4,273 research outputs found

    Stochastic Dynamics of Cascading Failures in Electric-Cyber Infrastructures

    Get PDF
    Emerging smart grids consist of tightly-coupled systems, namely a power grid and a communication system. While today\u27s power grids are highly reliable and modern control and communication systems have been deployed to further enhance their reliability, historical data suggest that they are yet vulnerable to large failures. A small set of initial disturbances in power grids in conjunction with lack of effective, corrective actions in a timely manner can trigger a sequence of dependent component failures, called cascading failures. The main thrust of this dissertation is to build a probabilistic framework for modeling cascading failures in power grids while capturing their interactions with the coupled communication systems so that the risk of cascading failures in the composite complex electric-cyber infrastructures can be examined, analyzed and predicted. A scalable and analytically tractable continuous-time Markov chain model for stochastic dynamics of cascading failures in power grids is constructed while retaining key physical attributes and operating characteristics of the power grid. The key idea of the proposed framework is to simplify the state space of the complex power system while capturing the effects of the omitted variables through the transition probabilities and their parametric dependence on physical attributes and operating characteristics of the system. In particular, the effects of the interdependencies between the power grid and the communication system have been captured by a parametric formulation of the transition probabilities using Monte-Carlo simulations of cascading failures. The cascading failures are simulated with a coupled power-system simulation framework, which is also developed in this dissertation. Specifically, the probabilistic model enables the prediction of the evolution of the blackout probability in time. Furthermore, the asymptotic analysis of the blackout probability as time tends to infinity enables the calculation of the probability mass function of the blackout size, which has been shown to have a heavy tail, e.g., power-law distribution, specifically when the grid is operating under stress scenarios. A key benefit of the model is that it enables the characterization of the severity of cascading failures in terms of a set of operating characteristics of the power grid. As a generalization to the Markov chain model, a regeneration-based model for cascading failures is also developed. The regeneration-based framework is capable of modeling cascading failures in a more general setting where the probability distribution of events in the system follows an arbitrarily specified distribution with non-Markovian characteristics. Further, a novel interdependent Markov chain model is developed, which provides a general probabilistic framework for capturing the effects of interactions among interdependent infrastructures on cascading failures. A key insight obtained from this model is that interdependencies between two systems can make two individually reliable systems behave unreliably. In particular, we show that due to the interdependencies two chains with non-heavy tail asymptotic failure distribution can result in a heavy tail distribution when coupled. Lastly, another aspect of future smart grids is studied by characterizing the fundamental bounds on the information rate in the sensor network that monitors the power grid. Specifically, a distributed source coding framework is presented that enables an improved estimate of the lower bound for the minimum required communication capacity to accurately describe the state of components in the information-centric power grid. The models developed in this dissertation provide critical understanding of cascading failures in electric-cyber infrastructures and facilitate reliable and quick detection of the risk of blackouts and precursors to cascading failures. These capabilities can guide the design of efficient communication systems and cascade aware control policies for future smart grids

    Resilience of power grids and other supply networks: structural stability, cascading failures and optimal topologies

    Get PDF
    The consequences of the climate crisis are already present and can be expected to become more severe in the future. To mitigate long-term consequences, a major part of the world's countries has committed to limit the temperature rise via the Paris Agreement in the year 2015. To achieve this goal, the energy production needs to decarbonise, which results in fundamental changes in many societal aspects. In particular, the electrical power production is shifting from fossil fuels to renewable energy sources to limit greenhouse gas emissions. The electrical power transmission grid plays a crucial role in this transformation. Notably, the storage and long-distance transport of electrical power becomes increasingly important, since variable renewable energy sources (VRES) are subjected to external factors such as weather conditions and their power production is therefore regionally and temporally diverse. As a result, the transmission grid experiences higher loadings and bottlenecks appear. In a highly-loaded grid, a single transmission line or generator outage can trigger overloads on other components via flow rerouting. These may in turn trigger additional rerouting and overloads, until, finally, parts of the grid become disconnected. Such cascading failures can result in large-scale power blackouts, which bear enormous risks, as almost all infrastructures and economic activities depend on a reliable supply of electric power. Thus, it is essential to understand how networks react to local failures, how flow is rerouted after failures and how cascades emerge and spread in different power transmission grids to ensure a stable power grid operation. In this thesis, I examine how the network topology shapes the resilience of power grids and other supply networks. First, I analyse how flow is rerouted after the failure of a single or a few links and derive mathematically rigorous results on the decay of flow changes with different network-based distance measures. Furthermore, I demonstrate that the impact of single link failures follows a universal statistics throughout different topologies and introduce a stochastic model for cascading failures that incorporates crucial aspects of flow redistribution. Based on this improved understanding of link failures, I propose network modifications that attenuate or completely suppress the impact of link failures in parts of the network and thereby significantly reduce the risk of cascading failures. In a next step, I compare the topological characteristics of different kinds of supply networks to analyse how the trade-off between efficiency and resilience determines the structure of optimal supply networks. Finally, I examine what shapes the risk of incurring large scale cascading failures in a realistic power system model to assess the effects of the energy transition in Europe

    A network approach for power grid robustness against cascading failures

    Get PDF
    Cascading failures are one of the main reasons for blackouts in electrical power grids. Stable power supply requires a robust design of the power grid topology. Currently, the impact of the grid structure on the grid robustness is mainly assessed by purely topological metrics, that fail to capture the fundamental properties of the electrical power grids such as power flow allocation according to Kirchhoff's laws. This paper deploys the effective graph resistance as a metric to relate the topology of a grid to its robustness against cascading failures. Specifically, the effective graph resistance is deployed as a metric for network expansions (by means of transmission line additions) of an existing power grid. Four strategies based on network properties are investigated to optimize the effective graph resistance, accordingly to improve the robustness, of a given power grid at a low computational complexity. Experimental results suggest the existence of Braess's paradox in power grids: bringing an additional line into the system occasionally results in decrease of the grid robustness. This paper further investigates the impact of the topology on the Braess's paradox, and identifies specific sub-structures whose existence results in Braess's paradox. Careful assessment of the design and expansion choices of grid topologies incorporating the insights provided by this paper optimizes the robustness of a power grid, while avoiding the Braess's paradox in the system.Comment: 7 pages, 13 figures conferenc
    corecore