. In this dataset there is a substantial

number of occlusions between branches, leaves and flowers.

The second dataset, which we call AppleC, is composed of images with reso-

lution 2456× 2058px acquired with a camera model JAI BB-500GE. In this dataset

occlusions are less frequent but the saturation color component of the images is con-

centrated in a much narrower range of the spectrum than in the original AppleA

166

dataset. The contrast between objects such as flowers and leaves is therefore signifi-

cantly lower.

The third additional dataset contains images of peach flowers (we therefore

call it Peach) with resolution 2704 × 1520px acquired using a camera model GoPro

HERO5. Peach blossoms show a noticeable pink hue in comparison to the mostly

white apple flowers composing the training dataset. Additionally, images were ac-

quired during an overcast day, such that in comparison to the training set (AppleA)

the illumination is lower and the sky composing the background is gray instead of

blue. Although the main scope of this work is on apple flower detection, we ultimately

aim at a highly generalizable system that can be applied by fruit growers of differ-

ent crops without the need for species-specific adjustments. In fruit orchards, each

species of tree is typically constrained to specific areas. Hence, rather than differen-

tiating between flower species, it is preferable to have a system that can distinguish

between flowers and non-flower elements (e.g. leaves, branches, sky) regardless of

species. Thus, this dataset represents a good evaluation of detection robustness.

Transfer learning steps

For all three additional datasets, both feature extraction and final classification

were performed using the same parameters obtained by training with the AppleA

dataset, without any dataset specific fine-tuning. Our transfer learning strategy relies

solely on generic pre-processing operations that approximate the characteristics of the

previously unseen images to those of the training samples.

Our first pre-processing step consists of removing the different backgrounds of

the additional datasets. Whether the background is composed of a blue panel (AppleB

and AppleC) or a gray sky (Peach), background identification for subsequent sub-

traction can be performed by means of texture analysis. For each image, we compute

the corresponding local entropy, which is then binarized using Otsu’s threshold [178]

167

to identify low texture clusters. We then apply morphological size filtering to the

binarized image and model the background as a multimodal distribution, following a

similar procedure described in [179].

To model the background, we compute the mean of the R, G, and B channels

of the m largest (in terms of number of pixels) low texture clusters to build a m-modal

reference set. The likelihood that remaining low texture clusters belong to the back-

ground is estimated as the Euclidean distance between their means and the nearest

reference in the RGB space. This metric allows differentiating between low texture

components composing the background from the ones composing flowers, without any

dataset specific color thresholding. For the AppleB and Peach datasets, we adopted

a bimodal distribution, where the modes correspond to the blue panel/gray sky and

trunk/branches. Since the blue panel in the background of images composing the Ap-

pleC dataset is reflective, shadows are visible and therefore we included a third mode

to automatically filter these undesired elements out. Automatically determining the

number of background components is part of our future work.

Afterwards, histogram equalization and histogram matching are performed

on the saturation channel of each image, as exemplified in Figure 5.14. Finally, to

mitigate the effects of illumination discrepancies, we subtract the difference between

the mean of the value channel components in the input image and in the training set.

Figure 5.15 shows the PR curves summarizing the performance on these

datasets of our method (CNN+SVM) in comparison with the best performing base-

line approach (HSV+SVM). The proposed method provides AUC-PR above 85% for

all datasets, significantly outperforming the baseline method. Since the HSV+SVM

method relies solely on color information, its results are acceptable only for the AppleB

dataset, the one that most closely resembles the training dataset. Its performance is

notably poor for the Peach set, as this species differs to a great extent from apple

168

Figure 5.14: Example of image before (left) and after (right) histogram adjustment
through matching and equalization.

Figure 5.15: PR curves expressing the performance of our method (CNN+SVM) and
the optimal baseline (HSV+SVM) approach on the three additional datasets. The
AUC-PR values associated with each curve are presented within parentheses.

flowers in terms of color. A large performance difference is also evident for the Ap-

pleC dataset, in which flowers and leaves share more similar color components than

in the training set. Table 5.5 shows that the proposed approach also outperforms

the baseline by a large margin in terms of optimal F1 score and the corresponding

precision and recall values.

Additionally, it is noteworthy that a large number of superpixels classified as

false positives by our proposed approach (CNN+SVM) correspond to regions where

flowers are indeed present, but compose less than 50% of the corresponding superpixel

169

Table 5.5: Summary of results obtained for our approach (CNN+SVM) and the
best baseline method (HSV+SVM) for the three additional datasets. Best results in
terms of F1 are shown in boldface.

F1 Recall Precision

AppleB
HSV+SVM 70.7% 69.8% 71.6%
CNN+SVM 80.2% 81.9% 78.5%

AppleC
HSV+SVM 48.6% 37.9% 68.0%
CNN+SVM 82.2% 81.2% 83.3%

Peach
HSV+SVM 49.0% 61.3% 40.8%
CNN+SVM 79.9% 81.5% 78.3%

total area. This is illustrated in Figure 5.16, which contains examples for the three

additional datasets. In other words, the sensitivity of the feature extractor to the

presence of flowers is very high and the final performance would be improved if the

region proposals were more accurate.

True Positives False Negatives False Positives

Figure 5.16: Example of incorrect detections caused by poor superpixel segmentation.

170

5.3 Multispecies fruit flower detection using a refined semantic segmen-
tation network

The method described in the previous Section 5.2 and published in [9] com-

bines superpixel-based region proposals with a classification network to detect apple

flowers. Although that method significantly outperforms color-based approaches, ex-

isting superpixel algorithms rely solely on local context information, representing the

main source of mistakes in scenarios where flowers and the surrounding background

present similar colors.

As described in Section 2.4.5, end-to-end fully convolutional networks [90]

have been replacing traditional fully connected architectures for image segmentation

tasks [91]. The work described in this section exploits these approaches to design an

improved method for automated flower segmentation, with contributions that can be

summarized as:

• A novel technique for flower identification that is i) automated, ii) robust to

clutter and changes in illumination, and iii) generalizable to multiple species.

Using as starting point a fully convolutional network (FCN) [22] pre-trained

on a large multi-class dataset, we describe an effective fine-tuning procedure

that adapts this model for flower segmentation. To increase the segmentation

quality in terms of adherence to actual flowers’ boundaries, we exploit the RGR

algorithm introduced in Section 3.1 for segmentation refinement. Our final

method evaluates in less than 50 seconds high-resolution images each of which

covers a full tree. Although the task comparison is not one-to-one, human

workers may need on average up to 50 minutes to count the number of flowers

per tree.

• A feasible procedure for evaluating high-resolution images with deep FCNs on

commercial GPUs. Fully convolutional computations require GPU memory

space that increases exponentially according to image resolution. We employ

171

an image partitioning mechanism with partially overlapping windows, which

reduces artifacts introduced by artificial boundaries when evaluating disjoint

image regions.

• Release of an annotated dataset with pixel-accurate labels for flower segmen-

tation on high resolution images [27]. We believe this can greatly benefit the

community, since annotating images at a pixel level is a very time consuming

yet critical task for both training and evaluation of segmentation models.

5.3.1 Proposed approach

In this section, we first describe the pre-training and fine-tuning procedures

carried out to obtain a CNN highly sensitive to flowers. Subsequently, we describe

the sequence of operations that our pipeline performs to segment flowers in an image.

5.3.1.1 Network training

Reviewed in Section 2.4.1, the COCO-Stuff dataset [6] includes pixel-level

annotations of classes such as grass, leaves, tree and flowers, which are relevant

for our application. In the same work, the authors also discuss the performance

of modern semantic segmentation methods on COCO-Stuff, with a DeepLab-based

model outperforming the standard FCN. Thus, we opted for the publicly available

DeepLabV2(ResNet) [22] model pre-trained on the COCO-Stuff dataset as the start-

ing point for our pipeline. Rather than fine-tuning the DenseCRF model used in

the original DeepLab work, we use our generic RGR algorithm as a post-processing

module to obtain fine-grained segmentations.

The base model was originally designed for segmentation within the 172

COCO-Stuff classes. To adapt its architecture for our binary flower segmentation

task, we perform procedures known as network surgery and fine-tuning [86]. The

surgery procedure is analogous to the pruning of undesired branches in trees: out of

172

the original 172 classification branches, we preserve only the weights and connections

responsible for the segmentation of classes of interest.

We considered first an architecture preserving only the flower classification

branch, followed by a sigmoid classification unit. However, without the normalization

induced by the model’s original softmax layer, the scores generated by the transferred

flower branch are unbounded and the final sigmoid easily saturates. To alleviate

the learning difficulties caused by such a poor initialization, we opted for tuning a

model with two-branches, under the hypothesis that a second branch would allow the

network to learn a background representation that properly normalizes the predictions

generated by the foreground (flower) branch.

We have observed experimentally that nearby leaves represent one of the main

sources of misclassification for flower segmentation. Moreover, predictions for the

class leaf presented the highest activations when applying the pre-trained model to

our training dataset. For these reasons, we chose for this branch together with the

one associated with flowers to initialize our two-branch flower segmentation network.

The adapted architecture was then fine-tuned using the training set described

in Section 5.3.2, which contains 100 images of apple trees. For our experiments,

the procedure was carried out for 10, 000 iterations using the Caffe framework [173],

with an initial learning rate of 10−4 that polynomially decays according to 10−4 ×

(1 − i/10000)0.9, where i is the iteration number. To achieve robustness to scale

variations, our fine-tuning procedure employs the same strategy used for model pre-

training, where each training portrait is evaluated at (0.50, 0.75, 1.00, 1.25, 1.50)

times its original resolution.

While the validation set has pixel-accurate annotations obtained using the

procedure described in Section 5.3.2, the training set was annotated using the less

precise but quicker superpixel-based procedure described in our previous work [9].

Moreover, we employed the same data augmentation procedure described in Section

173

5.2.1. Following the original network parameterization, we split the 100 training

images into portraits of 321× 321 pixels, corresponding to a total of 52, 644 training

portraits after augmentation.

5.3.1.2 Segmentation pipeline

The method we propose for fruit flower segmentation consists of three main

operations: 1) divide a high resolution image into smaller patches, in a sliding window

manner; 2) evaluate each patch using our fine-tuned CNN; 3) apply the refinement

algorithm on the obtained scoremaps to compute the final segmentation mask. These

steps are described in detail below. In our description, we make reference to Algorithm

4 and Figure 5.17.

Figure 5.17: Diagram illustrating the sequence of tasks performed by the proposed
method for flower detection. Each task and its corresponding output (shown below
the arrows) are described in Algorithm 4. In the heatmaps, blue is associated with
lower scores, while higher scores are illustrated with red [2] (c©2018 IEEE).

174

Algorithm 4 Proposed approach for flower detection
Input: Image I.
Output: Estimated flower segmentation map Ŷ of image I.
1: Sliding window: divide I into a set of n portraits P .
2: for each portrait p(i) ∈ P do
3: Compute scoremaps c(i)B and c(i)F using the fine-tuned CNN

4: Obtain CB and CF by fusing c(i)B and c(i)F (i = 1, . . . , n), respectively according to
Eq. 5.2.

5: Normalize CB and CF into C̃B and C̃F , respectively according to Eq. 5.3.
6: Generate Ŷ by applying RGR to C̃B and C̃F .

1) Step 1 - Sliding window: As mentioned above, the adopted CNN architec-

ture either crops or resizes input images to 321 × 321 portraits. Since our datasets

are composed of images with resolution ranging from 2704 × 1520 to 5184 × 3456

pixels (see Section 5.3.2), we emulate a sliding window approach to avoid resampling

artifacts. More specifically, we split each input image I into a set P of n portraits

p(i) ∈ P . Each portrait is 321× 321 pixels large, i.e., p(i) ∈ R
r×r with r = 321. Crop-

ping non-overlapping portraits from the original image introduces artificial boundaries

that compromise the detection quality. For this reason, in our approach each por-

trait overlaps a percentage ρ of the area of each of its immediate neighbors. For

our experiments, we adopted ρ = 10%. When the scoremaps are fused, the results

corresponding to the overlapping pixels are discarded. Figure 5.18 illustrates this

process for a pair of subsequent portraits. The scores obtained for each portrait are

depicted as a heatmap, where blue is associated with lower scores and higher scores

are illustrated with red.

2) Step 2 - CNN prediction: We evaluate in parallel each portrait p(i) with our

fine-tuned network for flower identification. The CNN is equivalent to a function f

f : p(i) → {c(i)F , c
(i)
B }, (5.1)

175

Figure 5.18: Illustration of the sliding window and subsequent fusion process that
comprise our segmentation pipeline. Each portrait overlaps a certain area of its
neighbors, which is discarded during fusion to avoid artifacts caused by artificial
boundaries [2] (c©2018 IEEE).

which maps each input p(i) into two pixel-dense scoremaps: c(i)F ∈ R
r×r represents the

pixel-wise likelihood that pixels in p(i) belong to the foreground (i.e., flower), while

c
(i)
B ∈ R

r×r corresponds to the pixel-wise background likelihood. The heatmaps in

Figures 5.19(a) and (b) are examples of scoremaps computed for a given portrait.

(a) c
(i)
B (b) c

(i)
F

(c) Coarse
segmentation

(d) Refined
segmentation

Figure 5.19: Example of segmentation refinement for a given pair of scoremaps. a)
Background scoremap c

(i)
B . b) Foreground scoremap c

(i)
F . c) Coarse segmentation by

direct thresholding of the scoremaps. d) Refined segmentation using RGR [2] (c©2018
IEEE).

176

3) Step 3 - Fusion and refinement: After evaluating each portrait, we generate

two global scoremaps CB and CF by combining the predictions obtained for all p(i) ∈

P . Let s(i) represent the pixel-coordinates of p(i) in I after discarding the padding

pixels. The fusion procedure is defined as

∀p(i) ∈ P, CF,B(s
(i)) = c

(i)
F,B, (5.2)

such that both scoremaps CB and CF have the same resolution as I. As illustrated

in Figure 5.18, the padded areas of c(i)F,B (outside the red box) are discarded during

fusion. For every pixel in the image, a single prediction score is obtained from exactly

one portrait, such that artifacts introduced by artificial boundaries are avoided.

After fusion, the scoremaps CB and CF are normalized into scoremaps C̃B and

C̃F using a softmax function

C̃F,B(qj) =
exp(CF,B(qj))

exp(CB(qj)) + exp(CF (qj))
, (5.3)

where qj is the j-th pixel in the input image I. With this formulation, for each pixel

qj the scores C̃B(qj) and C̃F (qj) add to one, i.e., they correspond to the probability

that qj belongs to the corresponding class.

As Figure 5.19(c) shows, the predictions obtained directly from the CNN are

coarse in terms of adherence to actual flower boundaries. Therefore, rather than di-

rectly thresholding C̃F , this scoremap and the image I are fed to the RGR refinement

module described in Chapter 3. For our application, the refinement algorithm relies

on two high-confidence classification regions RF and RB defined according to

RF,B =
{

qj|C̃F,B(qj) > tf,b

}

, (5.4)

where tb and tf are the high-confidence background and foreground thresholds. As

detailed in Section 5.3.3, the threshold t0 guiding the majority voting within each

cluster can be empirically tuned according to the dataset under consideration. Based

177

on a grid-search optimization on our training dataset, we selected t0 = 0.3 for all our

experiments and fixed tb = 0.1 and tf = 1.25× t0.

5.3.2 Datasets

We evaluate our method on four datasets that we created and made publicly

available: AppleA, AppleB, Peach, Pear [27]. We note that the datasets here described

are extended versions of the datasets described in Section 5.2. As summarized in Table

5.6, images from different fruit flower species were collected in diverse uncontrolled

environments and under different angles of capture.

Table 5.6: Datasets specifications.

Dataset
No.

images
Weather

Background
panel

Camera
model

Resolution

AppleA
100 (train)
+ 30 (val) Sunny No Canon EOS 60D 5184× 3456

AppleB 18 Sunny Yes GoPro HERO5 2704× 1520
Peach 24 Overcast No GoPro HERO5 2704× 1520
Pear 18 Overcast No GoPro HERO5 2704× 1520

Both datasets AppleA and AppleB are composed of images of apple trees,

which were collected in a USDA orchard on a sunny day. In both datasets, the trees

are supported with trellises and planted in rows.

AppleA is a collection of 147 images acquired using a hand-held camera. From

this total, we randomly selected 100 images to build the training set used to train

the CNN. Out of the remaining 47 images, 30 were randomly selected to compose

the testing set for which we report results in Section 5.3.3. This dataset contains

flowers that greatly vary in terms of size, cluttering, occlusion by leaves and branches.

178

Flowers composing its images have an average area of 10, 730 pixels, but with a

standard deviation of 17, 150 pixels. On average, flowers compose only 2.5% of the

total image area within this dataset, which is otherwise vastly occupied by leaves.

For the AppleB dataset, differently from AppleA, a utility vehicle equipped

with a background unit was used for imaging, such that trees in other rows are

not visible in the images. Figure 5.20 illustrates the utility vehicle used for image

acquisition, and Figures 5.21 and 5.22 illustrate the differences between datasets

AppleA and AppleB.

Figure 5.20: Utility vehicle used for imaging. For the AppleB dataset, this vehicle
was used in conjunction with a background panel [2] (c©2018 IEEE).

The Peach and Pear datasets differ both in terms of species and acquisition

conditions, therefore representing adequate scenarios for evaluating the generalization

capabilities of the proposed method. Both datasets contain images acquired on an

overcast day and without a background unit. Compared to the AppleA dataset, im-

ages composing these datasets present significantly lower saturation and value means.

Tables 5.7 and 5.8 summarize the differences among datasets in terms of the statis-

179

True Positives False Negatives False Positives

Figure 5.21: Examples of flower detection in one image composing the AppleA dataset.

True Positives False Negatives False Positives

Figure 5.22: Examples of flower detection in one image composing the AppleB dataset
[2] (c©2018 IEEE).

tics of the HSV color components, where µ stands for mean values and IQR for

interquartile ranges.

Regarding the flower characteristics, apple blossoms are typically white, with

hue components spread in the whole spectrum (high IQRH) and low saturation mean.

Flowers composing the AppleB dataset present higher brightness (µV), while peach

flowers show a pink hue centered on µH = 325◦, with higher saturation and lower

180

Table 5.7: HSV statistics of images composing each dataset [2] (c©2018 IEEE).

H [0− 360◦] S [%] V [%]
Dataset µH IQRH µS IQRS µV IQRV

AppleA 74.6 49.3 32.9 24.3 53.7 30.2
AppleB 219.6 21.1 88.6 44.3 47.1 16.9
Peach 223.8 199.9 11.8 20.7 42.3 46.6
Pear 85.9 178.8 16.4 23.4 42.4 20.8

Table 5.8: HSV statistics of flowers composing each dataset.

H [0− 360◦] S [%] V [%]
Dataset µH IQRH µS IQRS µV IQRV

AppleA 136.6 205.5 6.3 9.8 77.3 24.3
AppleB 56.3 80.2 7.5 9.8 86.7 23.1
Peach 325.2 26.7 21.2 13.3 50.2 13.7
Pear 215.4 173.2 5.9 5.9 84.7 22.4

value means. Moreover, pear flowers are slightly different in terms of color (greener)

and morphology, as illustrated in Figure 5.25.

5.3.2.1 Labeling

Image annotation for segmentation tasks is a laborious and time-consuming

activity. Labels must be accurate at pixel-level, otherwise both supervised training

and the evaluation of segmentation techniques are compromised. As mentioned in

the previous chapter, most existing annotation tools rely on approximating segmen-

tations as polygons, which provide ground truth images that frequently lack accurate

adherence to real object boundaries [1]. This problem is particularly noticeable for

objects with complex boundaries, such as flowers. Hence, we used our Freelabel an-

notation tool, which is described in Chapter 4, to annotate the images in the dataset.

181

Figure 5.23 shows one example of the annotations provided by the user and the

corresponding segmentations generated by RGR.

Figure 5.23: Example of ground truth obtained from freehand annotations. Left:
positive examples are annotated in blue, while hard negatives are indicated in red.
Right: segmentation obtained after RGR refinement [2] (c©2018 IEEE).

5.3.3 Experiments and results

We aim at a method capable of accurate multi-species flower detection, re-

gardless of image acquisition conditions and without the need for dataset-specific

training or pre-processing. To verify that our method satisfies all these requirements,

we performed experiments on the four different datasets described in Section 5.3.2

while only using the AppleA dataset for training.

We adopt as the main baseline our previous model described in Section 5.2,

which highly outperformed existing methods by employing the Clarifai CNN ar-

chitecture to classify individual superpixels. We therefore refer to that model as

Sppx+Clarifai and to our new method as DeepLab+RGR. We also compare our

182

results against a HSV-based method [157] that segments images based only on HSV

color information and size filtering according to threshold values optimized using

grid-search.

All three methods were tuned using the AppleA training dataset, with dif-

ferences in the pipeline for transfer learning. For the three unseen datasets, the

Sppx+Clarifai relies on a pre-processing step that enhances contrast and removes

the different backgrounds present in the images. Our new method DeepLab+RGR

does not require any pre-processing. Instead, it employs the same pipeline regardless

of the dataset, requiring only adjustments in portrait size. As summarized in Table

5.6, images composing the AppleA dataset have resolution 4.3× larger than images

in the other three datasets. Thus, we split images in these datasets into portraits of

155× 155 pixels, rather than the 321× 321 pixels portraits used for AppleA.

The quantitative analysis of segmentation accuracy relies on precision, recall,

F1 and intersection-over-union (IoU) metrics [43] computed at pixel-level, instead of

the superpixel-wise metrics used in our previous work. Table 5.9 summarizes the

results obtained by each method on the different datasets.

Our new model outperforms the baseline methods for all datasets evaluated,

especially in terms of generalization to unseen datasets. By combining a deeper

CNN architecture and the RGR refinement module, DeepLab+RGR improves both

prediction and recall rates in the validation AppleA set by more than 15%. Figure

5.21 provides a qualitative example of flower detection accuracy in this dataset.

As Figure 5.22 illustrates, images composing the AppleB dataset present a

higher number of flower buds and illumination changes, especially in terms of sunlight

reflection by leaves. Despite the larger variance in comparison with the previous

dataset, the performance obtained by DeepLab+RGR surpasses 77% in terms of

F1.

183

Table 5.9: Summary of results obtained for each method [2] (c©2018 IEEE).

IoU F1 Recall Precision

AppleA
HSV-based 28.0% 43.7% 56.5% 35.7%
Sppx+Clarifai 51.3% 67.8% 73.2% 63.1%
DeepLab+RGR 71.4% 83.3% 87.7% 79.4%

AppleB
HSV-based 49.3% 66.0% 58.9% 75.1%
Sppx+Clarifai 50.6% 67.2% 68.4% 66.1%
DeepLab+RGR 63.0% 77.3% 91.2% 67.1%

Peach
HSV-based 0.1% 1.4% 1.4% 1.6%
Sppx+Clarifai 49.1% 67.2% 71.3% 61.2%
DeepLab+RGR 59.0% 74.2% 64.8% 86.8%

Pear
HSV-based 39.7% 56.8% 65.6% 50.1%
Sppx+Clarifai 40.5% 57.6% 49.6% 68.7%
DeepLab+RGR 75.4% 86.0% 79.2% 94.1%

True Positives False Negatives False Positives

Figure 5.24: Examples of flower detection in one image composing the Peach dataset.
Left: detections provided by the Sppx+Clarifai method. Right: detections ob-
tained with our new DeepLab+RGR method [2] (c©2018 IEEE).

Results obtained for the Peach dataset demonstrate the limitation of color-

based methods and two important generalization characteristics of our model. The

HSV-based method is incapable of detecting peach flowers, since their pink color

is very different from the white apple blossoms used for training. On the other

hand, our method presents F1 near 75%, indicating that it can properly detect even

184

flowers that differ to a great extent from apple flowers in terms of color. Moreover,

images composing this dataset are characterized by a cloudy sky and hence poorer

illumination. Most cases of false negatives correspond to flower buds, due to the lack

of such examples in the training dataset. As illustrated in Figure 5.24, poor superpixel

segmentation leads the Sppx+Clarifai approach to incorrectly classify parts of the

sky as flowers. This problem is overcome by our new model, which greatly increases

precision rates to above 80%.

Furthermore, the high recall rate provided by DeepLab+RGR in the Pear

dataset demonstrates its robustness to slight variations in both flower morphology

and color. As shown in Figure 5.25, similar to the Peach dataset, these images also

present a cloudy background. In addition to that, their background is characterized

by a high level of clutter caused by the presence of a large number of branches.

These high texture components compromise the background removal model used by

Sppx+Clarifai. Still, the DeepLab+RGR method detects pear flowers with more

than 90% precision.

True Positives False Negatives False Positives

Figure 5.25: Examples of flower detection in one image composing the Pear dataset [2]
(c©2018 IEEE).

185

The results obtained by our method for the AppleB, Peach and Pear datasets

can be further improved by adjusting the parameter τ0 used for final classification

and refinement. As summarized in Figure 5.26, increasing t0 from 0.3 to 0.5 increases

in 3% the F1 performance on AppleB, reaching both recall and precision levels around

80%. For the Peach dataset, decreasing t0 to 0.2 increases the recall rate to above 70%.

Such adjustment can be carried out quickly through a simple interactive procedure,

where t0 is chosen according to its visual impact on the segmentation of a single

image.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0

20

40

60

80

F
1
[%

]

t

AppleA

AppleB

Peach

Pear

Figure 5.26: Segmentation performance in terms of F1 measure on each dataset ac-
cording to the parameter t0 [2] (c©2018 IEEE).

Computation time

In terms of inference time, the current implementation of our algorithm on

an Intel XeonTMCPU E5-2620 v3 @ 2.40GHz (62GB) with a Quadro P6000 GPU

requires on average 50 seconds to evaluate each high-resolution image composing our

datasets. Around 5 seconds are required to save portraits as individual files and load

186

their corresponding prediction scores, a process that can be simplified by generating

portraits directly within the neural network framework.

Acknowledgement We acknowledge the support of USDA ARS agreement

#584080-5-020, and of NVIDIA Corporation with the donation of the GPU used

for this research.

187

CHAPTER 6
VISION-BASED ANALYSIS OF ACTIVITY OF DAILY LIVING

The 2017 United Nations report on population ageing estimates the number

of people aged 60 years or older to nearly double by 2050 [180]. In this context, the

future viability of medical care systems depends upon the adoption of new strategies

to minimize the need for costly medical interventions, such as the development of

technologies that maximize health status and quality of life in aging populations.

Therefore, there is increasing interest in estimating the health status and

frailty of the elderly. Frailty is a condition of increased risk of negative health out-

comes, including institutionalization, hospitalization and death, due to multi-systemic

impairments in multiple domains such as physical, cognitive, and social [181]. Cur-

rently, clinicians use evaluation scales that incorporate mobility and Instrumented

Activities of Daily Living (IADL) assessments (i.e., a person’s ability to use a tool

such as a telephone without assistance) [182] to determine the health status of elderly

patients and to recommend habit changes. These assessments are episodic and highly

subjective, generally taking place at a doctor’s office and based on questionnaires or

self-reported outcomes.

Despite the potential of recent advances in many areas of computer vision,

no current technology allows automatic and unobtrusive assessment of mobility and

IADL over extended periods of time in long-term care facilities or patients’ homes.

Patient activity analysis to date has been limited to simplistic scenarios [183], which

do not cover a wide range of relatively unconstrained and unpredictable situations.

Vision-based analysis of mobility and characterization of Activities of Daily

Living (ADLs) is challenging. As the examples in Figures 6.6 and 6.7 illustrate, images

acquired from assisted living environments cover a wide scene where multiple people

can be performing different activities in a varied range of scenarios. Moreover, it

188

encompasses multiple underlying complex tasks including: detection of subjects and

objects of interest, identification of body joints for pose estimation, and estimation

of the gaze of the subjects in the scene.

This chapter describes two novel approaches towards the long-term goal of

creating video analytics tools to robustly and accurately measure relevant mobility

parameters of elderly patients in a relatively uncontrolled environment, such that

monitoring can take place unobtrusively over long periods of time. More specifically,

it addresses two fundamental building blocks of this long-term research. The first

approach, published in [184] and detailed in Section 6.1, addresses the precise seg-

mentation and tracking of individuals in video-streams acquired from assisted living

enviroments. The second approach, published in [10] and detailed in Section 6.2, pro-

poses a novel strategy for gaze estimation, which is a critical element to determine

how humans interact with the surrounding environment.

Detailed in [185,186], the assisted living environment where our research takes

place has been used for studies on automatic assessment of mobility information and

frailty [187]. More specifically, the environment is an assisted living facility situated in

the Galliera Hospital (Genova, Italy), in which patients, after being discharged from

the hospital, are hosted for a few days. The facility is a fully-equipped apartment

where patients may be monitored by various sensors, including localization systems

and RGB-D and conventional video cameras, which are arranged as shown in Figure

6.1.

6.1 Fine segmentation for Activity of Daily Living analysis in a wide-
angle multi-camera set-up

This section addresses a fundamental building block of this long-term research:

the precise segmentation and tracking of individuals in video-streams acquired by a

multi-camera system [184]. The main contributions of this work are summarized as:

189

CAM1

kitchen common

area

CAM2

CAM2

CAM1

Figure 6.1: Images and layout of the instrumented assisted living facility; in color,
the fields of view of the video cameras.

• We describe a framework for fine-grained segmentation of human subjects and

objects of interest for the characterization of Activities of Daily Living (ADL).

In addition to the segmentation of human targets in the scene, we also identify

objects belonging to a set of pre-defined classes of interest that comprises sofa,

chair, and dining table. Our precise segmentation will allow us to develop

robust models of person-person and object-person interaction to be used for

ADL analysis, to access functional abilities (that is, the ability of using tools),

independence, and social awareness.

• The main challenges of our work are the complexity of the scenario and the

fact that the objects of interest may appear in different parts of the image, at

different scales, poses and deformations — because of significant distortions due

to the need of adopting wide angle optics (see Figure 6.2). To address these

challenges, we propose a multi-stream network in which different patches of a

video-frame are fed to separate copies of the network. View-specific distortions

are taken into consideration by applying simple ad-hoc geometric transforma-

tions to the image patches.

• The outputs of the different branches of the network are combined using a fu-

sion mechanism and refined using superpixel segmentation and a probabilistic

190

temporal consistency model. We assess the performance of our method on the

benchmark DAVIS dataset [7, 48] as well as on video streams acquired within

our protected discharge facility. The results show that our approach outper-

forms state-of-the-art video segmentation methods on selected sequences of the

standardized datasets and that it generates very accurate semantic object seg-

mentation in real-world videos.

Figure 6.2: Example of frame containing perspective distortion. By applying view-
specific transformations (e.g. 45◦ rotation) to the distorted regions, the segmentation
can be substantially improved.

We note that the work described in this section was performed before the

development of the RGR algorithm described in Chapter 3. In fact, insights gathered

from this work played an important role in the development of RGR.

6.1.1 Related work

In order to make inferences about activities of daily living, accurate knowledge

about the spatio-temporal relationships among people and objects is needed. There-

fore semantic image segmentation is an important element of smart environments.

191

For applications on real-world scenarios, a limitation of existing methods de-

scribed in Section 2.3 for semantic segmentation arises from the fact that most bench-

mark datasets (e.g., the PASCAL [43] and the COCO [5] datasets) contain images

that focus on the segmentation of a few (frequently only one or two) salient and large

foreground objects. Addressing this limitation is one of the objectives of the proposed

work.

When such segmentation must be carried out in a temporally consistent man-

ner across video frames, as is the case in such scenarios, this task is known as semantic

video segmentation. Similarly to image semantic segmentation, semantic video seg-

mentation has also benefited from the introduction of publicly available datasets such

as DAVIS [7,48] and SegTrack [188]. Most recent works on video segmentation, how-

ever, focus on the simpler task of object segmentation, which consists of accurately

segmenting an object in every frame of a video sequence given a mask representing

this object in the first video frame.

Although some approaches for video segmentation not based on CNNs have

shown good performance [189], methods that employ CNN features to model the

appearance of the object tend to perform better [190]. Again, approaches based

on FCNs also dominate this field [191–193]. One-shot video object segmentation

(OSVOS) [191], for example, uses the FCN of [90] to carry out object segmenta-

tion in a frame-by-frame basis without imposing temporal constraints. MSK (Mask-

Track+Flow+CRF) [192] performs object segmentation using the DeepLab network

of [22] with the object segmentation masks of the previous frame provided as a fourth

input channel to the network in order to take into consideration the temporal infor-

mation. In [193], Jampani et al. propose the Video Propagation Network (VPN),

which is one of the few recent approaches to perform both semantic and object video

segmentation. Their method uses a bilateral filtering network [194] to carry out tem-

192

poral propagation and a CNN for spatial segmentation. It has also been integrated

with other FCNs such as DeepLab [22].

In contrast to image segmentation methods, most of the above methods solve

the problem of object segmentation in videos, disregarding semantic information.

Moreover, they focus on segmenting a few large and prominent foreground objects

from the background, and hence cannot be directly applied to monitoring the scenar-

ios under consideration.

6.1.2 Proposed approach

The method we propose for semantic segmentation of video frames uses a

core RefineNet model [99] to compute the likelihood that each pixel belongs to a

certain category of interest. In particular for this preliminary study, we opted for the

ResNet-101 model that provides state-of-the-art performance on the PASCAL VOC

2012 dataset, which includes all the objects classes we currently consider for ADL

analysis: person, chair, sofa, dining table.

Since our video sequences for ADL analysis consist of frames acquired with

static wide-angle cameras, we also incorporate in our approach strategies to com-

pensate for distortions and to detect non-centered objects. Specifically, instead of

evaluating the entire input frame, we devise a semantic video segmentation archi-

tecture based on a spatial multi-stream arrangement, as illustrated in Figure 6.3.

In each stream, a region is cropped from the input frame and fed into a RefineNet

module, which outputs 20 pixel-dense feature maps corresponding to the likelihood

that a pixel belongs to a certain PASCAL class. For each class, the computed scores

are then combined by a late fusion layer. In addition, in order to compensate for

perspective distortions from our wide-angle cameras, each portrait is evaluated both

with and without a 45◦ counter-clockwise rotation. After adding the responses ob-

193

tained from all the portraits, a pixelwise maximum likelihood evaluation indicates to

which class a pixel most likely corresponds.

Figure 6.3: Diagram illustrating the sequence of image analysis performed by the
proposed model for semantic segmentation of objects of interest.

Conceptually, this type of architecture allows an adaptive feature extraction

arrangement in which each CNN module composing a stream as well as the late fusion

layer can be fine-tuned through task-specific training. In our current proof-of-concept

implementation no supervised fine-tuning is performed, such that all the RefineNet

modules share the same pre-trained weights, view-specific segmentation is approxi-

mated by the 45◦ rotations, and late fusion is performed by a simple summation.

Another important requirement in our reference application is the accuracy

of the segmentation so that interactions between different objects and agents can be

reliably estimated. Although the segmentations obtained with RefineNet are finer

than the ones obtained with deconvolutional models such as FCN, a close inspection

194

reveals that the results can be improved especially in terms of boundary adherence.

Unsupervised techniques such as superpixel segmentation are capable of better ex-

ploring local information to estimate boundaries of objects composing an input image.

Therefore, in our approach, we additionally segment the images using superpixels and

each superpixel is then classified according to a majority voting scheme based on the

scores obtained from the RefineNet method. That is, if more than 50% of the pixels

composing a superpixel present a score over a certain threshold for a given class, the

superpixel is considered a positive detection of the object represented by that class.

We selected the Extended Topology Preserving Segmentation (ETPS) [62] superpixel

algorithm to compose our image segmentation model, described in the Section 2.4.4.

For images acquired from our discharge facility, in addition to framewise anal-

ysis, temporal information can be used based on prior information estimated from

the environment. Since the images are acquired by static cameras, the likelihood of

sharp transition of labels across two subsequent frames (at a 25 fps rate) is rather

low. Therefore, for these video sequences we also include a simple probabilistic model

that, in addition to the likelihood scores obtained using RefineNet, takes into account

temporal information by attributing a higher probability of detection to pixels de-

tected in the previous frame, while the probability of transition between labels (e.g.

background to foreground or vice-versa) is lower.

Let p(t)j represent a pixel j at frame t, while F denotes any foreground class.

With this representation, let c(t)j denote the class likelihood estimated by the CNN

for pj at time instant t. As per Eq. 6.1 , we define an adjusted estimation c̃
(t)
j of

the probability that pixel pj belongs to foreground at instant t, which takes into

consideration both c
(t)
j as well as the label y(t−1)

j assigned to pj at the previous time

instant.

Two events are considered: i) the case where the class predicted in frame t− 1

is the same as the one predicted for frame t; and ii) the complimentary case where

195

different classes are predicted at instants t− 1 and t. As summarized in Eq. 6.2, we

multiply the predicted scores by an empirically defined constant α as a temporal prior:

for the case where y(t)j = y
(t−1)
j , α = 0.9; in the complimentary case where different

classes are predicted at instants t − 1 and t, the prediction score is multiplied by

1− α = 0.1.

c̃
(t)
j = P

(

p
(t)
j ∈ F|c

(t)
j , y

(t−1)
j

)

(6.1)

c̃
(t)
j = c

(t)
j ×

[

α✶
y
(t)
j =y

(t−1)
j

+ (1− α)✶
y
(t)
j 6=y

(t−1)
j

]

(6.2)

6.1.3 Assessment on benchmark data

Quantitative evaluation of video segmentation methods requires pixel-accurate

and per-frame ground truth annotation, a notoriously labor-intensive and time-

consuming task. For that reason, we quantitatively assess the performance of our

method on video sequences composing the DAVIS 2016 dataset, which reflects many

of the properties of our reference application. It comprises scenarios such as target

occlusion, motion-blur, scenes with depth and appearance/pose changes, all of which

are likely to occur in our application-specific video sequences. For an evaluation that

resembles the environment of our application, where the classes of objects to be de-

tected are known a priori, we selected only video sequences where targets correspond

to objects contained on the PASCAL VOC 2012, disregarding sequences containing

unknown objects.

To verify the efficacy of the proposed per-superpixel majority voting scheme,

we compare two approaches against the baseline methods: one composed only by

RefineNet (which we refer to as RN) and one combining RefineNet and superpixel

analysis (which we refer to as RS). Although we provide a comparison against multiple

video segmentation techniques proposed for the DAVIS challenge, it is important to

196

Table 6.1: Jaccard index (J) / Contour accuracy (F) Per-Sequence

Sequence RS RN MSK [192] VPN [193] OFL [190] NLC [195]

bmx-bumps 45.8/60.5 42.6/63.0 57.1/67.8 41.8/59.2 47.5/52.9 63.5/73.4
bmx-trees 44.9/64.6 44.5/64.2 57.5/73.6 33.5/46.2 14.9/16.4 21.2/33.0
breakdance

-flare
86.4/91.2 83.5/92.2 77.6/78.4 82.7/90.8 75.6/78.3 80.4/80.8

hike 90.6/94.2 85.5/94.8 93.1/96.0 88.0/95.4 93.4/96.6 91.8/94.3
hockey 83.2/81.4 80.8/83.1 83.4/79.1 78.5/80.3 84.9/ 88.9 81.0/80.8
horsejump

-high
82.1/84.4 80.2/86.0 81.7/85.1 81.8/86.3 86.3/90.4 83.4/88.1

horsejump

-low
82.6/86.8 82.7/89.6 80.6/81.2 74.4/71.3 82.2/85.9 65.1/65.9

kite-surf 64.7/44.8 60.7/42.5 60.0/43.8 62.3/53.5 70.3/49.7 45.3/44.8
lucia 89.9/92.4 86.8/92.4 91.1/89.5 86.4/90.2 89.7/89.4 87.6/87.2
motocross

-bumps
89.2/81.9 88.0/82.8 59.9/55.4 87.2/82.4 47.4/48.0 61.4/56.0

motorbike 79.1/75.6 79.9/75.3 56.6/59.7 80.8/81.4 47.6/50.4 71.4/57.1
paragliding

-launch
61.4/20.6 59.2/19.4 62.1/22.9 61.4/23.1 63.7/25.3 62.8/24.3

parkour 89.3/90.3 85.9/92.1 88.2/87.4 87.3/91.7 85.9/87.0 90.1/91.6
rollerblade 84.5/86.1 81.7/89.5 78.7/85.0 81.4/87.9 89.2/94.0 81.4/86.8

scooter

-gray
73.5/66.8 72.6/68.1 82.9/65.9 76.8/68.7 25.8/20.8 58.6/46.7

swing 77.0/66.2 75.1/66.3 81.9/74.5 82.5/78.7 56.2/59.2 85.1/77.8
tennis 85.1/90.5 82.5/92.1 86.1/91.1 79.0/89.4 81.7/87.2 87.1/92.7

Mean 77.0/75.2 74.8/76.1 75.2 / 72.7 74.4 / 75.1 67.2 / 65.9 71.6 / 69.5

note that our goal is not a task-restricted model that aims to achieve top ranking

performance on this specific dataset. For this reason, unlike most reference methods,

we do not perform any type of fine-tuning using the training sequences provided by

the DAVIS dataset. The only additional information used as prior knowledge are the

classes composing the foreground/target of each sequence.

Following the official guidelines for the DAVIS Challenge, we compare our

method against the baseline ones in terms of Jaccard index (J) and contour accuracy

197

(F), as defined in Section 2.4.2. Table 6.1 summarize the results obtained for each

video sequence, with the best results highlighted in bold1.

For the evaluated sequences, both RN and RS approaches provide results that

are competitive to the state-of-the-art methods, with average performance slightly

superior for both metrics. This is particularly relevant considering that the baseline

methods mostly have the advantage of being fine-tuned for this dataset. In addition,

several of the sequences in the table were used as training sequences for some meth-

ods, and are hence not an indicative of their performance on data previously unseen

by the trackers. For four video sequences, the performance in terms of segmentation

similarity (J) obtained using RefineNet based methods are superior to the ones pro-

vided by existing approaches. Similarly, for five sequences RN and RS achieve better

contour accuracy (F) than the baseline methods.

In addition, the performance of our method is consistent over time. Results

obtained in terms of J decay (DJ) and F decay (DF) evidence this characteristic

as indicated in Figure 5.11 (left), which shows that our method outperforms all the

other approaches in these metrics. Moreover, a closer inspection based on pixelwise

precision and recall (PR) metrics reveals that for most cases the detections provided

by the proposed method are very precise. Figure 6.4 (right) shows the PR curves

summarizing the average performance of both RN and RS methods for the selected

sequences. As the figure indicates, both approaches can simultaneously obtain preci-

sion and recall of approximately 85%, with the RS approach providing slightly higher

precision at higher recall rates.

Figure 6.5 illustrates the segmentation accuracy for six scenarios that partic-

ularly resemble some challenges likely to occur in image analysis for ADL, e.g. poses

variation, occlusion, and scenes with depth and appearance changes. In these images,
1Note that results for OSVOS are not included in the table because the authors of [194] do not

report their results on the official training set, which contains most of our selected sequences.

198

RS MSK VPN OFL BVS NLC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

RefineNet

RefineNet + Sppx

Figure 6.4: Performances on video sequences selected from the DAVIS 2016 dataset.
Left: Mean J decay (DJ) and F decay (DF) for each method. Right: Average
precision recall curve of RefineNet based methods.

pixels correctly detected are marked in green. The red color indicates false positives,

while false negatives are shown in blue. These results are a good evidence of the

model robustness against such challenges. As illustrated by the frames extracted

from the sequences hockey and paragliding-launch, false negatives mostly correspond

to regions corresponding to objects unknown to the RefineNet model (i.e., not present

in the PASCAL dataset).

6.1.4 Application to ADL

While the evaluation performed on benchmark data gives indications of the

method performance in terms of the detection of objects of interest, the determination

of its suitability for ADL analysis requires a task-oriented assessment using videos

acquired within the protected discharge facility.

To quantitatively estimate the detection accuracy, we manually counted the

number of correctly identified objects and false positives within two sequences of 50

frames, each acquired with one of the two cameras (named view1 and view2) installed

in our discharge facility. An object is considered correctly detected when at least 70%

199

True Positives False Positives False Negatives

Figure 6.5: Examples of segmentation accuracy for scenarios including unusual poses,
occlusion, depth and appearance changes.

of its total area has been properly segmented, while a false positive corresponds to

incorrect isolated detections of any size. To reduce labeling bias and in order to keep

an approximately constant tolerance, each pair of detections was evaluated by the

same human subject.

Two different approaches were evaluated. The first one (which we refer to as

RN) consists of directly evaluating each frame using solely the RefineNet model, while

the second (MRST) corresponds to the proposed method summarized in Figure 6.3,

which employs multiple streams, superpixel enhancement, and the aforementioned

temporal probabilistic model in conjunction with the pre-trained CNN.

Figure 6.6 shows qualitative results demonstrating that the proposed approach

can detect and segment most of the relevant objects present within a scene, such as

person, chairs and tables. Tables 6.2 and 6.3 summarize the quantitative results ob-

tained for the video sequences acquired with cameras view1 and view2. Both tables

present the total number of correct detections for each object category under consid-

eration as well as the average number of correct detections per frame. The table also

200

shows the total and average number of false positives. Both tables show significantly

higher number of total correct detections for results obtained using MRST, for all

object classes in both views. Although MRST generated 3 additional false positives

in view1, all three occurred in the first three frames evaluated, before the temporal

model stabilized.

Figure 6.6: Examples of segmentation obtained for images acquired with cameras
view1 (top row) and view2 (bottom row). Left column: results obtained using solely
RefineNet; Right column: results obtained combining multiple streams, RefineNet,
superpixel enhancement and temporal probabilistic model.

Given the position of the second camera in the discharge facility (upper cor-

ner of the room), images acquired with this camera are particularly relevant since

perspective distortions are present in every frame. The higher number of people and

sofas detected in these frames using MRST demonstrate the effectiveness of the mul-

tiple streams and image rotations to obtain segmentations somewhat robust against

the existing distortions.

201

Table 6.2: Analysis of 50 frames - View 1

RN MRST

Class Total Avg. Total Avg.

People 136 2.72 141 2.82
Chairs 126 2.52 188 3.76
Tables 65 1.30 74 1.48
TV 19 0.38 38 0.76
FP 4 0.08 7 0.14

Table 6.3: Analysis of 50 frames - View 2

RN MRST

Class Total Avg. Total Avg.

People 31 0.62 56 1.12
Chairs 48 0.96 50 1.00
Sofas 0 0.00 48 0.96

FP 9 0.18 0 0.00

6.1.5 Preliminary experiments using FreeLabel and RGR

After the development of the RGR and FreeLabel algorithms described in

Chapters 3 and 4, we performed preliminary experiments to verify the potential of

exploiting these tools for annotation and segmentation of video sequences acquired

from the described assisted living environment.

In Figure 6.7, the left-most column exemplifies the quality of segmentation

masks that can be generated by annotating frames using FreeLabel, while the middle

and right-most columns contain segmentation masks obtained after refinement of

DeepLab-LargeFOV [22] predictions (model trained on PASCAL) using superpixels

and RGR, respectively. These results reveal a promising direction for future work, as

fine-grained ground-truth masks can be obtained using FreeLabel, despite the limited

resolution of the frames (270×480px) and small size of the objects in terms of covered

image area. Moreover, segmentation refinement using RGR results on significantly

better predictions in terms of adherence to actual objects’ boundaries, in comparison

to the results obtained using superpixel-based refinement.

202

Ground-Truth DeepLab+Sppx DeepLab+RGR

Person Chair Sofa Table

Figure 6.7: Preliminary usage of FreeLabel and RGR on images from the discharge
facility described in this chapter. Left: annotations generated using FreeLabel; mid-
dle: segmentation obtained by combining DeepLab and superpixels-based refinement;
right: segmentation obtained by combining DeepLab and RGR-based refinement.

6.2 Gaze estimation for assisted living environments

In this section we focus on gaze estimation [10], which is a critical element

to determine how humans interact with the surrounding environment. It has been

applied to design human-computer interaction methods [196] and to analyze social

interactions among multiple individuals [197]. For our application, in conjunction

with object detection [184], gaze direction could define mutual relationships between

objects and their users (e.g., the user is sitting on a chair with a book on his/her lap

vs. sitting on a chair reading the book) and classify simple actions (e.g., mopping

the floor, getting dressed, cooking food, eating/drinking).

The contributions of the work described in this section can be summarized in

three main points:

203

Estimated gazesg4~

g3~

g2~

g1~

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Estimated poses

Facial keypoints Gaze regression net
(10 CGU, 10FC,10FC, 3FC)

f 2

f 1

f 4

f 3

σg
4

~

Figure 6.8: Overview of our apparent gaze estimation approach. The anatomical
keypoints of all the persons present in the scene are detected using a pose estimation
model [198]. The facial keypoints of each person are then provided as inputs to
a neural network regressor that outputs estimations of their apparent gaze and its
confidence on each prediction [10] (c©2020 IEEE).

• we propose an approach that relies solely on the relative positions of facial key-

points to estimate gaze direction. As shown in Figure 6.8, we extract these fea-

tures using the off-the-shelf OpenPose model [198]. From the coordinates and

confidence levels of the detected facial keypoints, our regression network esti-

mates the apparent gaze of the corresponding subjects. From the perspective of

the overall framework for ADL analysis, leveraging the facial keypoints is benefi-

cial because a single feature extractor module can be used for two required tasks:

pose estimation and gaze estimation. Code is available at coviss.org/codes

• the complexity of gaze estimation varies according to the scenario, such that

the quality of predictions provided by a gaze regressor is expected to vary

case-by-case. For this reason, our model is designed and trained to provide

an estimation of its uncertainty for each prediction of gaze direction. To that

end, we leverage concepts used by Bayesian neural networks for estimation of

aleatoric uncertainty.

• in cases such as self-occlusion, one or more facial keypoints might not be de-

tected, and OpenPose assigns a confidence of zero to the corresponding feature.

coviss.org/codes

204

To handle the absence of detections, we introduce the concept of Confidence

Gated Units (CGU) to induce our model to disregard detections for which a

low confidence level is provided.

6.2.1 Related work

Estimating the relative pose of subjects is crucial to perform high level tasks

such as whole body action recognition and understanding the relationship between a

person and the environment. Appearance-based pose estimation systems attempt to

infer the positions of the body joints of the subjects present in a scene. Traditional

methods relied on models fit to each of the individual subjects found in a given image

frame [199,200]. More recent approaches employ convolutional architectures [198,201]

to extract features from the entire scene, therefore making the whole process relatively

independent of the number of subjects in the scene.

At a finer level, the analysis of human facial features may provide additional in-

formation [202] about well-being. For example, facial expression recognition [203,204]

can be used in sentiment analysis [205]. Facial analysis can also provide information

on gaze direction, which is useful to better understand the interaction between a

person and his/her surrounding environment [197]. Recent contributions in this area

attempt to infer the orientation of a person’s head by fitting a 3D face model to

estimate both 2D [206] and 3D gaze information [207]. Other contemporary methods

resort to different types of information, which include head detection, head orientation

estimation, or contextual information about the surrounding environment [208]. In

the context of human-computer interaction, the work in [209] employs an end-to-end

architecture to track the eyes of a user in real-time using hand-held devices.

However, most works and datasets on inference of head orientation and gaze

focus on specific scenarios, such as images containing close-up views of the subjects’

heads [206, 210], with restricted background size and complexity. More similar to

205

our scenario of interest, the GazeFollow dataset introduced in [211] contains more

than 120k images of one or more individuals performing a variety of actions in rel-

atively unconstrained scenarios. Together with the dataset, the authors introduce a

two-pathway architecture that combines contextual cues with information about the

position and appearance of the head of a subject to infer his/her gaze direction. A

similar model is introduced in [212], with applicability extended to scenarios where

the subject’s gaze is directed somewhere outside the image.

Gaze estimation is a task with multiple possible levels of difficulty, which vary

according to the scenario of observation. Even for humans, it is much easier to tell

where someone is looking if a full-view of the subject’s face is available, while the

task becomes much harder when the subject is facing backwards with respect to

the observer’s point of view. In modeling terms, this corresponds to heteroscedastic

uncertainty, i.e., uncertainty that depends on the inputs to the model, such that some

inputs are associated to more noisy outputs than others.

As explained in Section 2.6, conventional deep learning models do not provide

estimations of uncertainties for their outputs, with Bayesian deep learning approaches

becoming increasingly more popular to understand and estimate uncertainty with

deep learning models [213–215]. Under this paradigm, a customized loss function is

sufficient for learning a regressor model that also predicts the variance of this noise

as a function of the input [109], without need for uncertainty labels.

6.2.2 Proposed approach

Our method estimates a person’s apparent gaze direction according to the

relative locations of his/her facial keypoints. As Figure 6.8 indicates, we use OpenPose

[198] to detect the anatomical keypoints of all the persons present in the scene. Of

the detected keypoints, we consider only those located in the head (i.e., the nose,

eyes, and ears) of each individual.

206

Let pjk,s = [xjk,s, y
j
k,s, c

j
k,s] represent the horizontal and vertical coordinates of

a keypoint k and its corresponding detection confidence value, respectively. The

subscript k ∈ {n, e, a} represents the nose, eyes, and ears features, with the subscript

s ∈ {l, r, ∅} encoding the side of the feature points.

Aiming at a scale-invariant representation, for each person j in the scene

we centralize all detected keypoints with respect to the head-centroid hj = [xjh, y
j
h],

which is computed as the mean coordinates of all head keypoints detected in the

scene. Then, the obtained relative coordinates are normalized based on the distance

of the farthest keypoint to the centroid. In this way, for each detected person we form

a feature vector f ∈ R
15 by concatenating the relative vectors p̂jk,s = [x̂jk,s, ŷ

j
k,s, c

j
k,s]

f j =
[

p̂jn,∅, p̂
j
e,r, p̂

j
e,l, p̂

j
a,r, p̂

j
a,l

]

. (6.3)

6.2.2.1 Network architecture using gated units

Images acquired from assisted living environments can contain multiple people

performing different activities, such that their apparent pose may vary significantly

and self-occlusions frequently occur. For example, in lateral-views at least an ear is

often occluded, while in back-views nose and eyes tend to be occluded. As conse-

quence, an additional challenge intrinsic to this task is the representation of missing

keypoints. In such cases, OpenPose outputs 0 for both the spatial coordinates (x, y)jk,s

and also the detection confidence value cjk,s. Since the spatial coordinates are central-

ized with respect to the head-centroid hj as the (0, 0) reference of the input space,

a confidence score cjk,s = 0 plays a crucial role in indicating both the reliability and

also the absence of a keypoint.

Inspired by the Gated Recurrent Units (GRUs) employed in recurrent neural

networks [216], we propose a Confidence Gated Unit (CGU) composed of two internal

units: i) a ReLU unit acting on an input feature qi, and ii) a sigmoid unit to emulate

207

ci

qi

qi
~

wc

wq

bq

Figure 6.9: The proposed Confidence Gated Unit (CGU) [10] (c©2020 IEEE).

the behavior of a gate according to a confidence value ci. As depicted in Figure 6.9,

we opt for a sigmoid unit without a bias parameter, to avoid potential biases towards

models that disregard ci when trained with unbalanced datasets where the majority

of samples are detected with high confidence. Finally, the outputs of both units are

then multiplied into an adjusted CGU output q̃i.

For our application, a CGU is applied to each pair coordinate-confidence

(x̂jk,s, c
j
k,s) and (ŷjk,s, c

j
k,s). To properly exploit the full range of the sigmoid func-

tion and thus reach output values near 0 for cjk,s = 0, we centralize and standardize

the input confidence scores according to the corresponding dataset statistics. In this

way, our proposed network for gaze regression has a combination of 10 CGUs as input

layer.

Moreover, the variety of view-points from which a subject might be visible in

the scene, occlusions and unusual poses lead to a vast range of scenarios where the

difficulty of the gaze estimation varies significantly. Hence, we design a model that

incorporates an uncertainty estimation method, which indicates its level of confidence

for each prediction of gaze direction. From an application perspective, this additional

information would allow us to refine the predictions by choosing between different

cameras, models, or time instants.

208

The gaze direction is approximated by the vector g̃j = [g̃x, g̃y], which consists

of the projection onto the image plane of the unit vector centered at the centroid hj.

In terms of architecture design, this corresponds to an output layer with 3 units: two

that regress the (g̃x, g̃y) vector of gaze direction, and an additional unit that outputs

the regression uncertainty σg̃.

Following ablative experiments and weight visualization to identify dead units,

we selected an architecture where the CGU-based input layer is followed by 2 fully-

connected (FC) hidden layers with 10 units each, and the output layer with 3 units.

Thus, the architecture has a total of 283 learnable parameters and can be summarized

as: (10 CGU, 10 FC, 10 FC, 3 FC).

6.2.2.2 Training strategy

While all the weights composing the fully-connected layers are initialized as

in [217], we empirically observed better results when initializing the parameters com-

posing CGU units with ones. Since these compose only the input layer, initializing

the weights as such does not represent a risk of gradient explosion as no further

backpropagation has to be performed. Intuitively, our rationale is that the input

coordinate features should not be strongly transformed in this first layer, as at this

initial point no information from additional keypoints is accessible. Regarding regu-

larization, we empirically observed better results without regularization in the input

and output layers, while a L2 penalty of 10−4 is applied to parameters of both FC

hidden layers.

Regardless of the dataset, we trained our network only on images where at least

two facial keypoints are detected. Since we are interested on estimating direction of

gaze to verify whether any object of interest is within a person’s field of view, we

opt for optimization and evaluations based on angular error. Thus, training was

209

performed using a cosine similarity loss function that is adjusted based on Eq. 2.24

[109] to allow uncertainty estimation.

Let T be the set of annotated orientation vectors g, while g̃ corresponds to

the estimated orientation produced by the network and σg̃ represents the model’s

uncertainty prediction. Our cost function is then given by

Lcos(g, g̃) =
1

|T |

∑

g∈T

exp(−σg̃)

2

−g · g̃

||g|| · ||g̃||
+
log σg̃
2

. (6.4)

From a Bayesian perspective, the MSE component of the loss function de-

scribed in [109] corresponds to a prior that follows a Gaussian distribution. As de-

scribed in [218], the von Mises distribution can be interpreted as an analog of the

Gaussian distribution for the scenario where an angular distribution over (0, 2π) is

to be modeled. In this context, by replacing the MSE component with the cosine

similarity, our loss function is thus equivalent to the log-likelihood of a Von Mises

distribution.

Moreover, with this loss function no additional label is needed for the model to

learn to predict its own uncertainty. The exp(−σg̃) component is a more numerically

stable representation of 1
σg̃

, which encourages the model to output a higher σg̃ when

the cosine error is higher. On the other hand, the regularizing component log(σg̃)

helps avoiding an exploding uncertainty prediction.

In terms of model optimization, all experiments were performed using the

Adam [219] optimizer with early stopping based on angular error on the corresponding

validation sets. Additional parameters such as batch size and learning rate varied

according to the dataset. Hence, we describe them in detail in Section 6.2.3.

6.2.3 Experiments and results

We evaluate our approach on two different datasets. The first is the GazeFol-

low dataset [211], on which we compare our method against two different baselines.

210

The second dataset, which we refer to as the MoDiPro dataset, comprises images

acquired from an actual discharge facility as detailed in Section 6.2.3.2.

6.2.3.1 Evaluation on the GazeFollow dataset

Dataset split and training details

The publicly available GazeFollow dataset contains more than 120k images,

with corresponding annotations of the eye locations and the focus of attention point

of specific subjects in the scene. We use the direction vectors connecting these two

points to train and evaluate our regressors. The left polar histogram in Figure 6.10

summarizes the angular distribution of gaze annotations composing the GazeFollow

training set. About 53% of these samples correspond to subjects whose gaze direc-

tion lies within the quadrant [−90◦, 0◦] with respect to the horizontal axis. On the

other hand, in only 29% of the cases their gaze direction is within the [−180◦,−90◦]

quadrant.

Figure 6.10: Angular distribution of gaze annotations composing the training set of
the GazeFollow dataset. Left: before augmentation; right: after augmentation.

211

To compensate such bias, we augment the number of samples in the later

quadrant by mirroring with respect to the vertical-axis a subset of randomly selected

samples from the most frequent quadrant. As the plot in the right side of Figure 6.10

illustrates, this augmentation procedure yields a more symmetrical angular distribu-

tion.

Finally, to train our model, we split the training set into two subsets: 90%

for train, and 10% for validation val subset. Training is performed using a learning

rate 5× 10−3, batches of 1024 samples and early-stopping based on angular error on

the val subset. The test set comprises 4782 images, with ten different annotations

per image. For evaluation, we follow [211] and assess each model by computing the

angular error between their predictions and the average annotation vector.

The GazeFollow dataset is structured such that for each image only the gaze

from a specific subject must be assessed. For images containing multiple people,

this requires identifying which detection provided by OpenPose corresponds to the

subject of interest. To that end, we identify which detected subject has an estimated

head-centroid that is the closest to the annotated eye-coordinates EGT , which are

provided as ground-truth. To avoid mismatches when the correct subject is not

detected but detections for other subjects on the scene are available, we impose that

gaze is estimated only if EGT falls within a radius of 1.5×δ around the head-centroid,

where δ corresponds to distance between the centroid and its farthest detected facial

keypoint.

We compare our method against two baselines. The first, which we refer to

as Geom, relies solely on linear geometry to estimate gaze from the relative facial

keypoints positions. Comparison against this baseline aims at evaluating if train-

ing a network is needed to approximate the regression f → g, instead of directly

approximating it by a set of simple equations. The second baseline is the model

introduced together with the GazeFollow dataset in [211], which consists of a deep

212

neural-network that combines a gaze pathway and a saliency pathway that are jointly

trained for gaze estimation. We refer to this baseline as GF-model.

Comparison against geometry-based baseline

The Geom baseline is based on the model introduced in [220] for face orien-

tation estimation. Although the referenced model makes minimal assumptions about

the facial structure [220], it additionally requires mouth keypoints and pre-defined

model ratios. Thus, Geom consists of a simplification of this model as follows.

In short2, let ~s represent the facial symmetry axis that is computed as the

normal of the eye-axis. We estimate the facial normal ~n as a vector that is normal

to ~s while intersecting ~s at the detected nose position. Then, the head pitch ω

is estimated as the angle between the ear-centroid and the eye-centroid, i.e., the

average coordinates of eyes and ears detections, respectively. Finally, gaze direction

is estimated by rotating ~n with the estimated pitch ω.

The Geom baseline requires the detection of the nose and at least one eye.

Out of the 4782 images composing the GazeFollow test set, Geom is thus restricted

to a subset Set1 of 4258 images. As summarized on Table 6.4, results obtained on

subset Set1 demonstrate that our model Net provide gaze estimations on average

23◦ more accurate than the ones obtained with the simpler baseline. Such a large

improvement in performance suggests our network learns a more complex (possibly

non-linear) relationship between keypoints and gaze direction. Examples available on

Figure 6.11 qualitatively illustrate how the predictions provided by our Net model

(in green) are significantly better than the ones provided by the baseline Geom (in

red).
2we refer to Appendix B for a detailed formulation of Geom.

213

Set1 Set2 Full
No. of images 4258 4671 4782
Geom 42.63◦ - -
Net0 19.52◦ 25.70◦ -
Net 19.41◦ 23.37◦ -
GF-model [211] - - 24◦

Table 6.4: Comparison in terms of angular errors between our method and baselines
on the GazeFollow test set.

Geom GF-model Net (ours) Avg. annotation

Figure 6.11: Examples of gaze direction estimations provided by the different models
evaluated on GazeFollow.

Comparison against GazeFollow model

Since our network is trained on images where at least two facial keypoints are

detected, we apply the same constraint for evaluation. In the test set, OpenPose

detects at least two keypoints for a subset Set2 containing 97.7% of the 4782 images

composing the full set.

The results of our evaluation are summarized in Table 6.4, while qualitative

examples are provided in Figure 6.11. As reported in [211], gaze predictions provided

by the GF-model present a mean angular error of 24◦ on the test set. Our Net

model provides an mean angular error of 23.37◦ for 97.7% of these images, which

214

strongly indicates that its performance is on par with GF-model network despite

relying solely on the relative position of 5 facial keypoints to predict gaze.

Impact of using Confidence Gated Units (CGU)

To verify the benefits of applying our proposed CGU blocks to handle ab-

sent keypoint detections, i.e., keypoints with 0 confidence score, we evaluated the

performance of our model with and without feeding the confidence scores as inputs.

We refer to the latter case as Net0, where the CGU blocks composing the input

layer are replaced by simple ReLU units initialized in the same way as described in

Section 6.2.2.2. Results summarized in Table 6.4 indicate an error decrease of 2.3◦

when providing confidence scores to an input layer composed of CGUs. In addition

to experiments summarized in Table 6.4, we also evaluated a model where the CGU

units are replaced by simple additional ReLU units to handle confidence scores. In

particular, for the 1536 images where OpenPose detects less than 4 facial keypoints, a

significant decrease on angular error is observed when using CGU units: 30.1◦ mean

error, in comparison to 30.9◦ provided by the model with solely ReLU based input

layer.

Quality of uncertainty estimations

In addition to the overall mean angular error, we also evaluate how accurate

are the uncertainty estimations provided by our Net model for its gaze direction pre-

dictions. As depicted in Figure 6.12, significantly lower angular errors are observed

for gaze predictions accompanied by low uncertainty network predictions. Uncertain-

ties lower than 0.1 are observed for 80% of the test set, a subset for which the gaze

estimations provided by our Net model are on average off by only 16.5◦.

Moreover, the high correlation between uncertainty predictions and angular

error (ρ = 0.56) is clearly depicted by the plots provided in Figure 6.13. For each

215

Figure 6.12: Cumulative mean angular error according to uncertainty predicted by
our model for each sample [10] (c©2020 IEEE).

sample in these plots, the radial distance corresponds to its predicted uncertainty σi,

while the angle corresponds to predicted direction of gaze g̃, i.e αi = tan−1(−g̃y/g̃x).

For both train and test sets, the associated colormap shows that lower errors (in dark

blue) are observed for predictions with lower uncertainty, with increasingly higher

errors (green to red) as the uncertainty increases (farther from the center).

Performance according to keypoint occlusions

Furthermore, the central and the right-most scatter plots in Figure 6.13 also

allow an analysis on how the performance of our model and its uncertainty predictions

vary according to specific scenarios. For most cases, the number of detected keypoints

(k) indicates specific scenarios: k = 2 is mostly related to back-views, where nose and

two other keypoints (both eyes or a pair eye-ear) are missing; k = 3 and k = 4 are

mostly lateral-views; k = 5 are frontal-views, where all keypoints are visible. Since

images are 2D projections from the environment, back- and frontal-views are the ones

216

0

0

90

15

180

21

270

30

0

30

60

90

120

150

180

210

240

270

300

330

0

20

40

60

80

100

120

140

160

180

Avg. error (°)

Train Test

Gaze direction(°)✁i: predicted uncertainty✂i:

0

90

1

180

2

270

0

k = 2 k = 3 k = 4 k = 5

Number of detected keypoints (k)

Figure 6.13: Distribution of gaze direction (αi) and uncertainty predictions (σi) pro-
vided by our proposed model. Left/center : colormap depicts angular error of pre-
dictions. Right : colors represent the amount of keypoints detected by OpenPose for
the corresponding samples. For better visualization, the samples are grouped into
equally spaced bins [10] (c©2020 IEEE).

more affected by the information loss implicit in the image formation process, while

for lateral-views estimation of gaze direction tends to be easier.

An analysis of the scatter plots demonstrates that the predictions provided

by our model reflect these expected behaviors. For samples with k = 2 (back-view),

both uncertainty predictions and angular error tend to be higher, while for most

cases of k = 3 and k = 4 the predictions are associated with lower uncertainty and

higher angular accuracy. Predictions for k = 5 are spread, indicating that the model’s

uncertainty predictions are not just defined by the amount of available keypoints but

also reflect the intrinsic uncertainty of determining the head orientation from frontal

views.

217

6.2.3.2 Results on the assisted living dataset

Dataset split and training details

We compiled a dataset, which we call MoDiPro, consisting of 1,060 video

frames collected from the two video cameras arraged as shown in Figure 6.1. For

CAM1, 530 frames were sampled from 46 different video sequences; for CAM2, 530

frames were sampled from 27 different video sequences. To limit storage while discard-

ing minimal temporal information, the resolution of the acquired frames was limited

to 480 × 270 pixels, at 25 fps. In most frames multiple subjects are simultaneously

visible, with a total of 22 subjects performing different activities.

As exemplified also in Figure 6.14, cameras CAM1 and CAM2 cover different

parts of the environment. Images acquired with CAM2 present significant distortion,

which increases the complexity of the task.

We randomly split the available sets of images into camera-specific training,

validation and test subsets. Since frames composing the same video sequence can be

highly correlated, we opt for a stratified strategy where video sequences are sampled.

That is, all frames available from a certain video sequence are assigned to either train,

val or test subsets. Aiming at an evaluation that covers a wide variety of scenes, the

proportions chosen in terms of total number of frames are: 50% for training, 20% for

validation, 30% for testing. Fine-tuning experiments are performed using learning

rates 1 × 10−5, while 1 × 10−4 is adopted when training models only on MoDiPro

images. Batches with 64 samples are used, with early-stopping based on angular

error on the val subset. Moreover, all results reported on Table 6.5 and discussed

below correspond to average values obtained after train/test on 3 different random

splits.

To assess the cross-view performance of our method, we train our Net model

with 7 different combinations of images from the MoDiPro and GazeFollow datasets.

218

CAM1

CAM2

CAM1

CAM2

Net (ours) GF-model

Figure 6.14: Examples of results for our gaze direction estimation approach in the
MoDiPro dataset [10] (c©2020 IEEE).

As summarized in Table 6.5, models Net#0-2 are trained in CAM1-only, CAM2-

only, and both MoDiPro cameras. Net#3 corresponds to the model trained only on

GazeFollow frames (GF), while Net#4-6 are obtained by fine-tuning the pre-trained

Net#3 on each of the three possible sets of MoDiPro frames.

Performance according to camera view

Cross-view results obtained by Net#0 on CAM2 and Net#1 on CAM1

demonstrate how models trained only on a camera-specific set of images are less robust

to image distortions, with significantly higher angular errors for images composing

219

Train Test
Model GF Cam1 Cam2 Cam1 Cam2 Mean

Net#0 X 16.16◦ 39.12◦ -
Net#1 X 29.56◦ 26.37◦ -
Net#2 X X 18.52◦ 23.02◦ 20.94◦

Net#3 X 27.64◦ 26.98◦ 27.31◦

Net#4 X X 16.17◦ 27.36◦ -
Net#5 X X 27.56◦ 24.01◦ -
Net#6 X X X 17.82◦ 20.15◦ 19.05◦

GF-model X 43.49◦ 60.82◦ 52.15◦

Table 6.5: Performance of our method on the MoDiPro dataset for different combi-
nations of training/testing sets.

unseen subsets. Trained on both CAM1 and CAM2, the model Net#2 demonstrates

a more consistent performance across views. In comparison with the camera specific

models, a 3◦ lower angular error on CAM2 is obtained at cost of only 1.4◦ error

increase on CAM1.

In addition, error comparisons between models Net#0-2 and Net#4-6

demonstrate that pre-training the model on the GF dataset before fine-tuning on

MoDiPro images leads to consistently lower mean angular errors, with an optimal

performance of 17.82◦ for CAM1 and 20.15◦ for CAM2. This corresponds to an

overall average error 1.9◦ lower than the model Net#2 not pre-trained on GF, while

more than 7◦ better than the model Net#3 trained solely on GF. In terms of camera-

specific performance, for CAM1 optimal performances with error below 17◦ are ob-

tained when not training on CAM2. On the other hand, predictions for CAM2 are

significantly better when training is performed using additional CAM1 and/or Gaze-

Follow images. We hypothesize the distortions characteristic of CAM2 images easily

lead to overfitting, thus the advantage of training on additional sets of images. As

220

a final remark we may notice that overall Net#6 provides the best an most stable

result across the two views.

Comparison against GF-model

Finally, we compare the predictions provided by our Net models to the ones

obtained by the publicly available version of GF-model3. As summarized in Ta-

ble 6.5, gaze predictions provided by GF-model on the MoDiPro dataset are re-

markably worse in terms of angular error than the ones predicted by any of our

Net#0-6 models, including the Net#3 also trained only on GF images.

Closer inspection of GF-model predictions suggests two disadvantages of this

model with respect to ours when predicting gaze on images from real assisted living

environments: i) sensitivity to scale; ii) bias towards salient objects. Images com-

posing the GazeFollow dataset typically show a close-view of the subject of interest,

such that only a small surrounding area is covered by the camera view. In contrast,

images from assisted living facilities such as the ones in the MoDiPro dataset con-

tain subjects covering a much smaller region of the scene, i.e., they are smaller in

terms of pixel area. Our Net model benefits from the adopted representation of

keypoints, with coordinates centered at the head-centroid and normalized based on

the largest distance between centroid and detected keypoints. Moreover, visual in-

spection of GF-model predictions reveals examples such as the two bottom ones in

Figure 6.14: in the left, while our model correctly indicates that the subjects look at

each other, GF-model is misled by the saliency of the TV and possibly the window;

in the right, the saliency of the TV again misguides the GF-model, while our model

properly indicates that the person is looking at the object she is holding.
3This version provides 25.8◦ mean angular error on the GazeFollow test set, in comparison to

the 24◦ reported in [211]

221

6.2.3.3 Runtime Analysis

Our network requires on average 0.85ms per call on a NVIDIA GeForce 970M,

with one feedforward execution per person. The overall runtime is thus dominated

by OpenPose, which requires 77ms on COCO images with a NVIDIA GeForce 1080

Ti (as reported in [198]).

Acknowledgements Part of this work has been carried out at the Machine Learning

Genoa (MaLGa) center, Università di Genova (IT) thanks to the students mobility

supported by Erasmus+ K107. We acknowledge NVIDIA Corporation for the dona-

tion of a GPU used for this research.

222

CHAPTER 7
CONCLUSION

In this final chapter, we summarize the main findings and contributions of

this dissertation through a brief overview of the novel methods herein introduced.

Outcomes are contextualized with respect to the Objectives proposed in Section 1.4,

with additional discussion of possible directions for future work.

7.1 Objective 1a: segmentation refinement

We have first presented RGR, an effective unsupervised post-processing algo-

rithm for segmentation refinement. Traditionally, the final classification step of exist-

ing methods for semantic segmentation consists of thresholding score maps obtained

from CNNs. Based on the concepts of Monte Carlo sampling and region growing, our

algorithm effectively achieves an adaptive thresholding strategy by exploiting high

confidence detections and low-level image information. Experimental results demon-

strate the efficacy of RGR refinement, showing increased precision on three different

segmentation datasets. Our algorithm provides segmentation improvements compet-

itive with existing state-of-the-art refinement methods, but with the advantage of not

requiring any dataset- or model-specific optimization of parameters.

We then introduced pRGR, an updated version of our fully unsupervised RGR

algorithm for semantic segmentation refinement. By combining concepts of probabil-

ity theory, Bayesian estimation, and variance reduction, pRGR not only provides a

solid mathematical foundation for RGR, but also further improves the quality of the

segmentations obtained after refinement.

Through a Monte Carlo formulation where seed-spacing parameters are sam-

pled in a stratified manner, pRGR evaluates varied receptive field sizes across its

multiple region growing iterations of high-confidence seeds. Combined with a strat-

223

egy where cluster covariances are initialized using conjugate priors and updated as

pixel-cluster assignments occur, these new features allow pRGR to refine segmenta-

tion masks to significantly higher pixel-accuracy levels. As demonstrated through

experiments on the PASCAL and DAVIS datasets using four different configurations

from the DeepLab family, segmentation predictions refined with pRGR are improved

especially in terms of boundary adherence and removal of false-positive pixel labels.

Moreover, the practical relevance of the proposed algorithm also includes a

possible combination with the DenseCRF model to further improve the segmentation

quality provided by each of these methods alone, as demonstrated by our experimental

results. As future work, we hypothesize that the performance of existing CNNs for

semantic segmentation could be improved by training the network with pRGR as an

additional step before computing losses. Such an arrangement could lead to a detector

module that optimally interacts with pRGR, identifying the most informative points

for the refinement process.

7.2 Objective 1b: applications of semantic segmentation

Fruit-flower segmentation

In terms of applications, for the agricultural domain we first introduced a

novel approach for fruit flower segmentation that, to the best of our knowledge, was

the first to exploit deep learning techniques. In comparison with existing methods,

which are mainly based solely on color analysis and have limited applicability in sce-

narios involving changes in illumination or occlusion levels, the hierarchical features

extracted by our CNN effectively combine both color and morphological informa-

tion, leading to significantly better performance for all the cases under consideration.

Experiments performed on four different datasets demonstrated that the proposed

CNN-based model allows accurate flower identification even in scenarios of different

224

flower species and illumination conditions, with optimal recall and precision rates

near 80% even for datasets significantly dissimilar from the training sequences.

We then presented a novel automated approach for multispecies flower segmen-

tation that exploits state-of-the-art end-to-end deep learning techniques for semantic

image segmentation. The applicability of our method was demonstrated by its high

flower segmentation accuracy across datasets that vary in terms of illumination con-

ditions, background composition, image resolution, flower density and flower species.

Without any supervised fine-tuning or image pre-processing, our model trained using

only images of apple flowers succeeded in generalizing for peach and pear flowers,

which are noticeably different in terms of color and morphology.

In the future, we intend to further improve the generalization capabilities of our

model by training and evaluating it on multi-species flower datasets. We ultimately

aim to devise a completely autonomous system capable of online bloom intensity

estimation. The current implementation of our model can evaluate high-resolution

images of complete trees an order of magnitude faster than human workers. While

in this work we do not create maps of flowers at the block level, this method will

scale well for precision agricultural applications such as predicting thinning spray

treatments and timing.

Assisted living environments

Effective assisted living environments must be able to perform inferences on

how their occupants interact with one another as well as with surrounding objects.

To accomplish this goal using a vision-based automated approach, multiple tasks such

as pose estimation, object segmentation and gaze estimation must be addressed.

In Section 6.1, we proposed a fine semantic video segmentation method for

ADL analysis in assisted living applications. Our method employs the RefineNet se-

mantic image segmentation approach in a multi-stream framework that allows the ac-

225

curate segmentation of multiple objects in videos obtained using wide-angle cameras.

Our approach further improves segmentation accuracy by incorporating a superpixel

majority voting post-processing mechanism as well as a temporal probabilistic model,

which later motivated the development of our RGR algorithm. Preliminary results

show that our approach outperforms existing video segmentation methods in publicly

available video sequences and performs accurate segmentation in a real-world assisted

living facility.

Gaze direction provides some of the strongest indications of how a person

interacts with the environment. In Section 6.2, we propose a simple neural network

regressor that estimates the gaze direction of individuals in a multi-camera assisted

living scenario, relying only on the relative positions of facial keypoints collected from

a single pose estimation model. One benefit of exploring a single feature extraction

backbone for both pose and gaze estimation is that it reduces the complexity of the

overall model for automated analysis of activities of daily living.

To handle cases of keypoint occlusion, our model exploits a novel confidence

gated unit in its input layer. Experimental results on a public benchmark demon-

strate that our approach performs on par with a complex, dataset-specific baseline.

Moreover, experiments on images from a real assisted living environment demonstrate

that our model is able to handle such complex scenarios, while results obtained on

the GazeFollow dataset demonstrate that our method estimates gaze with accuracy

comparable to a complex task-specific baseline, without relying on any image features

except the relative positions of facial keypoints.

In contrast to conventional regression methods, our proposed model also pro-

vides estimations of uncertainty of its own predictions, with results demonstrating

a high correlation between predicted uncertainties and actual gaze angular errors.

Analysis of performance according to the number of detected keypoints also indicates

226

that the proposed Confidence Gated Units improve the model’s performance for cases

of partial absence of features.

We envision a system that assists clinicians in the assessment of the health

status of individuals in an assisted living environment, providing them with automatic

reports of patients’ mobility and IADL patterns. Thus, to identify human-human and

human-object interactions, we plan to combine gaze estimations with our semantic

segmentation models. Following the promising preliminary experiments described in

Section 6.1.5, we plan to exploit FreeLabel for annotation of novel domain-specific

datasets, as well as pRGR for segmentation refinement. We also intend to extend our

Monte Carlo models to the temporal domain so that they can predict the expected

poses of people and objects in order to improve temporal consistency.

7.3 Objective 2: image annotation

In Chapter 4, we introduced FreeLabel, an interactive interface for fast and

high-quality annotation of image segmentation datasets. In contrast to annotation

tools that require drawing polygons fully enclosing objects to be segmented, FreeLabel

simplifies the user interactions to freehand scribbles and straight lines. By means of

the proposed RGR algorithm, such inputs are grown into segmentation masks that

tightly adhere to actual object boundaries.

We designed FreeLabel with a modular structure that relies solely on open-

source libraries, such that it is currently released as a publicly available tool that can

be easily adapted for annotation of a wide range of datasets. Thus, in addition to

providing better segmentation masks than the ones obtained with public polygon-

based interfaces (e.g., the LabelMe interface [128]), it represents an alternative to

paid services for annotation of high quality datasets. Its web-based interface can

be deployed both locally or in external servers, allowing annotations through both

private (confidential) or crowdsourced strategies.

227

Our experiments demonstrate that segmentations with high overlap to ground-

truth annotations of the PASCAL dataset can be obtained in a matter of seconds.

Through short tutorial videos and a game-like version of FreeLabel, users quickly

learned how to use the tool and were capable of properly annotating significantly

different datasets.

As future work, we intend to devise a parallelized, real-time version of the

pRGR algorithm and incorporate it into FreeLabel, turning it into an interactive tool

that automatically grows user scribbles as they are created. Our preliminary analysis

of effective user strategies for annotation indicate that a more responsive interface may

reduce annotation time while increasing accuracy. Moreover, we consider integrating

FreeLabel, pRGR, and modern semantic segmentation CNNs into a weakly-supervised

active learning framework. Similar to the preliminary experiments reported in Section

4.4 for analysis of satellite imagery, we envision a system where predictions of a

pre-trained network are used as initial annotations and shown to the users together

with associated uncertainty estimations provided by pRGR, indicating which regions

should be further annotated.

With minor adjustments, we believe FreeLabel could also be efficiently used

with touch-screen devices. Studying annotation efficiency and accuracy as well as

effective user strategies in such an interface might provide additional insights into

best practices for the annotation of large-scale datasets. Finally, we plan to perform

larger scale image annotation experiments using AMT. Feedback received from five

AMT workers in a preliminary experiment included encouraging comments such as “I

was surprised how well the bounding tools worked. They seemed to accurately pick up

my responses”, and “the interface was easy to understand for anyone mildly familiar

with MS paint”. However, it is still unclear which mechanisms would be effective to

motivate a large number of workers to perform such a complex and detail-oriented

228

task, which requires, even with the assistance of semi-automated tools, significant

attention to detail.

7.4 Objective 3: uncertainty estimation

Finally, this dissertation also described efficient mechanisms for equipping

deep learning-based frameworks with the ability of uncertainty estimation. More

specifically, it described two effective strategies for estimation of heteroscedastic (i.e.,

data-dependent) uncertainties.

First, in the context of image semantic segmentation we demonstrated how

pRGR can be also exploited to generate accurate estimates of segmentation uncer-

tainty at pixel-level. Experiments have shown that the pixel-wise variances estimated

using the Monte Carlo framework underlying the design of pRGR show a strong in-

verse correlation with segmentation accuracy values. In other words, pRGR variance

estimates can be exploited for uncertainty estimation of segmentation predictions,

which expands its range of applications to scenarios such as active learning [221],

human-in-the-loop systems for image labeling [222], and semi- or weakly-supervised

methods for image segmentation [223,224].

Second, by adapting for the scenario of angular regression the approach in-

troduced in [109], we have demonstrated the effectiveness of exploiting a customized

loss function to design a gaze regression neural network that is capable of estimating

its own predictive uncertainties.

In the future, we plan to investigate strategies for uncertainty calibration [110],

as well as techniques for estimation of epistemic uncertainties. In particular, our

framework is based on similar fundamental principles that guide the design of Monte

Carlo dropout [113, 213] and model ensemble techniques [112]. A comprehensive

framework that encompasses all these strategies would allow for the estimation of

different types of uncertainty in a unified and theoretically sound manner.

229

BIBLIOGRAPHY

[1] P. A. Dias and H. Medeiros, “Semantic segmentation refinement by monte carlo
region growing of high confidence detections,” in Asian Conference on Computer
Vision. Springer, 2018, pp. 131–146.

[2] P. A. Dias, A. Tabb, and H. Medeiros, “Multispecies fruit flower detection
using a refined semantic segmentation network,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3003–3010, 2018.

[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The Pascal Visual Object Classes (VOC) Challenge,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010. [Online]. Available:
http://link.springer.com/10.1007/s11263-009-0275-4

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Advances In Neural Information Pro-
cessing Systems, pp. 1–9, 2012.

[5] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in European
Conference on Computer Vision. Springer, 2014, pp. 740–755.

[6] H. Caesar, J. Uijlings, and V. Ferrari, “COCO-Stuff: Thing and Stuff Classes
in Context,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1209–1218.

[7] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and A. Sorkine-
Hornung, “A Benchmark Dataset and Evaluation Methodology for Video Object
Segmentation,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 724–732.

[8] P. A. Dias, Z. Shen, A. Tabb, and H. Medeiros, “FreeLabel: A Publicly Avail-
able Annotation Tool based on Freehand Traces,” in Winter Conference on
Applciations of Computer Vision (WACV), 2019.

[9] P. A. Dias, A. Tabb, and H. Medeiros, “Apple flower detection using deep
convolutional networks,” Computers in Industry, vol. 99, pp. 17–28, 2018.

[10] P. A. Dias, D. Malafronte, H. Medeiros, and F. Odone, “Gaze Estimation for
Assisted Living Environments,” in Winter Conference on Applications of Com-
puter Vision (WACV), 2020.

http://link.springer.com/10.1007/s11263-009-0275-4

230

[11] M. Ma, H. Fan, and K. M. Kitani, “Going deeper into first-person activity
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 1894–1903.

[12] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2013, pp. 2411–2418.

[13] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for au-
tonomous vehicles: Problems, datasets and state-of-the-art,” arXiv preprint
arXiv:1704.05519, vol. abs/1704.05519, 2017.

[14] A. Siddique and H. Medeiros, “Tracking passengers and baggage items
using multi-camera systems at security checkpoints,” arXiv preprint
arXiv:2007.07924, 2020.

[15] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 1701–1708.

[16] A. F. Echeverri, H. Medeiros, R. Walsh, Y. Reznichenko, and R. Povinelli,
“Real-time hierarchical bayesian data fusion for vision-based target tracking with
unmanned aerial platforms,” in 2018 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, 2018, pp. 1262–1270.

[17] L. Shao, L. Ji, Y. Liu, and J. Zhang, “Human action segmentation and recogni-
tion via motion and shape analysis,” Pattern Recognition Letters, vol. 33, no. 4,
pp. 438–445, 2012.

[18] A. Gupta, A. Kembhavi, and L. S. Davis, “Observing human-object interactions:
Using spatial and functional compatibility for recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 31, no. 10, pp. 1775–1789,
2009.

[19] Z. Wang, Z. Li, B. Wang, and H. Liu, “Robot grasp detection using multi-
modal deep convolutional neural networks,” Advances in Mechanical Engineer-
ing, vol. 8, no. 9, p. 1687814016668077, 2016.

[20] A. A. Shvets, A. Rakhlin, A. A. Kalinin, and V. I. Iglovikov, “Automatic in-
strument segmentation in robot-assisted surgery using deep learning,” in 2018
17th IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2018, pp. 624–628.

231

[21] X. Han, Z. Wu, Z. Wu, R. Yu, and L. S. Davis, “Viton: An image-based virtual
try-on network,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 7543–7552.

[22] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous
Convolution, and Fully Connected CRFs,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, April 2018.

[23] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2018.

[24] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully Convolutional Instance-aware
Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2359–2367.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in IEEE Conference on Computer Vision and
Pattern Recognition. Ieee, 2009, pp. 248–255.

[26] A. Gongal, S. Amatya, M. Karkee, Q. Zhang, and K. Lewis, “Sensors and
systems for fruit detection and localization: A review,” pp. 8–19, 2015.

[27] P. A. Dias, A. Tabb, and H. Medeiros, “Data from: Multi-species fruit
flower detection using a refined semantic segmentation network,” 2018.
[Online]. Available: https://data.nal.usda.gov/dataset/data-multi-species-fruit-
flower-detection-using-refined-semantic-segmentation-network

[28] O. Marques, Practical image and video processing using MATLAB. John Wiley
& Sons, 2011.

[29] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Up-
per Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[30] M. A. Stricker and M. Orengo, “Similarity of color images,” in Storage and
Retrieval for Image and Video Databases III, vol. 2420. International Society
for Optics and Photonics, 1995, pp. 381–393.

[31] I. C. Consortium et al., “Image technology colour management-architecture,
profile format, and data structure,” Specification ICC. 1: 2004-10 (Profile ver-
sion 4.2. 0.0), 2004.

[32] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-
bridge university press, 2003.

https://data.nal.usda.gov/dataset/data-multi-species-fruit-flower-detection-using-refined-semantic-segmentation-network
https://data.nal.usda.gov/dataset/data-multi-species-fruit-flower-detection-using-refined-semantic-segmentation-network

232

[33] M. Mohri, “Foundations of Machine Learning - Book,” The MIT Press, 2012.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[35] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[36] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[37] A. Ben-Hur and J. Weston, “A user’s guide to support vector machines.” Meth-
ods in molecular biology (Clifton, N.J.), vol. 609, pp. 223–239, 2010.

[38] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to Support Vector
Classification,” BJU international, vol. 101, no. 1, pp. 1396–400, 2008.

[39] L. I. Smith, “A tutorial on Principal Components Analysis Introduction,” Statis-
tics, vol. 51, p. 52, 2002.

[40] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math-
ematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[41] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436–444, 2015.

[42] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8689 LNCS,
no. PART 1, pp. 818–833, 2014.

[43] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal Visual Object Classes Challenge: A Retrospective,”
International Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, Jan.
2015. [Online]. Available: http://link.springer.com/10.1007/s11263-014-0733-5

[44] G. Csurka, “Domain adaptation for visual applications: A comprehensive sur-
vey,” arXiv preprint arXiv:1702.05374, 2017.

[45] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?” in Advances in neural information processing systems,
2014, pp. 3320–3328.

http://www.deeplearningbook.org
http://link.springer.com/10.1007/s11263-014-0733-5

233

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[47] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.

[48] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung,
and L. Van Gool, “The 2017 davis challenge on video object segmentation,”
arXiv:1704.00675, 2017.

[49] S. Caelles, A. Montes, K.-K. Maninis, Y. Chen, L. Van Gool, F. Perazzi,
and J. Pont-Tuset, “The 2018 davis challenge on video object segmentation,”
arXiv:1803.00557, 2018.

[50] S. Caelles, J. Pont-Tuset, F. Perazzi, A. Montes, K.-K. Maninis, and L. Van
Gool, “The 2019 davis challenge on vos: Unsupervised multi-object segmenta-
tion,” arXiv:1905.00737, 2019.

[51] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters,
vol. 27, no. 8, pp. 861–874, 2006.

[52] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction and refine-
ment for semantic segmentation,” in European Conference on Computer Vision
(ECCV). Springer, 2016, pp. 519–534.

[53] D. G. Lowe, “Object recognition from local scale-invariant features,” Proceedings
of the IEEE International Conference on Computer Vision, vol. 2, pp. 1150–
1157, 1999.

[54] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categoriza-
tion with bags of keypoints,” in Workshop on statistical learning in computer
vision, ECCV, vol. 1, no. 1-22. Prague, 2004, pp. 1–2.

[55] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 1, jun 2005, pp. 886–893 vol. 1.

[56] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proceedings of the 2001 IEEE computer society conference
on computer vision and pattern recognition. CVPR 2001, vol. 1. IEEE, 2001,
pp. I–I.

234

[57] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE transactions
on pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2009.

[58] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and A. W. M. Smeulders,
“Selective search for object recognition,” International Journal of Computer Vi-
sion, vol. 104, no. 2, pp. 154–171, 2013.

[59] W. Xia, Z. Song, J. Feng, L.-F. Cheong, and S. Yan, “Segmentation over detec-
tion by coupled global and local sparse representations,” in European Conference
on Computer Vision. Springer, 2012, pp. 662–675.

[60] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC su-
perpixels compared to state-of-the-art superpixel methods,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2281,
2012.

[61] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: an evaluation of the state-of-
the-art,” Computer Vision and Image Understanding, vol. 166, pp. 1–27, 2018.

[62] J. Yao, M. Boben, S. Fidler, and R. Urtasun, “Real-time coarse-to-fine topo-
logically preserving segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 2947–2955.

[63] O. Freifeld, Y. Li, and J. W. Fisher, “A fast method for inferring high-quality
simply-connected superpixels,” in 2015 IEEE International Conference on Im-
age Processing (ICIP), 2015, pp. 2184–2188.

[64] Z. Ban, J. Liu, and L. Cao, “Superpixel segmentation using gaussian mixture
model,” IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 4105–4117,
2018.

[65] R. Uziel, M. Ronen, and O. Freifeld, “Bayesian adaptive superpixel segmenta-
tion,” in Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 8470–8479.

[66] Y. Boykov and G. Funka-Lea, “Graph Cuts and Efficient N-D Image Segmenta-
tion,” International Journal of Computer Vision, vol. 70, no. 2, pp. 109–131, nov
2006. [Online]. Available: http://link.springer.com/10.1007/s11263-006-7934-5

[67] Y. Y. Boykov and M. P. Jolly, “Interactive graph cuts for optimal boundary
amp; region segmentation of objects in N-D images,” in IEEE International
Conference on Computer Vision, vol. 1, 2001, pp. 105—-112 vol.1.

http://link.springer.com/10.1007/s11263-006-7934-5

235

[68] D. Freedman and T. Zhang, “Interactive graph cut based segmentation with
shape priors,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, jun 2005, pp. 755—-762 vol. 1.

[69] C. Rother, V. Kolmogorov, and A. Blake, “" grabcut" interactive foreground
extraction using iterated graph cuts,” ACM transactions on graphics (TOG),
vol. 23, no. 3, pp. 309–314, 2004.

[70] E. N. Mortensen and W. A. Barrett, “Intelligent scissors for image composition,”
in Computer Graphics and Interactive Techniques. ACM, 1995, pp. 191–198.

[71] D. Cremers, M. Rousson, and R. Deriche, “A Review of Statistical Ap-
proaches to Level Set Segmentation: Integrating Color, Texture, Motion and
Shape,” International Journal of Computer Vision, vol. 72, no. 2, pp. 195–215,
apr 2007. [Online]. Available: https://link.springer.com/article/10.1007/s11263-
006-8711-1

[72] J. Cates, A. Lefohn, and R. Whitaker, “GIST: an interactive, GPU-based
level set segmentation tool for 3D medical images,” Medical Image Anal-
ysis, vol. 8, no. 3, pp. 217–231, sep 2004. [Online]. Available: http://
linkinghub.elsevier.com/retrieve/pii/S1361841504000246

[73] D. Cremers, O. Fluck, M. Rousson, and S. Aharon, “A probabilistic level set
formulation for interactive organ segmentation,” in Medical Imaging 2007: Im-
age Processing, vol. 6512. International Society for Optics and Photonics, mar
2007, p. 65120V.

[74] Y. Liu and Y. Yu, “Interactive Image Segmentation Based on Level Sets of
Probabilities,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 2, pp. 202–213, feb 2012.

[75] T. Wang, B. Han, and J. Collomosse, “Touchcut: Fast image and video seg-
mentation using single-touch interaction,” Computer Vision and Image Under-
standing, vol. 120, pp. 14–30, 2014.

[76] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, “A Bayesian Ap-
proach to Digital Matting,” in IEEE Conference on Computer Vision and Pat-
tern Recognition. IEEE, 2001, pp. 264–271.

[77] Q. Chen, D. Li, and C.-K. Tang, “KNN matting,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 35, no. 9, pp. 2175–2188, 2013.

https://link.springer.com/article/10.1007/s11263-006-8711-1
https://link.springer.com/article/10.1007/s11263-006-8711-1
http://linkinghub.elsevier.com/retrieve/pii/S1361841504000246
http://linkinghub.elsevier.com/retrieve/pii/S1361841504000246

236

[78] Q. Zhu, L. Shao, X. Li, and L. Wang, “Targeting accurate object extraction from
an image: A comprehensive study of natural image matting,” IEEE Transactions
on Neural networks and Learning Systems, vol. 26, no. 2, pp. 185–207, 2015.

[79] M. Rajchl, M. C. H. Lee, O. Oktay, K. Kamnitsas, J. Passerat-Palmbach,
W. Bai, M. Damodaram, M. A. Rutherford, J. V. Hajnal, B. Kainz, and
D. Rueckert, “DeepCut: Object Segmentation From Bounding Box Annota-
tions Using Convolutional Neural Networks,” IEEE Transactions on Medical
Imaging, vol. 36, no. 2, pp. 674–683, feb 2017.

[80] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three prin-
ciples for weakly-supervised image segmentation,” in European Conference on
Computer Vision. Springer, 2016, pp. 695–711.

[81] D. Lin, J. Dai, J. Jia, K. He, and J. Sun, “Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 3159–3167.

[82] M. Tang, A. Djelouah, F. Perazzi, Y. Boykov, and C. Schroers, “Normalized Cut
Loss for Weakly-Supervised CNN Segmentation,” IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. IEEE Confe, p. 10, 2018.

[83] S. Mahadevan, P. Voigtlaender, and B. Leibe, “Iteratively Trained Interactive
Segmentation,” in British Machine Vision Conference, 2018.

[84] Y. Aksoy, T.-H. Oh, S. Paris, M. Pollefeys, and W. Matusik, “Semantic soft
segmentation,” ACM Transactions on Graphics, vol. 37, no. 4, p. 72, 2018.

[85] Y. Chen, J. Pont-Tuset, A. Montes, and L. Van Gool, “Blazingly Fast Video
Object Segmentation with Pixel-Wise Metric Learning,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1189–1198.

[86] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 580–587, 2014.

[87] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” in Advances in Neural In-
formation Processing Systems 28. Curran Associates, Inc., 2015, pp. 91–99.

[88] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Se-
mantic image segmentation with deep convolutional nets and fully connected
CRFs,” in International Conference on Learning Representations (ICLR), 2015.

237

[89] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture,” in IEEE international
conference on computer vision, 2015, pp. 2650–2658.

[90] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. 07-12-June, 2015, pp. 3431–3440.

[91] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,
P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on deep learning
techniques for image and video semantic segmentation,” Applied Soft Comput-
ing, vol. 70, pp. 41–65, 2018.

[92] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[93] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for scene segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

[94] G. Papandreou, I. Kokkinos, and P.-A. Savalle, “Modeling local and global de-
formations in deep learning: Epitomic convolution, multiple instance learning,
and sliding window detection,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015, pp. 390–399.

[95] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”
in IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–
2890.

[96] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convo-
lutional networks for visual recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[97] K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative clas-
sification with sets of image features,” in Tenth IEEE International Conference
on Computer Vision (ICCV’05) Volume 1, vol. 2. IEEE, 2005, pp. 1458–1465.

[98] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Con-
volution for Semantic Image Segmentation,” arXiv preprint arXiv: 1706.05587,
2017.

238

[99] G. Lin, A. Milan, C. Shen, and I. Reid, “RefineNet: Multi-Path Refinement
Networks for High-Resolution Semantic Segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[100] J. Dai, K. He, Y. Li, S. Ren, and J. Sun, “Instance-sensitive fully convolutional
networks,” in European Conference on Computer Vision. Springer, 2016, pp.
534–549.

[101] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller, “Multi-class segmen-
tation with relative location prior,” International Journal of Computer Vision,
vol. 80, no. 3, pp. 300–316, 2008.

[102] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-
tures for scene labeling,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 8, pp. 1915–1929, 2012.

[103] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich, “Feedforward semantic
segmentation with zoom-out features,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3376–3385.

[104] P. Krähenbühl and V. Koltun, “Efficient Inference in Fully Connected CRFs
with Gaussian Edge Potentials,” in Advances in neural information processing
systems, 2011, pp. 109–117.

[105] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille, “Se-
mantic image segmentation with task-specific edge detection using CNNs and a
discriminatively trained domain transform,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 4545–4554.

[106] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic pro-
cesses. Tata McGraw-Hill Education, 2002.

[107] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin, Bayesian
Data Analysis, Third Edition, ser. Chapman & Hall/CRC Texts in Statistical
Science. Taylor & Francis, 2013.

[108] A. B. Owen, Monte Carlo theory, methods and examples, 2013.

[109] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?” in Advances in Neural Information Processing
Systems (NIPS), 2017, pp. 5574–5584.

239

[110] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern
neural networks,” in International Conference on Machine Learning, 2017, pp.
1321–1330.

[111] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[112] W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler, “The Power of
Ensembles for Active Learning in Image Classification,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 9368–9377.

[113] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Advances in neural
information processing systems, 2017, pp. 3581–3590.

[114] H. Williams, M. Nejati, S. Hussein, N. Penhall, J. Y. Lim, M. H. Jones,
J. Bell, H. S. Ahn, S. Bradley, P. Schaare, P. Martinsen, M. Alomar, P. Patel,
M. Seabright, M. Duke, A. Scarfe, and B. MacDonald, “Autonomous pollination
of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator,” Journal
of Field Robotics, vol. 37, no. 2, pp. 246–262, 2020.

[115] Q. Zhang, M. Karkee, and A. Tabb, “The use of agricultural robots in orchard
management,” in Robotics and automation for improving agriculture. Burleigh
Dodds Science Publishing, 2019, pp. 187–214.

[116] P. A. Dias and H. Medeiros, “Probabilistic semantic segmentation refinement
by monte carlo region growing,” arXiv preprint arXiv:2005.05856, 2020.

[117] R. Achanta and S. Sabine, “Superpixels and Polygons using Simple Non-
Iterative Clustering,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 4651–4660.

[118] P. M. Lee, Bayesian Statistics: An Introduction, 4th ed. Wiley Publishing,
2012.

[119] K. P. Murphy, “Conjugate bayesian analysis of the gaussian distribution,” Tech.
Rep., 2007. [Online]. Available: https://www.cs.ubc.ca/~murphyk/Papers/
bayesGauss.pdf

[120] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR (Presented at International Conference on
Learning Representations, 2015), vol. abs/1409.1556, 2014.

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

240

[121] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1251–1258.

[122] J. Mukhoti and Y. Gal, “Evaluating bayesian deep learning methods for seman-
tic segmentation,” arXiv preprint arXiv:1811.12709, 2018.

[123] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning,” in international conference on machine
learning, 2016, pp. 1050–1059.

[124] M. V. Giuffrida, F. Chen, H. Scharr, and S. A. Tsaftaris, “Citizen crowds and
experts: observer variability in image-based plant phenotyping,” Plant Methods,
vol. 14, p. 12, feb 2018. [Online]. Available: https://doi.org/10.1186/s13007-018-
0278-7

[125] S. W. Chen, S. S. Shivakumar, S. Dcunha, J. Das, E. Okon, C. Qu, C. J. Taylor,
and V. Kumar, “Counting apples and oranges with deep learning: a data-driven
approach,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 781–788,
2017.

[126] P. Tangseng, Z. Wu, and K. Yamaguchi, “Looking at outfit to parse clothing,”
arXiv preprint arXiv:1703.01386, 2017.

[127] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “OpenSurfaces: A richly anno-
tated catalog of surface appearance,” ACM Transactions on Graphics, vol. 32,
no. 4, p. 111, 2013.

[128] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme: a
database and web-based tool for image annotation,” International journal of
computer vision, vol. 77, no. 1-3, pp. 157–173, 2008.

[129] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The Cityscapes dataset for semantic urban
scene understanding,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3213–3223.

[130] K. K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool, “Deep Extreme
Cut: From Extreme Points to Object Segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[131] C. Vondrick, D. Patterson, and D. Ramanan, “Efficiently scaling up crowd-
sourced video annotation: A set of best practices for high quality, economical

https://doi.org/10.1186/s13007-018-0278-7
https://doi.org/10.1186/s13007-018-0278-7

241

video labeling,” International Journal of Computer Vision, vol. 101, no. 1, pp.
184–204, 2013.

[132] B. Schwartz, The Paradox of Choice: Why More Is Less, ser. Harper Perennial.
HarperCollins, 2003. [Online]. Available: https://books.google.com/books?id=
zutxr7rGc{_}QC

[133] L. Von Ahn and L. Dabbish, “Labeling images with a computer game,” in
SIGCHI conference on Human factors in computing systems. ACM, 2004, pp.
319–326.

[134] L. Von Ahn, R. Liu, and M. Blum, “Peekaboom: a game for locating objects
in images,” in SIGCHI conference on Human Factors in computing systems.
ACM, 2006, pp. 55–64.

[135] L. Von Ahn, M. Kedia, and M. Blum, “Verbosity: a game for collecting common-
sense facts,” in SIGCHI conference on Human Factors in computing systems.
ACM, 2006, pp. 75–78.

[136] A. Kawrykow, G. Roumanis, A. Kam, D. Kwak, C. Leung, C. Wu, E. Zarour,
L. Sarmenta, M. Blanchette, J. Waldispühl, and Others, “Phylo: a citizen science
approach for improving multiple sequence alignment,” PloS one, vol. 7, no. 3,
p. e31362, 2012.

[137] L. von Ahn and L. Dabbish, “Designing games with a purpose,” Communica-
tions of the ACM, vol. 51, no. 8, p. 57, 2008.

[138] “Django (version 2.0),” https://djangoproject.com/, accessed: 2018-09-13.

[139] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[140] R. Munro, “Human-in-the-loop machine learning,” 2019.

[141] E. Ilg, O. Cicek, S. Galesso, A. Klein, O. Makansi, F. Hutter, and T. Brox,
“Uncertainty estimates and multi-hypotheses networks for optical flow,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2018, pp.
652–667.

[142] F. Ozdemir, Z. Peng, C. Tanner, P. Fuernstahl, and O. Goksel, “Active learning
for segmentation by optimizing content information for maximal entropy,” in
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support. Springer, 2018, pp. 183–191.

https://books.google.com/books?id=zutxr7rGc{_}QC
https://books.google.com/books?id=zutxr7rGc{_}QC
https://djangoproject.com/

242

[143] H. L. Yang, J. Yuan, D. Lunga, M. Laverdiere, A. Rose, and B. Bhaduri,
“Building extraction at scale using convolutional neural network: Mapping of the
united states,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 11, no. 8, pp. 2600–2614, 2018.

[144] A. Van Etten, D. Lindenbaum, and T. M. Bacastow, “Spacenet: A remote
sensing dataset and challenge series,” arXiv preprint arXiv:1807.01232, 2018.

[145] “Spacenet on amazon web services (aws). last modified october 1st, 2018.” https:
//spacenet.ai/datasets/, accessed: 2020-10-13.

[146] C. G. Forshey, Chemical fruit thinning of apples. Geneva, N.Y.: New York
State Agricultural Experiment Station, 1986.

[147] H. Link, “Significance of flower and fruit thinning on fruit quality,” Plant growth
regulation, vol. 31, no. 1, pp. 17–26, 2000.

[148] A. Gongal, A. Silwal, S. Amatya, M. Karkee, Q. Zhang, and K. Lewis, “Apple
crop-load estimation with over-the-row machine vision system,” Computers and
Electronics in Agriculture, vol. 120, pp. 26–35, 2016. [Online]. Available: http:
//dx.doi.org/10.1016/j.compag.2015.10.022

[149] S. Singh, M. Bergerman, J. Cannons, B. Grocholsky, B. Hamner, G. Holguin,
L. Hull, V. Jones, G. Kantor, H. Koselka, G. Li, J. Owen, J. Park, W. Shi, and
J. Teza, “Comprehensive Automation for Specialty Crops: Year 1 results and
lessons learned,” Intelligent Service Robotics, vol. 3, no. 4, pp. 245–262, 2010.

[150] N. Zhang, M. Wang, and N. Wang, “Precision agriculture – a worldwide
overview,” Computers and Electronics in Agriculture, vol. 36, no. 2-3, pp. 113–
132, 2002.

[151] K. Kapach, E. Barnea, R. Mairon, Y. Edan, and O. B. Shahar, “Computer
vision for fruit harvesting robots state of the art and challenges ahead,” Inter-
national Journal of Computational Vision and Robotics, vol. 3, no. 1/2, p. 4,
2012.

[152] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning
for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016.

[153] M. Dyrmann, A. K. Mortensen, H. S. Midtiby, and R. N. Jørgensen, “Pixel-
wise classification of weeds and crops in images by using a fully convolutional
neural network,” in Proceedings of the International Conference on Agricultural
Engineering, Aarhus, Denmark, 2016, pp. 26–29.

https://spacenet.ai/datasets/
https://spacenet.ai/datasets/
http://dx.doi.org/10.1016/j.compag.2015.10.022
http://dx.doi.org/10.1016/j.compag.2015.10.022

243

[154] G. L. Grinblat, L. C. Uzal, M. G. Larese, and P. M. Granitto, “Deep learn-
ing for plant identification using vein morphological patterns,” Computers and
Electronics in Agriculture, vol. 127, pp. 418–424, 2016.

[155] A. D. Aggelopoulou, D. Bochtis, S. Fountas, K. C. Swain, T. A. Gemtos, and
G. D. Nanos, “Yield prediction in apple orchards based on image processing,”
Precision Agriculture, vol. 12, no. 3, pp. 448–456, 2011.

[156] K. R. Thorp and D. A. Dierig, “Color image segmentation approach to monitor
flowering in lesquerella,” Industrial Crops and Products, vol. 34, no. 1, pp. 1150–
1159, 2011.

[157] M. Hočevar, B. Širok, T. Godeša, and M. Stopar, “Flowering estimation in apple
orchards by image analysis,” Precision Agriculture, vol. 15, no. 4, pp. 466–478,
2014.

[158] R. Horton, E. Cano, D. Bulanon, and E. Fallahi, “Peach Flower Monitoring
Using Aerial Multispectral Imaging,” 2016 ASABE International Meeting, 2016.

[159] C. Hung, J. Nieto, Z. Taylor, J. Underwood, and S. Sukkarieh, “Orchard fruit
segmentation using multi-spectral feature learning,” IEEE International Con-
ference on Intelligent Robots and Systems, pp. 5314–5320, 2013.

[160] J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. Ku-
mar, “Devices, systems, and methods for automated monitoring enabling pre-
cision agriculture,” in IEEE International Conference on Automation Science
and Engineering (CASE). IEEE, 2015, pp. 462–469.

[161] W. Ji, D. Zhao, F. Cheng, B. Xu, Y. Zhang, and J. Wang, “Automatic recogni-
tion vision system guided for apple harvesting robot,” Computers and Electrical
Engineering, vol. 38, no. 5, pp. 1186–1195, 2012.

[162] R. Linker, O. Cohen, and A. Naor, “Determination of the number of green
apples in RGB images recorded in orchards,” Computers and Electronics in
Agriculture, vol. 81, pp. 45–57, 2012.

[163] J. P. Wachs, H. I. Stern, T. Burks, and V. Alchanatis, “Low and high-level visual
feature-based apple detection from multi-modal images,” Precision Agriculture,
vol. 11, no. 6, pp. 717–735, 2010.

[164] Q. Wang, S. Nuske, M. Bergerman, and S. Singh, “Automated crop yield es-
timation for apple orchards,” in Experimental robotics. Springer, 2013, pp.
745–758.

244

[165] U.-O. Dorj, M. Lee, and S.-s. Yun, “An yield estimation in citrus orchards
via fruit detection and counting using image processing,” Computers and Elec-
tronics in Agriculture, vol. 140, pp. 103–112, 2017. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0168169916312455

[166] S. Bargoti and J. Underwood, “Image Segmentation for Fruit Detection and
Yield Estimation in Apple Orchards,” Journal of Field Robotics, vol. 00, no. 0,
pp. 1–22, 2016.

[167] H. Cheng, L. Damerow, Y. Sun, and M. Blanke, “Early Yield Prediction Using
Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks,”
Journal of Imaging, vol. 3, no. 1, p. 6, 2017.

[168] S. Bargoti and J. Underwood, “Deep Fruit Detection in Orchards,” Australian
Centre for Field Robotics, pp. 1–8, 2016.

[169] M. Stein, S. Bargoti, and J. Underwood, “Image Based Mango Fruit Detection,
Localisation and Yield Estimation Using Multiple View Geometry,” Sensors,
vol. 16, no. 11, p. 1915, 2016. [Online]. Available: http://www.mdpi.com/1424-
8220/16/11/1915

[170] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “DeepFruits: A
Fruit Detection System Using Deep Neural Networks,” Sensors, vol. 16, no. 8,
p. 1222, 2016.

[171] R. Zhao, W. Ouyang, H. Li, and X. Wang, “Saliency detection by multi-context
deep learning,” Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, vol. 07-12-June, pp. 1265–1274, 2015.

[172] S. Visa, “Issues in mining imbalanced data sets - a review paper,” in Proceedings
of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference,
2005, pp. 67–73, 2005.

[173] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional Architecture for Fast Feature Em-
bedding,” arXiv preprint arXiv:1408.5093, 2014.

[174] A. Carpenter, “Cusvm: a cuda implementation of support vector classification
and regression,” Update, vol. 15, no. 10, pp. 1–9, 2009.

[175] A. Bhattacharyya, “On a measure of divergence between two statistical popula-
tions defined by their probability distributions,” Bulletin of the Calcutta Math-
ematical Society, vol. 35, pp. 99–109, 1943.

http://www.sciencedirect.com/science/article/pii/S0168169916312455
http://www.sciencedirect.com/science/article/pii/S0168169916312455
http://www.mdpi.com/1424-8220/16/11/1915
http://www.mdpi.com/1424-8220/16/11/1915

245

[176] A. Hoak, H. Medeiros, and R. J. Povinelli, “Image-based multi-target tracking
through multi-bernoulli filtering with interactive likelihoods,” Sensors, vol. 17,
no. 3, p. 501, 2017.

[177] R. Hoseinnezhad, B. N. Vo, B. T. Vo, and D. Suter, “Visual tracking of nu-
merous targets via multi-Bernoulli filtering of image data,” Pattern Recognition,
vol. 45, no. 10, pp. 3625–3635, 2012. [Online]. Available: http://dx.doi.org/
10.1016/j.patcog.2012.04.004

[178] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, Jan
1979.

[179] A. Tabb and H. Medeiros, “Automatic segmentation of trees in dynamic outdoor
environments,” Computers in Industry, vol. 98, pp. 90–99, 2018.

[180] T. U. Nations, “World population ageing,” http://www.un.org/
en/development/desa/population/publications/pdf/ageing/
WPA2017_Report.pdf, 2017, accessed: 2018-09-03.

[181] L. P. Fried, L. Ferrucci, J. Darer, J. D. Williamson, and G. Anderson, “Un-
tangling the concepts of disability, frailty, and comorbidity: implications for
improved targeting and care,” The Journals of Gerontology Series A: Biological
Sciences and Medical Sciences, vol. 59, no. 3, pp. M255–M263, 2004.

[182] A. Pilotto, L. Ferrucci, M. Franceschi, L. P. D’Ambrosio, C. Scarcelli, L. Cas-
cavilla, F. Paris, G. Placentino, D. Seripa, B. Dallapiccola et al., “Development
and validation of a multidimensional prognostic index for one-year mortality
from comprehensive geriatric assessment in hospitalized older patients,” Reju-
venation research, vol. 11, no. 1, pp. 151–161, 2008.

[183] C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis, and
A. Bauer, “Monitoring activities of daily living in smart homes: Understand-
ing human behavior,” IEEE Signal Processing Magazine, vol. 33, no. 2, pp.
81–94, 2016.

[184] P. Dias, H. Medeiros, and F. Odone, “Fine segmentation for Activity of Daily
Living analysis in a wide-angle multi-camera set-up,” in 5th Activity Monitoring
by Multiple Distributed Sensing Workshop (AMMDS) in conjunction with British
Machine Vision Conference, 2017.

[185] C. Martini, N. Noceti, M. Chessa, A. Barla, A. Cella, G. A. Rollandi, A. Pi-
lotto, A. Verri, and F. Odone, “La visual computing approach for estimating
the motility index in the frail elder,” 13th International Joint Conference on

http://dx.doi.org/10.1016/j.patcog.2012.04.004
http://dx.doi.org/10.1016/j.patcog.2012.04.004
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Report.pdf
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Report.pdf
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Report.pdf

246

Computer Vision, Imaging and Computer Graphics Theory and Applications,
2018.

[186] M. Chessa, N. Noceti, C. Martini, F. Solari, and F. Odone, “Design of assistive
tools for the market,” in Assistive Computer Vision, M. Leo and G. Farinella,
Eds. Elsevier, 2017.

[187] C. Martini, A. Barla, F. Odone, A. Verri, G. A. Rollandi, and A. Pilotto, “Data-
driven continuous assessment of frailty in older people,” Frontiers in Digital
Humanities, vol. 5, p. 6, 2018.

[188] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg, “Video segmentation by
tracking many figure-ground segments,” in ICCV, 2013.

[189] N. Maerki, F. Perazzi, O. Wang, and A. Sorkine-Hornung, “Bilateral Space
Video Segmentation,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[190] Y.-H. Tsai, M.-H. Yang, and M. J. Black, “Video Segmentation via Ob-
ject Flow,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[191] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van
Gool, “One-Shot Video Object Segmentation,” in Computer Vision and Pattern
Recognition (CVPR), 2017.

[192] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and A.Sorkine-Hornung,
“Learning video object segmentation from static images,” in Computer Vision
and Pattern Recognition, 2017.

[193] V. Jampani, R. Gadde, and P. V. Gehler, “Video Propagation Networks,” in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), july 2017.

[194] V. Jampani, M. Kiefel, and P. V. Gehler, “Learning sparse high dimensional
filters: Image Filtering, Dense CRFs and Bilateral Neural Networks,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[195] A. Faktor and M. Irani, “Video segmentation by non-local consensus voting,”
in Proceedings of the British Machine Vision Conference. BMVA Press, 2014.

[196] P. Majaranta and A. Bulling, “Eye tracking and eye-based human–computer
interaction,” in Advances in physiological computing. Springer, 2014, pp. 39–
65.

247

[197] J. Varadarajan, R. Subramanian, S. R. Bulò, N. Ahuja, O. Lanz, and E. Ricci,
“Joint estimation of human pose and conversational groups from social scenes,”
International Journal of Computer Vision, vol. 126, no. 2, pp. 410–429, Apr
2018.

[198] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2D pose
estimation using part affinity fields,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[199] X. Zhang, C. Li, X. Tong, W. Hu, S. Maybank, and Y. Zhang, “Efficient human
pose estimation via parsing a tree structure based human model,” in IEEE
International Conference on Computer Vision (ICCV), 2009.

[200] M. Brubaker, D. Fleet, and A. Hertzmann, “Physics-based human pose track-
ing,” in NIPS Workshop on Evaluation of Articulated Human Motion and Pose
Estimation, 2006.

[201] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose
machines,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[202] T. Baltrušaitis, P. Robinson, and L. Morency, “Openface: an open source fa-
cial behavior analysis toolkit,” in IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE, 2016, pp. 1–10.

[203] A. T. Lopes, E. de Aguiar, A. F. D. Souza, and T. Oliveira-Santos, “Facial
expression recognition with convolutional neural networks: Coping with few
data and the training sample order,” Pattern Recognition, vol. 61, pp. 610 –
628, 2017.

[204] K. Zhang, Y. Huang, Y. Du, and L. Wang, “Facial expression recognition based
on deep evolutional spatial-temporal networks,” IEEE Transactions on Image
Processing, vol. 26, no. 9, pp. 4193–4203, Sept 2017.

[205] J. Jayalekshmi and T. Mathew, “Facial expression recognition and emotion
classification system for sentiment analysis,” in 2017 International Conference
on Networks Advances in Computational Technologies (NetACT), 2017, pp. 1–8.

[206] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based gaze es-
timation in the wild,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[207] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “It‘s written all over your face:
Full-face appearance-based gaze estimation,” in IEEE Conference on Computer

248

Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017, pp. 2299–
2308.

[208] E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation in computer
vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 31, no. 4, pp. 607–626, 2009.

[209] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik,
and A. Torralba, “Eye tracking for everyone,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[210] K. A. Funes Mora, F. Monay, and J.-M. Odobez, “EYEDIAP: A Database for
the Development and Evaluation of Gaze Estimation Algorithms from RGB and
RGB-D Cameras,” in ACM Symposium on Eye Tracking Research and Applica-
tions. ACM, Mar. 2014.

[211] A. Recasens, A. Khosla, C. Vondrick, and A. Torralba, “Where are they look-
ing?” in Advances in Neural Information Processing Systems (NIPS), 2015.

[212] E. Chong, N. Ruiz, Y. Wang, Y. Zhang, A. Rozga, and J. M. Rehg, “Con-
necting gaze, scene, and attention: Generalized attention estimation via joint
modeling of gaze and scene saliency,” in European Conference on Computer
Vision (ECCV), 2018, pp. 383–398.

[213] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation.

[214] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian segnet: Model un-
certainty in deep convolutional encoder-decoder architectures for scene under-
standing,” arXiv preprint arXiv:1511.02680, 2015.

[215] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.

[216] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078,
2014.

[217] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” in IEEE International
Conference on Computer Vision (ICCV). IEEE Computer Society, 2015, pp.
1026–1034.

249

[218] “Lecture notes on “the exponential family: Basics”,” https://
people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/
chapter8.pdf, accessed: 2020-10-13.

[219] D. Kinga and J. B. Adam, “A method for stochastic optimization,” in Interna-
tional Conference on Learning Representations (ICLR), 2015.

[220] A. Gee and R. Cipolla, “Determining the gaze of faces in images,” Image and
Vision Computing, vol. 12, no. 10, pp. 639–647, 1994.

[221] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning with image
data,” in 34th International Conference on Machine Learning-Volume 70, 2017,
pp. 1183–1192.

[222] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool, “Deep extreme cut:
From extreme points to object segmentation,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 616–625.

[223] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three prin-
ciples for weakly-supervised image segmentation,” in European Conference on
Computer Vision. Springer, 2016, pp. 695–711.

[224] G. Song, H. Myeong, and K. Mu Lee, “Seednet: Automatic seed generation
with deep reinforcement learning for robust interactive segmentation,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 1760–1768.

https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf

250

APPENDIX A
REGION GROWING REFINEMENT - SUPPLEMENTARY

MATERIAL

A.1 Qualitative examples - MS COCO 2016 validation set

In addition to the examples provided in our main document, we provide in

Figure A.1 further illustrations of refined detections on the MS COCO 2016 validation

set.

Figure A.1: Additional examples of detections on the COCO 2016 dataset. From left
to right: original image, ground truth, FCIS detection, FCIS+RGR. The obtained
IoU with respect to the ground-truth is displayed above each corresponding detection.

251

Our method RGR (Region Growing Refinement) significantly increases the

segmentation adherence to object boundaries: in the first example, the coarser seg-

mentation provided by FCIS is refined to such an extent that even the cat whiskers

are properly segmented. This behavior is also noticeable for the bird’s feathers, the

buds composing the broccoli crown, and the teddy bear’s fur.

Figure A.2 illustrates how RGR refinement can also recover object details from

small and coarse input segmentations. While the original FCIS segmentation consists

of three disconnected blobs, RGR reconstructs the toothbrush shape with some finer

details on the object’s extremities.

Figure A.2: Noteworthy example of segmentation refinement on the COCO 2016
dataset. From left to right: original image, ground truth, FCIS detection,
FCIS+RGR. Our method is capable of recovering object details from small and coarse
input segmentations.

252

A.2 Qualitative examples - DAVIS 2016 dataset

Figure A.3 contains additional examples of refined detections on selected se-

quences from the DAVIS dataset. In the first image, our refinement model recovers

details such as the bear’s ears and fur. As for the frames containing people, it is note-

worthy how finer details such as fingers, feet shape and hair are properly segmented

after refinement. Moreover, the mallard example illustrates how the model is robust

to scenarios where object and background present very similar appearance in terms

of color.

Figure A.3: Examples of detections on the DAVIS dataset. From left to right: original
image, ground truth, FCIS detection, FCIS+RGR.

253

A.3 Analysis of sensitivity to parameters

As described in Section 3 (Proposed Approach) of our main document, our

proposed method contains four pre-defined parameters:

• ns: number of Monte Carlo iterations performed for region growing;

• θm: normalizing factor for color distance in Eq. (2). With its counterpart θs

fixed, the parameter θm regulates the weight between color and spatial distances

when measuring the similarity between pixels;

• γ: average spacing between initial seeds. Together with the cardinality of the

high-confidence region RH , this parameter defines the number of seeds to be

sampled in each Monte Carlo iteration;

• dMax: the maximum distance allowed between a pixel and a candidate cluster.

If the distance between a pixel and the corresponding centroid is larger than

dMax, the node associating these two elements is not pushed into the queue for

region growing.

We provide in the main paper an analysis of performance sensitivity of RGR

according to ns. In addition, we provide in the present section an analysis of sen-

sitivity according to θm, γ and dMax. To that end, different configurations on the

PASCAL VOC 2012 validation set are evaluated, in the same scenario described in

Section 4.2 of the main document. As summarized in Figure A.4, selecting θm values

lower than 1 ensures that no significant changes in performance are observed.

254

10 -2 10 -1 10 0 10 1

m

70

70.5

71

71.5

m
Io

U
 (

%
)

Figure A.4: Mean intersection over union on the PASCAL VOC 2012 dataset accord-
ing to the distance normalizing factor θm. The value selected for the final model is
highlighted in red.

As for the number of samples per iteration, the analysis summarized in Figure

A.5 confirms that no significant variations in performance occur if a sufficient number

of initial seeds is sampled.

0 5 10 15 20 25
70

70.5

71

71.5

m
Io

U
 (

%
)

Figure A.5: Mean intersection over unionn on the PASCAL VOC 2012 dataset ac-
cording to the average spatial distance between samples γ. The value selected for the
final model is highlighted in red.

255

Finally, results provided in Figure A.6 illustrate that the parameter dMax has

very low impact in the final performance, such that a value of dMax = 500 is sufficient

to ensure optimal performance.

0 1000 2000 3000 4000 5000

d
Max

70

70.5

71

71.5

m
Io

U
 (

%
)

Figure A.6: Mean intersection over union on the PASCAL VOC 2012 dataset accord-
ing to the maximum distance allowed between pixels composing a cluster dMax. The
value selected for the final model is highlighted in red.

A.4 Repeatability despite randomness

As summarized in Fig. 7 (right) of our main manuscript, running RGR with

5+ MC iterations provides only minor improvements (about 0.1%) over refinements

obtained with 3 MC iterations. Such results were obtained from independent RGR

runs, indicating the repeatability of the method. This repeatability is confirmed by

the statistics observed in 10 RGR runs with the same configuration described in

Section 4.1 (3 MC) for refinement of FCIS predictions on the PASCAL dataset. As

shown below in Fig. A.7 (left), the mIoU was 71.03%, with a standard deviation

of 0.02%. Fig. A.7 (right) summarizes this variation across the different PASCAL

categories. As the figure shows, the maximum deviation over 10 independent runs is

0.14% (for the horse category).

256

1 2 3 4 5 6 7 8 9 10

Run

70.5

71

71.5

m
Io

U
 (

%
)

ba
ck

gr
ou

nd
ae

ro
pl

an
e

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e
bu

s
ca

r
ca

t
ch

ai
r

co
w

di
ni

ng
ta

bl
e

do
g

ho
rs

e
m

ot
or

bi
ke

pe
rs

on

po
tte

dp
la

nt
sh

ee
p

so
fa

tr
ai

n
tv

m
on

ito
r

A
V

G
.

0

0.05

0.1

0.15
m

Io
U

Figure A.7: Repeatability of RGR runs in terms of mIoU variation. Left : average
over all categories for each run. Right: standard deviation of mIoU per category.

257

APPENDIX B
GAZE ESTIMATION - BASELINE GEOM

For the following formulation, let Nx represent the X-coordinate of the nose,

EL
x represent the X-coordinate of the left eye, and ARy represent the Y-coordinate of

the right ear. Additional variables are analogous, with superscripts {R,L} indicat-

ing right/left side, and subscripts {x, y} corresponding to the coordinates x and y,

respectively.

B.1 Estimating facial normal

Inspired by the method described in the reference [13] of the main document,

the first step of Geom consists of estimating the facial normal based on the available

keypoints. Yet, differently from [13] that also requires mouth keypoints, in our case

only eyes and nose coordinates are used.

Let E represent the eye-centroid computed as average of the right and left eyes

ER
x and EL

x , respectively. The facial symmetry axis ~s is approximated as a vector

that is perpendicular to the eye-axis
−−−−→
EREL, i.e. ~s ·

−−−−→
EREL = 0.

Then, the facial normal ~n is estimated as a vector that is normal to ~s and

contains the nose N . To identify the coordinates of the point P where ~s and ~n

intersect, a set of two dot product equations is used. As schematized in the following

drawing, P is associated to E as summarized by Eq. B.1:

dx =
Ex
2
; dy =

Ey
2
;

tanθ =
dy

dx
=
β

α
−→ β = α

dy

dx

P = (Px, Py) = (Ex, Ey) + (β, α)

P = (Ex, Ey) +

(

α
dy

dx
, α

)

(B.1)

258

Figure B.1: Computing facial facial symmetry axis ~s and facial normal ~n.

Hence, to find P we can write the directions of ~s and ~n as
−→
EP and

−−→
PN , such

that:

~s =
−→
EP = (Px, Py)− (Ex, Ey)

−→
EP = (Ex, Ey) +

(

α
dy

dx
, α

)

− (Ex, Ey)

−→
EP =

(

α
dy

dx
, α

)

~n =
−−→
PN = (Nx, Ny)− (Px, Py)

−−→
PN = (Nx, Ny)− (Ex, Ey)−

(

α
dy

dx
, α

)

−−→
PN =

(

Nx − Ex − α
dy

dx
,Ny − Ey − α

)

(B.2)

259

Since ~n is normal to ~s, it follows that:

~s · ~n = 0 −→
−→
EP ·

−−→
PN = 0

−→
EP ·

−−→
PN =

[

α
dy

dx
α

]

·






Nx − Ex − α
dy
dx

Ny − Ey − α




 = 0

= Nxα
dy

dx
− Exα

dy

dx
− α2

(
dy

dx

)2

+Nyα− Eyα− α
2 = 0

= α2

[(
dy

dx

)2

+ 1

]

+ α

[

Ex
dy

dx
−Nx

dy

dx
−Ny + Ey

]

= 0

α

[(
dy

dx

)2

+ 1

]

= −

[

Ex
dy

dx
−Nx

dy

dx
−Ny + Ey

]

α =
dy
dx
(Nx − Ex) +Ny − Ey

(
dy
dx

)2
+ 1

Once α is obtained, P can be estimated using Eq.B.1 and thus the direction of the

facial normal ~n is approximated as
−−→
PN .

B.2 Estimating head pitch

The angle between ears and eyes allows an estimation of head pitch rotation

(looking up or down). From the previous prediction using roll (eyes positions), the

second step is to shift this prediction up/down according to this pitch estimation.

Let A represent the ear-centroid computed as average of the right and left ears

AR and AL, respectively, while ω represents the angle between A and the eye-centroid

E that is used as pitch estimation. To apply the rotation R(ω) matrix defined in Eq.

B.3, we can obtain sinω and cosω as

260

Figure B.2: Illustration of how the pitch angle ω is computed according to eyes and
ears coordinates, and then applied to ~n to estimate ~g.

R(ω) =






cosω −sinω

sinω cosω




 (B.3)

cosω =
Ex − Ax
∥
∥
∥
−→
AE

∥
∥
∥

; sinω =
Ey − Ay
∥
∥
∥
−→
AE

∥
∥
∥

, (B.4)

such that the rotation matrix becomes

R(ω) =






cosω −sinω

sinω cosω






=
1

∥
∥
∥
−→
AE

∥
∥
∥






Ex − Ax −Ey + Ay

Ey − Ay Ex − Ax




 .

Thus, gaze direction ~g is estimated as

~̃g = R(ω)~n =

−−→
PN
∥
∥
∥
−→
AE

∥
∥
∥






Ex − Ax −Ey − Ay

Ey − Ay Ex − Ax




 . (B.5)

261

B.3 Cases of missing keypoints

The presented Geom method requires the detection of at least the nose and

one eye for gaze estimation. Cases of missing keypoint detections are handled as:

• one ear missing- such cases mostly correspond to images where a lateral view of

the subject’s face is available. Predictions are done using the available complete

pair eye-ear (either left or right) as replacement for the corresponding eye-

centroid and ear-centroid;

• one eye missing- instead of using the eye-axis, the ear-axis is used to estimate

the facial normal. Then, pitch is estimated using the available complete pair

eye-ear (either left or right) as replacement for the corresponding eye-centroid

and ear-centroid;

• both ears not detected - pitch is not estimated, so gaze is estimated using just

the facial normal, i.e. ~̃g = ~n;

262

APPENDIX C
COPYRIGHT

In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of Marquette University’s prod-

ucts or services. Internal or personal use of this material is permitted. If in-

terested in reprinting/republishing IEEE copyrighted material for advertising or

promotional purposes or for creating new collective works for resale or redistribu-

tion, please go to http://www.ieee.org/publications_standards/publications/

rights/rights_link.html to learn how to obtain a License from RightsLink. If ap-

plicable, University Microfilms and/or ProQuest Library, or the Archives of Canada

may supply single copies of the dissertation.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

	Stochastic Methods for Fine-Grained Image Segmentation and Uncertainty Estimation in Computer Vision
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Problem statement #1
	Problem statement #2
	Problem statement #3
	Objectives
	Specific objectives

	Dissertation timeline
	Dissertation organization

	Background
	Basic concepts of computer vision
	Image representation
	Features
	Basic concepts on image processing

	Basic concepts of machine learning and pattern recognition
	Machine learning

	Neural networks
	Convolutional neural networks (CNNs)

	Image semantic segmentation
	Datasets
	Evaluation metrics
	Approaches based on hand-engineered feature descriptors
	Weak and unsupervised segmentation
	Deep learning-based approaches
	Post-processing techniques

	Basic concepts of probability theory and stochastic methods
	Monte Carlo estimation and variance reduction techniques

	Uncertainty estimation techniques for computer vision

	Semantic Segmentation Refinement
	Region Growing Refinement (RGR)
	Proposed approach
	Experiments

	probabilistic Region Growing Refinement (pRGR)
	Proposed approach
	Algorithm implementation
	Experiments

	Semi-automated annotation of image segmentation datasets
	Related work
	Good practices for design of annotation tools

	FreeLabel annotation tool
	FreeLabel functionality
	Implementation

	Experiments and results
	Annotation of unlabeled images

	Active learning and semi-supervised annotation

	Fruit Flower Segmentation
	Related Work
	Apple flower detection using deep convolutional networks
	Proposed approach
	Comparison approaches
	Experiments and results

	Multispecies fruit flower detection using a refined semantic segmentation network
	Proposed approach
	Datasets
	Experiments and results

	Vision-based analysis of Activity of Daily Living
	Fine segmentation for Activity of Daily Living analysis in a wide-angle multi-camera set-up
	Related work
	Proposed approach
	Assessment on benchmark data
	Application to ADL
	Preliminary experiments using FreeLabel and RGR

	Gaze estimation for assisted living environments
	Related work
	Proposed approach
	Experiments and results

	Conclusion
	Objective 1a: segmentation refinement
	Objective 1b: applications of semantic segmentation
	Objective 2: image annotation
	Objective 3: uncertainty estimation

	Bibliography
	Region Growing Refinement - Supplementary material
	Qualitative examples - MS COCO 2016 validation set
	Qualitative examples - DAVIS 2016 dataset
	Analysis of sensitivity to parameters
	Repeatability despite randomness

	Gaze estimation - Baseline Geom
	Estimating facial normal
	Estimating head pitch
	Cases of missing keypoints

	Copyright

