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ABSTRACT

Computational and Analytical Tools for

Resilient and Secure Power Grids

by

Saleh Soltan

Enhancing power grids’ performance and resilience has been one of the greatest challenges in

engineering and science over the past decade. A recent report by the National Academies

of Sciences, Engineering, and Medicine along with other studies emphasizes the necessity of

deploying new ideas and mathematical tools to address the challenges facing the power grids

now and in the future. To fulfil this necessity, numerous grid modernization programs have been

initiated in recent years.

This thesis focuses on one of the most critical challenges facing power grids which is their

vulnerability against failures and attacks. Our approach bridges concepts in power engineering

and computer science to improve power grids resilience and security. We analyze the vulnerability

of power grids to cyber and physical attacks and failures, design efficient monitoring schemes

for robust state estimation, develop algorithms to control the grid under tension, and introduce

methods to generate realistic power grid test cases. Our contributions can be divided into four

major parts:

Power Grid State Prediction: Large scale power outages in Australia (2016), Ukraine (2015),

Turkey (2015), India (2013), and the U.S. (2011, 2003) have demonstrated the vulnerability of

power grids to cyber and physical attacks and failures. Power grid outages have devastating

effects on almost every aspect of modern life as well as on interdependent systems. Despite their

inevitability, the effects of failures on power grids’ performance can be limited if the system

operator can predict and understand the consequences of an initial failure and can immediately

detect the problematic failures. To enable these capabilities, we study failures in power grids

using computational and analytical tools based on the DC power flow model. We introduce new



metrics to efficiently evaluate the severity of an initial failure and develop efficient algorithms

to predict its consequences. We further identify power grids’ vulnerabilities using these metrics

and algorithms.

Power Grid State Estimation: In order to obtain an accurate prediction of the subsequent

effects of an initial failure on the performance of the grid, the system operator needs to exactly

know when and where the initial failure has happened. However, due to lack of enough measu-

rement devices or a cyber attack on the grid, such information may not be available directly to

the grid operator via measurements. To address this problem, we develop efficient methods to

estimate the state of the grid and detect failures (if any) from partial available information.

Power Grid Control: Once an initial failure is detected, prediction methods can be used to

predict the subsequent effects of that failure. If the initial failure is causing a cascade of failures

in the grid, a control mechanism needs to be applied in order to mitigate its further effects.

Power Grid Islanding is an effective method to mitigate cascading failures. The challenge is to

partition the network into smaller connected components, called islands, so that each island can

operate independently for a short period of time. This is to prevent the system to be separated

into unbalanced parts due to cascading failures. To address this problem, we introduce and study

the Doubly Balanced Connected graph Partitioning (DBCP) problem and provide an efficient

algorithm to partition the power grid into two operating islands.

Power Grid Test Cases for Evaluation: In order to evaluate algorithms that are developed

for enhancing power grids resilience, one needs to study their performance on the real grid data.

However, due to security reasons, such data sets are not publicly available and are very hard to

obtain. Therefore, we study the structural properties of the U.S. Western Interconnection grid

(WI), and based on the results we present the Network Imitating Method Based on LEarning

(NIMBLE) for generating synthetic spatially embedded networks with similar properties to a

given grid. We apply NIMBLE to the WI and show that the generated network has similar

structural and spatial properties as well as the same level of robustness to cascading failures.

Overall, the results provided in this thesis advance power grids’ resilience and security by

providing a better understanding of the system and by developing efficient algorithms to protect

it at the time of failure.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Electric power systems are one of the most essential infrastructure systems in the modern world.

The National Academy of Engineering named Electrification as the greatest engineering achie-

vement of the 20th century [51]. Despite their importance, power systems are aging infrastruc-

ture that are under stress by operational uncertainties and are facing challenges never envisioned

when they were first developed.

Power systems consists of four main parts as depicted in Fig. 1.1:

• Generators: Convert energy from coal, natural gas, petroleum, nuclear energy, or rene-

wable resources into electricity,

• Transmission Network: High Voltage lines connecting generators to the distribution

system of a town, city, or a large industrial plant,

• Distribution Network: Provides electricity at various levels to residential, commercial,

and industrial consumers. It mostly have a loopless topology,

• Loads or consumers.

The main focus of this thesis is the transmission network of the power systems, or as we refer

to the power grid.

Enhancing power grids performance and resilience has been one of the greatest challenges

in engineering and science over the past decade. A recent report by the National Academies of

Sciences, Engineering, and Medicine [106] along with other studies emphasizes the necessity of
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Figure 1.1: The main components of power systems.

deploying new ideas and mathematical tools to address the challenges facing the power grids

now and in the future. To fulfil this necessity, numerous grid modernization programs have

been initiated in recent years all over the world, including the one by the Department of Energy

(DOE) in the U.S.

The DOE envisions that by 2030, the grid will have evolved into an intelligent energy system,

a smart grid [106]. Some of the promises of the smart grid are:

• Self-healing from power disturbances

• Resilient operation against both cyber and physical attacks

• Utilizing all generation and energy storage technologies

• Enabling active participation of consumers

• Enabling new energy markets

This thesis focuses on the first two promises listed above which deal with power grids’

resilience and security. We study power grids’ resilience and security from different angles as

described in the following sections. Our approach bridges concepts in power engineering and

computer science to improve power grid performance and security. We analyze the vulnerability

of power grids to failures, design efficient monitoring schemes for robust state estimation, develop
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algorithms to control the grid under tension, and introduce methods to generate realistic power

grid test cases.

1.1 Power Flow

Today’s power grids deploy the Alternating Current (AC) based systems for power generation

and transmission. Electric power in these systems flows from generators to loads based on a set

of differential equations which depend on the structure of the network as well as the physical

properties of the lines. In the steady state (i.e., fixed frequency), phasors are commonly used

to compute the AC power flows using a set of nonlinear equations [76].

Under operating conditions, the AC power flow equations can be reduced to a set of linear

equations known as the DC power flow equations [76]. Due to their linearity, the DC power

flow equations are widely used for optimal power flow computation and contingency analysis in

power grids [39, 116, 147]. Most of the results provided in this thesis are also based on the DC

power flow equations.

In Chapter 2, we provide an overview of the AC and DC power flow equations and study the

accuracy of the DC power flows. In particular, in Section 2.4, we analytically derive an upper

bound on the difference between the AC and the DC power flows. Results provided in that

section appeared in [40].

1.2 Power Grid State Prediction

Large scale power outages in Australia (2016), Turkey (2015), India (2013), and the U.S. (2011,

2003) have demonstrated the vulnerability of power grids to failures caused by natural disasters,

such as earthquakes, hurricanes, and solar flares as well as mismanagement and computers

malfunctioning. Power grid outages have devastating effects on almost every aspect of modern

life as well as on interdependent systems such as telecommunications, gas, water supply, and

transportation networks. Follow up reports of these events [7, 8, 9, 12], exposed the insufficient

understanding of failures and their consequences in power grids.
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Therefore, there is a need to study the vulnerabilities of power grids to failures. The main

questions that we seek to answer in this part are:

• How an initial failure may result in a cascade of failures?

• How can one predict the evolution of cascading failures?

• What are the most vulnerable parts of the grid to failures?

To answer these questions, in Chapters 3 and 4, we study failures and cascades in power

grids using analytical methods.

Analyzing failures and cascades (Chapter 3): We study failures in power grids using com-

putational tools and the DC power flow model. Unlike graph-theoretical network flows, power

flows are governed by the laws of physics with no strict capacity bounds on the lines. Nonethe-

less, there is a rating threshold associated with each line–if the flow exceeds the threshold, the

line will eventually experience thermal failure. Such a failure alters network topology, giving rise

to a different flow pattern which could cause other line failures. The repetition of this process

constitutes a cascading failure.

The study of cascading failures in power grids was initiated in [39, 147] which used the

linearized DC model and a probabilistic outage rule for overloaded line failures. Similar cascade

models have been used to study the properties of the cascades [18, 19, 27, 44, 91], as well as to

design control schemes to mitigate the cascade [28, 110] and to detect vulnerable parts of the

grid [29, 83]. In Chapter 3, we follow [27, 29] and study cascades due to line overloads in power

grids with a deterministic outage rule.

First, based on the algebraic properties of the DC power flow equations, we analytically study

the impact of a single line failure on the flows on other lines. We illustrate the impact of the

distance on the flow increase in lines following a failure and show that unlike in epidemic based

models, a failure of a specific line in the grid can affect remote lines, so that the cascade does not

necessarily develop contiguously. Then, we introduce metrics to evaluate the robustness of grids

to failures, and develop an efficient algorithm to identify the evolution of cascading failures. We

compare the severity of the cascade initiated by line failures (selected under different metrics)

and proved that finding the set of lines whose removal has the most significant impact is NP-hard.
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Our results provides important insights on the consequence of line failures in power grids

and can support the development of algorithms for controlling the evolution of a cascade upon

failures as well as designing robust power grids.

Our results for this part appeared in [40,103,127,128,138].

Quantifying the effect of k-line failures (Chapter 4): Contingency analysis in power grids

is one of the most effective ways to improve grids’ resilience against failures. The main goal of

contingency analysis is to detect probable failures in the grid that result in a critical state and

deploy preventive measures to avoid such states.

Many great ideas have been developed for contingency analysis in power grids since the

advent of the modern power transmission network. Compensation theorem and current injection

methods were used to analyze the effect of line failures in [58, 59, 66, 92, 155]. In particular,

[155] introduced the notion of line outage distribution factors that inspired many other studies

including the work presented in Chapters 3 and 4. [144] used matrix updates to study the effect

of two line failures and used the results to introduce an algorithm for the N ´ 2 contingency

problem. In a follow up work [87], contingency and Influence graphs were introduced to study

N ´ 2 contingency analysis. More optimization-based techniques for contingency analysis of the

grids were explored in [30,47,63]. A mixed-integer model for the N´k contingency problem was

presented and used in [30], while [47] focused on identifying the most probable failure modes in

static load distribution using a linear-program. In a more recent innovative paper, probabilistic

algorithms were developed to identify collections of multiple contingencies that initiate cascading

failure [83].

Due to the large number of possibilities, however, high order contingency analysis is compu-

tationally expensive and not fully deployed. In order to circumvent this issue, we analytically

compute the redistribution of power flows following a k-line failure (i.e., failures in k distinct

lines) using the DC power flow model and based on that introduce the disturbance value of a

k-line failure. We show that this value can be efficiently computed in Op1q for any set of line

failures independently of the size of the grid and can be effectively used to filter out noncritical

contingencies. The disturbance value can therefore significantly reduce the time complexity of
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contingency analysis by revealing contingencies that are vital for more in depth analysis and

pave the way for the deployment of high order contingency analysis in power grids.

Our results for this part appeared in [125,136].

1.3 Power Grid State Estimation

In order to obtain an accurate prediction of the subsequent effects of an initial failure on the

performance of the grid, the system operator needs to exactly know when and where the initial

failure has happened. However, due to lack of enough measurement devices or a cyber attack

on the grid (e.g., cyber attack on the Ukrainian grid in December 2015 [13]), such information

may not be available directly to the grid operator via measurements. Therefore, this information

should be estimated from a partial available information. To address this problem, in Chapters 5

and 6, we study cyber-physical attacks on power grids.

Cyber-physical Attacks (DC Model) (Chapter 5): We study an attack where an adversary

attacks a zone by disconnecting some of its power lines (failed lines) remotely or through a

physical attack and blocking the information flow from the zone to the grid control center. We

assume that the state of the system is described under the DC power flow model. We use tools

from linear algebra and graph theory, and leverage the properties of the DC power flow model

to develop methods for information recovery. We prove that by solving a linear program (LP),

the failed lines can be detected and the grid’s state variables inside the attacked zone can be

recovered. We identify sufficient conditions on the zone structure and constraints on the attack

characteristics such that the solution to the LP is guaranteed to recover the information.

The considered problem is very similar to the problem of line failure detection using phase

angle measurements [73, 142, 143, 163]. Up to two line failures detection, under the DC power

flow model, is studied in [142, 143]. Since the provided methods in [142, 143] are greedy-based

methods that need to search the entire failure space, the running time of these methods grow

exponentially as the number of failures increases. Hence, these methods cannot be generalized

to detect higher order failures.
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The novelty of our method is the transformation of the line failures detection problem, which

is combinatorial in nature, to a convex optimization problem. As a result, our method can be

used to detect any set of line failures in a running time that is independent of the size of this

set and solely depends on the size of the network.

Our results for this part appeared in [129,132].

Cyber-physical Attacks (AC Model) (Chapter 6): We extend the results from Chapter 5

to the case when the state of the system is given under the AC power flow model. We present

the Convex OPtimization for Statistical State EStimation (COPSSES) Algorithm to detect the

failed lines inside the attacked area. The algorithm is based on a convex relaxation of the LP

presented in Chapter 5 for information recovery under the DC power flow model. To the best

of our knowledge, our work is the first to provide a method for line failures detection under the

AC power flow model that can be used to detect any number of line failures.

Our results for this part appeared in [137].

1.4 Power Grid Control

Once an initial failure is detected, the prediction methods mentioned in section 1.2 can be used

to predict the subsequent effects of that failure. If the initial failure is causing more subsequent

failures in the grid, a control mechanism needs to be applied in order to mitigate its further

effects.

One of the most effective of these mechanisms is Power Grid Islanding. The objective is to

partition the network into smaller connected components, called islands, so that each island can

operate independently for a short period of time. This is to prevent the system to be separated

into unbalanced parts due to subsequent failures. It also expedites the restoration of the grid

after a major failure, by reducing transient stability problems during system reconnection.

In order for an island to operate, it is necessary that the power supply and demand at that

island be almost equal (if the supply and demand are not exactly equal but still relatively close,

load shedding/generation curtailing can be used in order for the island to operate). Equality of

supply and demand in an island, however, may not be sufficient for its independent operation.
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It is also important that the infrastructure in that island have the physical capacity to safely

carry the power flows. This problem has been studied in the power systems community but

almost all the algorithms provided in the literature are heuristic methods that have been shown

to be effective only by simulations [71,107,121,139].

In order to provide a theoretical framework for power grid Islanding problem, in Chapter 7,

we model and study this problem using graph theory.

Power Grid Islanding (Chapter 7): We introduce and study the Doubly Balanced Connected

graph Partitioning (DBCP) problem. The DBCP problem is the problem of partitioning a graph

into two parts such that both parts are connected and comparable in size, and supply is almost

equal to demand in each part. The idea is that when an island is large enough compared to

the initial network, it most likely has enough capacity to carry power flows. In this way, the

partitions obtained from solutions to the DBCP problem are operational. We prove that if the

graph representing the grid is 2-connected (as it is usually the case), such a partition always

exists and can be found in polynomial time. Our method is geometric and used the convex

embedding of 3-connected graphs.

Our results for this part appeared in [130,131].

1.5 Power Grid Test Cases for Evalution

In order to evaluate algorithms that are developed for enhancing power grids resilience, one needs

to study their performance on the real grid data. However, due to security reasons, such data

sets are not publicly available and are very hard to obtain. There are only very limited test cases

and real-world power grid data sets that are publicly and freely available. These include the

IEEE test cases [1], the National Grid UK [2], the Polish grid [4], and an approximate model of

the European interconnected system [162]. To the best of our knowledge, among these, National

Grid UK is the only publicly available dataset with geographical locations. Even if the data was

available, it would be unwise to publish vulnerability results which are based on real topologies,

due to the enormous cost of grid enhancements. On the other hand, it was recently shown that

simple random graph models cannot be used to generate grids with appropriate structural and



CHAPTER 1. INTRODUCTION 9

spatial characteristics [52]. Therefore, there is a growing interest in generating synthetic power

grids [11,33,34,75].

Generating Synthetic Power Grids (Chapter 8): We study the structural properties of

the U.S. Western Interconnection grid (WI), and based on the results we present the Network

Imitating Method Based on LEarning (NIMBLE) for generating synthetic spatially embedded

networks with similar properties to a given grid. We apply NIMBLE to the WI and show that

the generated network has similar structural and spatial properties as well as the same level of

robustness to cascading failures. NIMBLE uses the Gaussian Mixture Model (GMM) for node

density estimation and generates nodes with similar spatial distribution as the nodes in a given

network. Then, inspired by the historical evolution of the grids, NIMBLE connects the nodes.

This method has several tunable parameters that allow generation of grids similar to any given

grid.

Our results for this part appeared in [126,134,135].
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Chapter 2

Power Flow

In this chapter, we provide an overview of the AC and DC power flow equations as well as

some basic definitions and notations that are used in this thesis. Since the DC power flows

provide an approximation for the AC power flows, in Section 2.4, we study the accuracy of this

approximation by deriving an analytical upper bound on the difference between the AC and the

DC power flows.

2.1 Summary of Notations

We represent the power grid by a connected undirected graph G “ pV,Eq where V “ t1, 2, . . . , nu

and E “ te1, . . . , emu are the set of nodes and edges corresponding to the buses and transmission

lines, respectively. Each edge ek is a set of two nodes ek “ ti, ju.

Throughout this thesis, we use bold uppercase characters to denote matrices (e.g., A), italic

uppercase characters to denote sets (e.g., V ), and italic lowercase characters and overline arrow

to denote column vectors (e.g., ~θ). For a matrix Q, qij denotes its pi, jqth entry, and Qt denotes

its transpose. For a column vector ~y, yi denotes its ith entry, }~y}1 :“
řn
i“1 |yi| is its `1-norm,

}~y}2 :“ p
řn
i“1 y

2
i q

1{2 is its `2-norm (also known as Euclidean norm), and suppp~yq :“ ti|yi ‰ 0u

is its support which indicates the nonzero entries of vector ~y.

For a set V , |V | denotes it size; For a real number r, |r| denotes is absolute value; And for

a complex number c, |c| denotes its magnitude.
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2.2 The AC Power Flows

Today’s power grids deploy the Alternating Current (AC) based systems for power generation

and transmission. Electric power in these systems flows from generators to loads based on a set

of differential equations which depend on the structure of the network as well as the physical

properties of the lines. In the steady state (i.e., fixed frequency), phasors are commonly used

to compute the AC power flows using a set of nonlinear equations [76].

In the phasor domain, the status of each node i is represented by its voltage vi “ |vi|e
iθi

in which |vi| is the voltage magnitude, θi is the phase angle at node i, and i denotes the

imaginary unit. The characteristics of each line ti, ju is determined by its admittance value

gij ` ibij “
1

rij`ixij
, where gij , bij , rij , and xij denote line conductance, susceptance, resistance,

and reactance, respectively. The complex power flow sij on the line ti, ju from node i to j is

equal to:

sij “ vipv
˚
i ´ v˚j qpgij ` ibijq

˚, (2.1)

where ˚ denotes the complex conjugation. The complex power sij “ pij ` iqij from node i to

node j consists of the active power flow pij “ Retsiju and reactive power flow qij “ Imtsiju.

Using 2.1, the injected complex power si at node i is:

si “
ÿ

kPNpiq

sik “
ÿ

kPNpiq

vipv
˚
i ´ v˚kqpgik ` ibikq

˚, (2.2)

where Npiq is the set of nodes that are directly connected with a line to the node i.

Using 2.2, the equations for the active power pi and the reactive power qi at each node i can

be written as:

pi “ ´
ř

kPNpiqYtiu |vi||vk|pgik cos θik ` bik sin θikq (2.3)

qi “ ´
ř

kPNpiqYtiu |vi||vk|pgik sin θik ´ bik cos θikq (2.4)

where θik “ θi ´ θk, and gii ` ibii “ ´
ř

kPNpiqpgik ` ibikq.

In the AC power flow problem, each node i is categorized into one of the following three

types:
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1. Slack node: The node for which the voltage is typically 1.0. For convenience, it is indexed

as node 1. The active power p1 and the reactive power q1 need to be computed.

2. Load node: The active power pi and the reactive power qi at these nodes are known and

the voltage vi needs to be computed.

3. Voltage controlled node: The active power pi and the voltage magnitude |vi| at these nodes

are known and the reactive power qi and the phase angle θi need to be computed.

The problem is to compute p, q, v at all the nodes.

2.3 The DC Power Flows

Under operating conditions, the AC power flow equations can be reduced to a set of linear

equations known as the DC power flow equations [76]. The DC power flow equations provide a

linearized approximation of the active power flows in the AC model. Due to their linearity, the

DC power flow equations are widely used for optimal power flow computation and contingency

analysis in power grids [39,116,147]. Linearization is possible under the following conditions [76]:

1. The difference between the voltage phase angles of every couple of neighboring nodes is

small such that sin θik « θik and cos θik « 1.

2. The active power losses are negligible, and therefore the admittance value of each line can

be calculated neglecting the line resistances by ´ibij “ 1{ixij .

3. The variations in the voltage magnitudes |vi| are small and, therefore, it is assumed that

@i, |vi| “ 1.

Under these assumptions, given the active power vector ~p P R|V |ˆ1 and the reactance values,

the DC power flow is a solution P P R|V |ˆ|V | and ~θ P R|V |ˆ1 of:

ÿ

jPNpiq

pij “ pi, @ i P V (2.5)

pij “ ´bijpθi ´ θjq, @ ti, ju P E (2.6)



CHAPTER 2. POWER FLOW 13

where pij is the active power flow from node i to node j, and θi is the phase angle of node i.

Eq. (2.5) guarantees (classical) flow conservation and (2.6) captures the dependency of the flow

on the reactance values and phase angles. Additionally, (2.6) implies that pij “ ´pji. When the

total supply equals the total demand in G (i.e.,
řn
i“1 pi “ 0), (2.5)-(2.6) has a unique solution.1

Eq.(2.5)-(2.6) are equivalent to the following matrix equation:

A~θ “ ~p (2.7)

where A P R|V |ˆ|V | is the admittance matrix of G,2 defined as follows:

aij “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if i ‰ j and ti, ju R E,

bij if i ‰ j and ti, ju P E,

´
ř

kPNpiq bik if i “ j.

Since A is not a full-rank matrix, we use the Moore-Penrose Pseudo-inverse of A [14], denoted

by A`3 to solve (2.7). One can show that if (2.7) has a feasible solution, ~θ “ A`~p is a solution

for (2.7). Once ~θ is computed, the power flows, pij , can be obtained from (2.6).

2.3.1 Incidence Matrix

Under an arbitrary direction assignment to the edges of G, the incidence matrix of G is denoted

by D P t´1, 0, 1unˆm and defined as,

dij “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if ej is not incident to node i,

1 if ej is coming out of node i,

´1 if ej is going into node i,

and Y :“ diagpr1{xe1 , 1{xe2 , . . . , 1{xemsq is a diagonal matrix with diagonal entries equal to the

inverse of the reactance values. It can be verified that A “ DYDt.

1The uniqueness is in the values of pijs rather than θis (shifting all θis by equal amounts does not violate

(2.6)).

2The admittance matrix A can also be considered as the weighted Laplacian matrix of the graph.

3A` “ limδÑ0 A
t
pAAt

` δ2Iq´1 [14].
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The incidence matrix is a very useful matrix in analyzing failures in power grids. We use

this matrix in Chapters 3 and 4 to quantify the effects of line failures, and in Chapters 5 and 6

to detect line failures after a cyber-phyical attack on the grid.

The incidence matrix can also be used to compute the power flows on the lines under the DC

model. Given the vector of the phase angles, ~f “ Dt~θ gives the power flows such that for any

ek “ ti, ju, assuming that ek is directed from i to j, fek “ pij “ ´pji. We use vector ~f P R|E|

to efficiently present power flows under the DC model more instead of matrix P in Chapters 3,

4, and 8.

2.3.2 Matrix of Equivalent Reactance Values

Define matrix R P Rmˆm as R :“ DtA`D. It can be shown that for any @1 ď i ď m : rii is

equivalent reactance between end buses of the line ei. Matrix R is a symmetric matrix and is

very useful in quantifying the effect of line failures. In fact, in Chapter 3, we use this matrix

to quantify the effect of single line failure when all the reactance values are equal to 1. In

Chapter 4, we generalize the idea for k-line failures and arbitrary reactance values.

2.4 The DC Power Flows Accuracy

As mentioned in Section 2.3, the DC power flows provide a good approximation of the AC

power flows under three conditions. In the following lemma, we provide an upper bound on

the difference between the AC power flows p
(AC)
ij and the DC power flows p

(DC)
ij under those

conditions. In this section, θ
(DC)
i denotes the phase angle of the nodes under the DC power

flows.

Lemma 2.1. Assume the three conditions for validity of the DC power flows as a linear ap-

proximation for the AC power flows hold within following bounds:

1. |θi ´ θj | ď εθ,@ti, ju P E,

2. |gij{bij | ď εg,@ti, ju P E,

3. ||vi| ´ 1| ď εv,@i P V ,
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for εθ, εv, εg ă 1. Then, for any 1 ď i, j ď n:

|p
pACq
ij ´ p

pDCq
ij | ď ε}A}1 ` }~p

pACq ´ ~ppDCq}1, (2.8)

in which ε :“ 2εg ` 4εvεg ` 2ε2vεg ` 2εvεθ ` ε
2
vεθ ` ε

3
θ and }A}1 :“

řn
i“1

řn
j“1 |aij |.

Proof. Using the definition of the apparent power sik “ p
(AC)
ik ` iq

(AC)
ik in (2.2), we have:

p
(AC)
ij “ Re

 

vi
`

pvi ´ vjqpgij ` ibijq
˘˚(

“ Re
 

p|vi|
2 ´ |vi||vj |e

ipθi´θjqqpgij ´ ibijq
(

“ |vi|
2gij ´ |vi||vj |gij cospθi ´ θjq

´ |vi||vj |bij sinpθi ´ θjq.

Define θi ´ θj :“ αij and |vi| :“ 1` βi. Then:

||vi|
2gij | “ |gij ` p2βi ` β

2
i qgij |

ď |bij |pεg ` 2εvεg ` ε
2
vεgq.

Moreover, using | cospxq| ď 1:

||vi||vj |gij cospαijq| ď |gij ` pβi ` βj ` βiβjqgij |

ď |bij |pεg ` 2εvεg ` ε
2
vεgq.

Using sinpxq “ x` F pxq, for F pxq :“ ´x3{6`Opx5q, we also have:

´ |vi||vj |bij sinpθi ´ θjq “

“ ´bijpθi ´ θjq

´ bij
`

pβi ` βj ` βiβjqpθi ´ θjq`F ppθi ´ θjq
3q|vi||vj |

˘

,

in which:

| ´ bij
`

pβi ` βj ` βiβjqpθi ´ θjq`F ppθi ´ θjq
3q|vi||vj |

˘

| ď

ď |bij |
`

2εvεθ ` ε
2
vεθ ` ε

3
θ{6` ε

3
θεv{3` ε

3
θε

2
v{6q

ď |bij |
`

2εvεθ ` ε
2
vεθ ` ε

3
θq.
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Hence,

p
(AC)
ij “´bijpθi ´ θjq ` eij , (2.9)

in which:

|eij | ď |bij |
`

2εg ` 4εvεg ` 2ε2vεg ` 2εvεθ ` ε
2
vεθ ` ε

3
θ

˘

.

Notice that ´bijpθi ´ θjq is not necessarily equal to p
(DC)
ij “ ´bijpθ

(DC)
i ´ θ

(DC)
j q since θi and

θj are obtained from the AC power flows, which are different from the phase angles obtained

by the DC power flows. However, we can compute the difference between these two values by

writing the power flow equations using (2.9) as follows:

AC: A~θ ` ~e “ ~p(AC)

A~θ “ ~p(DC) ´ ~e` p~p(AC) ´ ~p(DC)q

DC: A~θ(DC) “ ~p(DC),

in which ~e is an nˆ 1 vector with the ith entry equal to ei such that |ei| ď
ř

jPNpiq |eij |. Recall

that vectors ~p(AC) and ~p(DC) are equal except (depending on the lossless assumption) in the

slack bus (first entry). From the flow equations and the superpositions principle, the difference

between ´bijpθi ´ θjq and ´bijpθ
(DC)
i ´ θ

(DC)
j q cannot be greater than the maximum flow that

vector ~e´p~p(AC)´~p(DC)q can produce which is at most }~p(AC)´~p(DC)}1`p
řn
i“1

ř

jPNpiq |bij |qp2εg`

4εvεg ` 2ε2vεg ` 2εvεθ ` ε2vεθ ` ε3θq. Hence, a conservative bound for the difference between the

AC and DC power flows is:

|p
(AC)
ij ´ p

(DC)
ij | ď ε}A}1 ` }~p

(AC) ´ ~p(DC)}1.

�

Corollary 2.1. If the lines are lossless (εg “ 0), then for any 1 ď i, j ď n:

|p
pACq
ij ´ p

pDCq
ij | ď p2εvεθ ` ε

2
vεθ ` ε

3
θq}A}1.

Proof. Since lines are lossless, }~p(AC) ´ ~p(DC)}1 “ 0. Using this and εg “ 0 in (2.8) gives the

bound. �



CHAPTER 2. POWER FLOW 17

Corollary 2.2. If the lines are lossless (εg “ 0), and for all the lines bij “ ´1, then for any

1 ď i, j ď n:

|p
pACq
ij ´ p

pDCq
ij | ď 4p2εvεθ ` ε

2
vεθ ` ε

3
θq|E|.

Proof. In this case, since for all the lines bij “ ´1, }A}1 “ 4|E|. Therefore, using Corollary 2.1

gives the bound. �

In the following Lemma, we demonstrate that if the power network topology is a tree, we

can improve the bound in Corollary 2.1 and prove that the DC power flows are equal to the AC

power flows.

Lemma 2.2. If G is a tree and εg “ 0, then @1 ď i, j ď n : p
pACq
ij “ p

pDCq
ij

Proof. We want to show that p
(DC)
ij “ p

(AC)
ij ,@ti, ju P E is a DC power flow solution for this

instance. As all the lines are purely reactive, the network is lossless and in the AC power flows

|p
(AC)
ij | “ |p

(AC)
ji |,@ti, ju P E. From Kirchhoff’s laws, we also have

ř

jPNpiq p
(AC)
ij “ pi. Hence,

setting p
(DC)
ij “ p

(AC)
ij completely satisfies the active power flow conservation in equation (2.5).

It remains to prove that there are phase angles satisfying equation (2.6) with p
(DC)
ij “ p

(AC)
ij .

Since G is a tree, m “ n ´ 1. Hence, p
(DC)
ij “ ´bijpθ

(DC)
i ´ θ

(DC)
j q for all ti, ju P E consists

of n ´ 1 independent linear equations for n variables θ
(DC)
1 , θ

(DC)
2 , . . . , θ

(DC)
n (It is known that

for a connected graph G, rankpAq “ n ´ 1 [32]). As a result, by selecting θ
(DC)
1 “ 0, all other

phase angles can be found uniquely. Hence, p
(DC)
ij “ p

(AC)
ij is the DC power flow solution for this

instance as well.

�

In this section, we demonstrated that the DC power flows can approximate the AC power

flows very well depending on the εθ, εg, and εv values. In this thesis, due to the nonlinearity of

the AC power flows, we mainly use the DC power flows. Extending the methods provided in

this thesis to the AC power flow model should be of particular interest to researchers in power

engineering community.
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Chapter 3

Analyzing Failures and Cascades

Large scale power outages in Australia (2016), Turkey (2015), India (2013), and the U.S. (2011,

2003) have demonstrated the vulnerability of power grids to failures caused by natural disasters,

such as earthquakes, hurricanes, and solar flares as well as mismanagement and computers

malfunctioning. These power grid outages have devastating effects on almost every aspect of

modern life as well as on interdependent systems such as telecommunications, gas, water supply,

and transportation networks. Follow up reports of these events [7,8,9,12], exposed the insufficient

understanding of failures and their consequences in power grids. Hence, there is a need for

investigation of failures in power grids.

As we discussed in Chapter 2, unlike graph-theoretical network flows, power flows are gover-

ned by the laws of physics and there are no strict capacity bounds on the lines [25]. Yet, there

is a rating threshold associated with each line – if the flow exceeds the threshold, the line will

eventually experience thermal failure. Such an outage alters the network topology, giving rise

to a different flow pattern which, in turn, could cause other line outages. The repetition of this

process constitutes a cascading failure [44].

Some previous analytical works (e.g., [42,156] and references therein) assumed that a line/node

failure leads, with some probability, to failures of nearby nodes/lines. Such epidemic based mo-

deling allows using percolation-based tools to analyze the cascade’s impact. Yet, in real large

scale cascades, a failure of a specific line can affect remote lines and the cascade does not neces-
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6,7

8,9

10, 11

Functional Under Maintenance Tripped

Figure 3.1: The first 11 line outages leading to the India blackout on July 30th, 2012 [8]. The

numbers indicate the order in which outages occurred; Lines that were undergoing maintenance

at the time of the cascade are marked separately; Note that the failures did not develop conti-

guously.

sarily develop contiguously. For example, the evolution of the 2012 cascade in India appears in

Fig. 3.1. Similar non-contiguous evolution was observed in a 2011 cascade in South California [9]

and in simulation studies under more realistic models [27].

Motivated by these observations, we analytically study the properties of failures, detect

most vulnerable lines to failures, and introduce algorithms to efficiently predict the cascading

failure evolution. We employ the DC power flow model which is commonly used in large-scale

contingency analysis of power grids [28, 30, 113], and the cascading failure model of [62] (see

also [27,28,30,111]).

First, in order to investigate the impact of a single line failure on the power flow changes,

we provide a rank-1 update of the pseudo-inverse of the admittance matrix after a single line

failure. We then use that to analytically compute the flows on the lines after a single line failure.

and obtain an upper bound on the flow changes. We build on these results and develop metrics

to study the robustness of graphs to failures.

We also illustrate via simulations the relation between the flow changes after a failure and the

distance (in hop count) and resistance distance from the failure. In our simulations, we consider

the U.S. Western Interconnection and the Texas Interconnection as well as Erdős-Rényi, Watts
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and Strogatz [153], and Barábasi and Albert [23] graphs. These simulations show that there are

cases in which the flow on a line far away from the initial failure significantly increases. These

observations are clearly in contrast to the epidemic-based failure models.

Once a line fails, there is a need for a low complexity algorithm to predict its consequences

so that the system operator can react quickly if the initial failure results in a cascading failures.

The Cascading Failure Evolution (CFE) Algorithm that has been used to identify the evolution

of the cascade [28,30,44] has the time complexity of Opt|V |3q, where |V | is the number of nodes

and t is the number of cascade rounds). In order to improve its running time, we develop the

low complexity Cascading Failure Evolution – Pseudo-inverse Based (CFE-PB) Algorithm.

The algorithm is based on the rank-1 update of the pseudo-inverse of the admittance matrix.

We show that its complexity is Op|V |3`|F ˚t ||V |
2q (|F ˚t | is the total number of lines failures during

the cascade). Namely, if t “ |F ˚t | (one line fails at each round), the complexity of the CFE-PB

Algorithm is Opmint|V |, tuq times lower than that of the CFE Algorithm. The main advantage

of the CFE-PB Algorithm is that it leverages the special structure of the pseudo-inverse to

identify properties of the underlying graph and to recompute an instance of the pseudo-inverse

from a previous instance.

Finally, we prove that the problem of finding the set of line failures of size at most k that

causes a cascade resulting with the minimum possible yield (the fraction of demand satisfied

after the cascade), referred to as the minimum yield problem, is NP-hard. However, we introduce

a very fast heuristic termed the Most Vulnerable Edges Selection – Resistance distance Based

(MVES-RB) Algorithm for finding such a set, approximately. We compare the performance of

the MVES-RB Algorithm and other heuristic methods on the IEEE 118- and 300-bus benchmark

systems [5] and show that it performs relatively well considering its low time complexity.

3.1 Related Work

The study of cascading failures in power grids was initiated in [39,147] which used the linearized

DC model and a probabilistic outage rule for overloaded line failures. Similar cascade models

have been used to study the properties of the cascades [18,19,26,27,44,91], as well as to design
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control schemes to mitigate the cascade [28,110] and to detect vulnerable parts of the grid [29,83].

In this Chapter, we follow [27,29] and study cascades due to line overloads in power grids with

a deterministic outage rule.

In Sections 3.3 and 3.5, we use the admittance matrix of the grid to compute flows. This is

closely related to solving Laplacian systems which can be solved by several techniques, including

Gaussian elimination and LU factorization [77]. Recently, [49] used preconditioning, to provide

highly precise approximate solutions to Laplacian systems. Yet, this approach is not suitable

for analyzing the effects of line failures.

The problem of identifying the set of failures with the largest impact was studied in [28, 30,

113]. In particular, [30] studies the N ´ k problem which focuses on finding a small set of lines

whose removal disallows supporting a minimum demand. A broader interdiction problem where

all the network components are subject to failure was studied in [120]. A similar problem is

studied in [113] using the alternating-current (AC) model. However, none of the previous works

consider the cascading failures. Moreover, while the optimal power flow problem has been shown

to be NP-hard [31,93], the complexity of the cascade-related problems was not studied yet.

In simulations, we use graphs that can represent the power grid topology. The structure of

power grids was widely studied [23,42,52,153]. Specifically, Watts and Strogatz [153] suggested

the small-world graph as a good representative of the power grid. Barabási and Albert [23]

showed that scale-free graphs are better representatives. However, [52] indicated that none

of these models can represent the U.S. Western Interconnection properly. Hence, we consider

these graphs and the Erdős-Rényi graph but we also use the Western Interconnection, the Texas

Interconnection, and the IEEE 118- and 300-bus benchmark systems [5] in order to consider

realistic systems.

3.2 Model and Preliminaries

In this chapter, we use the DC power flows as described in Section 2.3. We refer to the failed

lines and line failures as failed edges and edge failures in the graph G. Moreover, in this chapter,

Ai denotes the ith row of matrix A.
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Algorithm 1 - Cascading Failure Evolution (CFE)

Input: A connected graph G “ pV,Eq and an initial edge failures event F0 Ď E.

1: F˚0 Ð F0 and iÐ 0.

2: while Fi ‰ H do

3: Adjust the total demand (supply) to equal the total supply (demand) within each connected

component of G “ pV,EzF˚i q.

4: Compute the new flows fepF
˚
i q @e P EzF˚i .

5: Find the set of new edge failures Fi`1 “ te||fepF
˚
i q| ą ce, e P EzF

˚
i u. F˚i`1 Ð F˚i Y Fi`1 and

iÐ i` 1.

6: return t “ i´ 1, pF0, . . . , Ftq, and fepF
˚
t q @e P EzF

˚
t .

3.2.1 Cascading Failure Model

The Cascading Failure Evolution (CFE) Algorithm described here is a slightly simplified version

of the cascade model used in [27,30,62]. For each edge e “ ti, ju, consider an arbitrary direction

as in Subsection 2.3.1 and define fe :“ pij , if direction of the edge goes from i to j. We assume

that each edge has a predetermined capacity ce “ cij “ cij , which bounds the amount of power

that it can carry without any risks of failure (that is, |fe| ď ce). The cascade proceeds in rounds.

Denote by Fi Ď E the set of edge failures in the ith round and by F ˚i “ F ˚i´1YFi the set of edge

failures until the end of the ith round (i ě 1). We assume that before the initial failure event

F0 Ď E, the power flows satisfy (2.5)-(2.6), and |fe| ď ce @e P E.

Upon a failure, some edges are removed from the graph, implying that it may become discon-

nected. Thus, within each component, depending on whether demandąsupply or supplyądemand,

the total demand is adjusted to be equal to the total supply by decreasing the demand (sup-

ply) by the same factor at all demand (supply) nodes (Line 3). This corresponds to the load

shedding/generation curtailing process. Since power grids are operated by a central system,

we follow [27, 28, 30] and assume that the demand (supply) are adjusted globally. For any

set of failures F Ď E, we denote by fepF q the flow on the edges in G1 “ pV,EzF q after the

shedding/curtailing.
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Following an initial failure event F0, the new flows fepF0q,@e P EzF0 are computed (by (2.5)-

(2.6)) (Line 4). Then, the set of new edge failures F1 is identified (Line 5). Following [27,30,62],

we use a deterministic outage rule and assume, for simplicity, that an edge e fails once the flow

exceeds its capacity: |fepF
˚
0 q| ą ce.

1 Therefore, F1 “ te : |fepF
˚
0 q| ą ce, e P EzF

˚
0 u.

If the set F1 of new edge failures is empty, the cascade is terminated. Otherwise, the process

is repeated while replacing the initial event F ˚0 “ F0 by the failure event F ˚1 , and generally

replacing F ˚i by F ˚i`1 at the ith round (Line 5). The process continues until the system stabilizes

(i.e., until no edges are removed). Finally, we obtain the sequence pF0, F1, . . . , Ftq of the sets of

failures associated with the initial event F0, and the power flows fepF
˚
t q at stabilization, where

t is the number of rounds until stabilization. Since solving a system of linear equations with n

variables, requires Opn3q time [77], the output can be obtained in Opt|V |3q time.

When the initial failure event contains a single edge F0 “ te1u, for any edges e “ ti, ju P

Ezte1u, we denote the flows after the failure by p1ij or f 1e ” fepte
1uq and the flow changes by

∆pij “ p1ij ´ pij . Moreover ∆fe “ ∆pij .

3.2.2 Metrics

We define metrics for evaluating the grid vulnerability (some of which were defined in [27], [155]).

To study the effects of a single edge (e1) failure after one round, we define the ratio between the

flow change on an edge e, and its original value or the flow value on the failed edge e1:

Edge flow change ratio: Se,e1 :“ |∆fe{fe|.

Mutual edge flow change ratio: Me,e1 :“ |∆fe{fe1 |.

The mutual edge flow change ratio corresponds to the Line Outage Distribution Factor (LODF)

defined in [155] (we used a different term to be consistent with the other metric).

We also define a metric to evaluate the cascade severity.

Yield: the ratio between the demand supplied at stabilization and the original demand after

an initial failure event.

1Note that [27,30,62] maintain moving averages of the fe values to determine which edges fail.
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3.2.3 Graphs and Parameters Used in Simulations

For simulations, we used the NetworkX [81] library in Python, as well as igraph [54] library

in R. The simulation results are presented for graphs described below. The parameters are as

indicted below, unless otherwise mentioned.

Western Interconnection (WI): The U.S. Western Interconnection with 13626 nodes and

18089 edges. The data is from the Platts Geographic Information System (GIS) [3]. In some

cases a 1374-node connected subgraph of the WI is considered.

Texas Interconnection (TI): The Texas Interconnection with 4544 nodes and 6264 edges

(obtained from the Platts GIS [3]).

IEEE benchmark Systems: The IEEE 118-bus and 300-bus benchmark systems with 179

and 409 edges, respectively [5].

Erdős-Rényi graph: A random graph where each edge appears with probability p “ 0.01.

Watts and Strogatz graph [153]: A small-world random graph where each node connects to

k “ 4 other nodes and the probability of rewiring is p “ 0.1.

Barábasi and Albert graph [23]: A scale-free random graph where each new node connects

to k “ 3 other nodes at each step following the preferential attachment mechanism.

To maintain consistency when evaluating a metric in generated random networks and in a

real-world network (e.g., WI), in this chapter, we assume that the reactance values (or suscep-

tance values) are equal to 1 for all edges (´1{xij “ bij “ ´1 @ti, ju P E). However, to provide

representative results about real-world networks, we also perform the same evaluations with es-

timated reactance values. The reactance of a line depends on its physical properties (such as its

material) and there is a linear relation between its length and reactance: the longer the line, the

larger its reactance. Thus, we assume that all lines have the same physical properties and use

the length to determine the reactance. It is important to note that flows are scale invariant to

the reactance (that is, multiplying the reactance of all lines by the same factor does not change

the flow values). Hence, we simply use the length of a line as its estimated reactance.
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3.3 Admittance Matrix Properties

Recall that the power flow equations can be solved by using the Pseudo-inverse of the admittance

matrix A`. In this section, we use the Pseudo-inverse of the admittance matrix in order to obtain

results that are used throughout the rest of the Chapter. Specifically, it is used in Section 3.4

to study the impact of a single edge failure on the flows on other edges and in Section 3.5

to introduce an efficient algorithm to identify the evolution of the cascade. We prove several

properties of the Pseudo-inverse of the admittance matrix A`.

A cut-edge of a graph G is an edge whose removal increases the number of connected compo-

nents of G. Jointly verifying whether an edge is a cut-edge and finding the connected components

of the graph takes Op|E|q (using Depth First Search). The following two Lemmas show that by

using the precomputed pseudo-inverse of the admittance matrix, these operations can be done

in Op1q and Op|V |q, respectively. The algorithm in Section 3.5 uses these results to check if

the pseudo-inverse should be recomputed. Moreover, Lemma 3.1 is crucial for the proof of the

Theorem 3.1, below. We note that a similar lemma when all the admittance values are equal to

1 appeared in [22].

Lemma 3.1. Given G “ pV,Eq and A`, all the cut-edges of the graph G can be found in Op|E|q

time. Specifically, an edge ti, ju is a cut-edge if, and only if, a´1
ij ´ 2a`ij ` a

`
ii ` a

`
jj “ 0.

Proof. Suppose ti, ju is a cut-edge. Then, the solution to (2.5)-(2.6) for the power vector ~p , in

which pi “ ´pj “ 1 and zero elsewhere is pij “ ´pji “ 1 and zero elsewhere. On the other

hand, ~θ “ A`~p is a solution to the equivalent matrix equation (2.7). Since the solution with

respect to the power flows is unique, 1 “ pij “ ´aijpθi ´ θjq “ ´aijpA
`
i ~p ´ A`

j ~pq ñ 1 “

´aijpa
`
ii ´ a

`
ij ´ a

`
ji ` a

`
jjq ñ a´1

ij “ p2a
`
ij ´ a

`
ii ´ a

`
jjq ñ a´1

ij ´ 2a`ij ` a
`
ii ` a

`
jj “ 0.

Now suppose a´1
ij ´ 2a`ij ` a`ii ` a`jj “ 0. The solution to (2.5)-(2.6) for the power vector ~p

(as defined above) for the flow on edge ti, ju is pij “ pi “ ´pj “ 1. Therefore, there are no

other paths from i to j. Otherwise, because of the phase angle difference between nodes i and

j, part of the flow should be routed through other paths. Thus, edge ti, ju is the only path from
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node i to j, and is a cut-edge. Hence, using the precomputed A`, identifying whether an edge

is a cut-edge takes Op1q time and finding all the cut-edges of the graph takes Op|E|q time. �

Lemma 3.2. Given G “ pV,Eq, A`, and the cut-edge ti, ju, the connected components of

Gzti, ju can be found in Op|V |q.

Proof. Suppose that ti, ju is a cut-edge of the connected graph G, and Gzti, ju “ G1 Y G2.

Assume that i P G1 and j P G2. We show below that for any tr, su P Gzti, ju, a`ir´a
`
jr “ a`is´a

`
js.

Moreover, for any r P G1 and s P G2, a`ir ´ a
`
jr ‰ a`is ´ a

`
js.

Suppose that tr, su P G1 (the argument is the same for G2) is an arbitrary edge. Then,

the power flows solution to (2.5)-(2.6) in G for the power vector ~p with pr “ ´ps “ 1 and zero

elsewhere, is nonzero in G1 and zero elsewhere. Therefore, pij “ 0. On the other hand, ~θ “ A`~p

is a solution to the equivalent matrix equation (2.7). Since the solution with respect to power

flows is unique, 0 “ fij “ ´aijpθi ´ θjq “ ´aijpA
`
i ~p ´A`

j ~pq ñ 0 “ pa`ir ´ a`is ´ a`jr ` a`jsq ñ

a`ir ´ a
`
jr “ a`is ´ a

`
js.

From this and since a`ii ´a
`
ji ‰ a`ij ´a

`
jj (Lemma 3.1), for any r P G1 and s P G2, a`ir´a

`
jr ‰

a`is´ a
`
js. Thus, by using the precomputed pseudo-inverse of the admittance matrix, computing

A`
i ´A`

j , and dividing the entries into two groups with equal values, the connected components

of Gzti, ju can be identified. This process requires Op|V |q time. �

In the following, we denote by A1 the admittance matrix of the graph G1 “ pV,Ezti, juq

and by ~p 1 the power vector after removing an arbitrary edge ti, ju from G and conducting the

corresponding load shedding/generation curtailing. Lemma 3.3 shows that after the removal of

a cut-edge, A` can be used to solve (2.7) and A1` is not required.

Lemma 3.3. Given graph G “ pV,Eq, A`, and a cut-edge ti, ju, then ~θ1 “ A`~p 1 is a solution

of (2.7) in G1.

Proof. First, ~θ1 “ A`~p 1 is a solution to (2.7) for the power vector ~p 1 in the graph G. Since the

solution to (2.5)-(2.6) with respect to power flows is unique, if p1ij “ 0, then ~θ1 “ A`~p 1 is also a

solution to (2.7) for the power vector ~p 1 in the graph G1. Therefore, we only need to prove that

θ1i “ θ1j in ~θ1 “ A`~p 1.
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To prove this, we prove that θ1i´θ
1
j “ pA

`
i ´A`

j q~p
1 “ 0. From the proof of Lemma 3.2, since

ti, ju is a cut-edge, the entries of A`
i ´A`

j have equal values at the entries in the same connected

component. On the other hand, since ~p 1 is the power vector after load shedding, then the sum

of the supplies and demands at each connected component is zero. Thus, pA`
i ´A`

j q~p
1 “ 0. �

The following theorem gives an analytical rank-1 update of the pseudo-inverse of the admit-

tance matrix. Using Theorem 3.1 and Corollary 3.1, in Section 3.4 we provide upper bounds on

the mutual edge flow change ratios (Me,e1). We note that the proof could be simplified, if the

form of A1` was known in advance. However, the proof provides the derivation of A1`. We also

note that a similar result to Theorem 3.1 was independently proved in a technical report [117].

Theorem 3.1. Given a connected graph G “ pV,Eq, the admittance matrix A, and A`, if ti, ju

is not a cut-edge, then,

A1` “ pA` aijXXtq` “ A` ´
1

a´1
ij `XtA`X

A`XXtA`

in which X is an nˆ 1 matrix with 1 in ith entry, ´1 in jth entry, and 0 elsewhere.

Proof. First, we show that AA` “ I ´ 1
nJ. A is a real and symmetric matrix. There-

fore, there exists an orthogonal and unitary matrix U such that A “ UtΛU, in which Λ “

diagpλ1, λ2, . . . , λnq is the diagonal matrix of eigenvalues of A and Ui is the normalized eigen-

vector related to eigenvalue λi. It is well-known that when G is connected and unweighted, the

multiplicity of eigenvalue 0 of the Laplacian matrix is 1 [32]. Exactly the same result with the

same approach can be obtained for a weighted graph. Therefore, we can assume that λ1 “ 0

and all other eigenvalues are nonzero. In this case U1 “ r
1?
n
, 1?

n
, . . . , 1?

n
s. On the other hand,

A` “ UtΛ`U, and therefore,

AA` “ UtΛUUtΛ`U “ UtΛΛ`U

“ Utdiagpλ1λ
`
1 , λ2λ

`
2 , . . . , λnλ

`
n qU

“ UtpI´ diagp1, 0, . . . , 0qqU “ I´
1

n
J.
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A is a real and symmetric matrix, and therefore, there exist an n ˆ n matrix B such that

BBt “ A. Using [14, Theorem 4],

pA` aijXXtq` “ pCCtq` ` rI´ p
?
aijXC`qts

ˆ rA` ´ aijA
`XpI´C`CqKXtA`s ˆ r1´

?
aijXC`s, 2

where, C “ rI´AA`sX and

K “ tI` aijrpI´C`CqXtA`XpI´C`Cqsu´1.

Therefore, all we need to compute is matrices C and K. Using the previous part,

C “ rI´AA`sX “ rI´ I`
1

n
JsX “

1

n
JX.

It is easy to see that JX “ 0, and thus, C “ 0. Using this,

K “ tI` aijrpI´C`CqXtA`XpI´C`Cqsu´1

“ tI` aijrIX
tA`XIsu´1 “ t1` aijX

tA`Xu´1.

Notice that X is an nˆ1 vector, and therefore, XtA`X is a scaler and I in the second equation

is 1ˆ1. Hence, it is written 1 instead of I in the last equation. Since ti, ju is not a cut edge, from

Lemma 3.1 we have, 1 ` aijX
tA`X “ aijra

´1
ij ´ 2pa`qij ` pa

`qii ` pa
`qjjs ‰ 0, and therefore,

K is well-defined. Replacing K and C,

pA` aijXXtq` “ A` ´ aijA
`Xt1` aijX

tA`Xu´1XtA`

“ A` ´
1

a´1
ij `XtA`X

A`XXtA`.

�

In the following, we use Theorem 3.1 to derive an equation similar to the one provided in [155,

Section 7.4.1] by using the superposition principle. Recall from Section 3.2 that A` “ ra`rss.

Corollary 3.1. The flow on an edge tr, su after a failure in the non-cut-edge ti, ju is,

p1rs “ prs ´
ars
aij

pa`ri ´ a
`
rjq ´ pa

`
si ´ a

`
sjq

a´1
ij ´ 2pa`qij ` pa`qii ` pa`qjj

pij .

2?aij might be an imaginary number.
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Figure 3.2: Scatter plot showing the distance versus the resistance distance between nodes in

the graphs defined in Subsection 5.2.3. All graphs have 1374 nodes.

Finally, Lemma 3.4, gives the complexity of the rank-1 update provided in Theorem 3.1.

This is used in the computation of the running time of the algorithm in Section 3.5.

Lemma 3.4. Given graph G “ pV,Eq, A`, and a non-cut-edge ti, ju, A1` can be computed

from A` in Op|V |2q.

We now define the notion resistance distance [100]. In resistive circuits, the resistance dis-

tance between two nodes is the equivalent resistance between them. The resistance distance is

a measure of distance between nodes of the graph [22]. For any network, this notion can be

defined by using the pseudo-inverse of the Laplacian matrix of the network. Specifically, it can

be defined in power grid networks by using the pseudo-inverse of the admittance matrix, A`.

Definition 3.1. Given G “ pV,Eq, A, and A`, the resistance distance between two nodes

i, j P V is rpi, jq :“ a`ii ` a`jj ´ 2a`ij. Accordingly, the resistance distance between two edges

e “ ti, ju, e1 “ tv, uu is rpe, e1q “ mintrpi, vq, rpi, uq, rpj, vq, rpj, uqu.

We use the resistance distance in Section 3.4 to obtain upper bounds on the flow changes

after a single failure and assess the robustness of specific graphs against such failures. Moreover,

using resistance distance, in Section 3.6, we provide a heuristic for the minimum yield problem.

When all edges have the same reactance, xij “ 1 @ti, ju P E, the resistance distance between

two nodes is a measure of their connectivity. Smaller resistance distance between nodes i and

j indicates that they are better connected. Fig. 3.2 shows the relation between the distance
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(a) WI (b) TI

Figure 3.3: Scatter plot showing the distance versus the resistance distance between nodes in

the WI and TI with estimated reactance values.

and the resistance distance between nodes in the graphs defined in Subsection 5.2.3 (notice that

xij “ 1 @ti, ju P E).3 As can be seen, there is no direct relation between these two measures

in Erdős-Rényi and Barábasi-Albert graphs. However, in the WI and Watts-Strogatz graph the

resistance distance increases with the distance.

Fig. 3.3 also shows the relation between the distance and the resistance distance in the WI

and TI when the estimated reactance values (as described in Subsection 5.2.3) are used. As

expected, this relation is different from the case when all the edges have equal reactance values.

3.4 Effects of a Single Edge Failure

In this section, we provide upper bounds on the flow changes after a single edge failure and

introduce a metric to evaluate the robustness of grids to failures. We evaluate this metric for

3While in the WI the reactance values depend on the line characteristics (see values in [27]), for comparison

and consistency, we used xij “ 1 @ti, ju P E in all the graphs in Fig. 3.2.
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Figure 3.4: The average, standard deviation, and maximum edge flow change ratios (Se,e1) as

the function of distance (dpe, e1q) from the failure. The right y-axis shows the values for the

maximum edge flow change ratios (maxSe,e1). All graphs have 1374 nodes. The data points are

obtained for 40 random choices of an initial failure.

Watts and Strogatz graphs and demonstrate that symmetric graphs are the most robust graph

structures to edge failures.

For simplicity, in this section, we assume that xe “ 1 @e P E, unless otherwise indicated.

However, all the results can be easily generalized.

3.4.1 Flow Changes

3.4.1.1 Edge Flow Change Ratio

To provide insight into the effects of a single edge failure, we first present simulation results.

Fig. 3.4 shows the edge flow change ratios (Se,e1) as the function of distance (dpe, e1q) from

the failure for over 40 different random choices of an initial edge failure, e1. The power sup-

ply/demand in the Western interconnection is based on the actual data. In other graphs, the

power supply/demand at nodes are i.i.d. Normal random variables with a slack node to equalize

the supply and demand. Notice that if the initial flow in an edge is close to zero, the edge flow

change ratio on that edge can be very large. Thus, to focus on the impact of an edge failure on

the edges with reasonable initial flows, we do not illustrate the edge flow change ratios for the

edges with flow below 1% of the average flow. Yet, we observed that such edges that experience
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a flow increase after a single edge failure, are within any arbitrary distance from the initial edge

failure.

Fig. 3.4 shows that after a single edge failure, there may be very large flow increases (edge

flow change ratios up to 80, 14, 50, and 24 in Figs. 3.4-(a), (b), (c), and (d), respectively). These

changes may occur far from the initial edge failure (edge flow change ratio around 10 for edges

11- and 4-hops away from the initial failure in Figs. 3.4-(a) and (c), respectively). Moreover, for

all the four graphs, we observed that there are edges (far from the initial edge failure) whose

flow changed from zero to a positive value.

These observations motivate us to prove the following result analytically. We show that by

choosing specific parameter values, the edge flow change ratio can be arbitrarily large.

Observation 3.1. For any we1 , we2 P R, there exists a graph G “ pV,Eq and edges e1, e2 P E

such that Se2,e1 “ we2{we1.

Proof. We construct the graph G “ pV,Eq as follows: V “ ts, tu, ps “ ´pt “ 1, and there are

two parallel edges e1 and e2 between s and t. Assume the reactance values xe1 “ we1 , xe2 “ we2

are such that 0 ă xe1 ă xe2 .

By (2.5)-(2.6), we get fe1 “
xe2

xe2`xe1
and fe2 “

xe1
xe1`xe2

. If F0 “ te1u, then fe2pF0q “ 1 and

Se2,e1 “ xe2{xe1 “ we2{we1 . �

3.4.1.2 Mutual Edge Flow Change Ratio

We use the notion of resistance distance to find upper bounds on the mutual edge flow change

ratios (Me,e1). The following Lemma, which is an immediate result of Corollary 3.1, provides

a formula for computing the flow changes after a single edge failure based on the resistance

distances. It is independent of the power supply/demand distribution.

Lemma 3.5. Given G “ pV,Eq, A, and A`, the flow change and the mutual edge flow change

ratio for an edge e “ ti, ju P E after a failure in a non-cut-edge e1 “ tv, uu P E are,
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Figure 3.5: Visualization of the mutual edge flow change ratios (Me,e1) for edges in different

graph classes after a single edge failure (represented by the black wide line).

∆fe “ ∆pij “
1

2

´rpi, vq ` rpi, uq ` rpj, vq ´ rpj, uq

1´ rpv, uq
fvu,

Me,e1 “

ˇ

ˇ

ˇ

1

2

´rpi, vq ` rpi, uq ` rpj, vq ´ rpj, uq

1´ rpv, uq

ˇ

ˇ

ˇ
.

Proof. It is an immediate result of Corollary 3.1. �

Lemma 3.5 is similar to the calculation of the Line Outage Distribution Factors (LODF)

presented in [155, Appendix 7B.2]. However, here we use Theorem 3.1 to derive similar equations

in terms of the resistance distances. This formulation allows us to provide useful equalities and

inequalities (e.g., Corollaries 3.2 and 3.6).

Fig. 3.5 shows a visualization of the mutual edge flow change ratios (Me,e1) for edges in

different graph classes after a single edge failure. These values are differently distributed for

different graph classes.

The following Corollary gives an upper bound on the flow changes after a failure in a non-

cut-edge tv, uu P E by using the triangle inequality for resistance distance and Lemma 3.5.
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Corollary 3.2. Given G “ pV,Eq, A, and A`, the flow changes in any edge e “ ti, ju P E

after a failure in a non-cut-edge e1 “ tv, uu P E can be bounded by,

|∆pij | ď
rpv, uq

1´ rpv, uq
|pvu|, Me,e1 ď

rpv, uq

1´ rpv, uq
.

Proof. Using triangle inequality for resistance distance, we can write,

´rpi, vq ` rpi, uq ď rpv, uq

rpj, vq ´ rpj, uq ď rpv, uq.

Apply these to Lemma 3.5 completes the proof. �

In Observation 3.1, we showed that edge flow change ratios (Se,e1) can be arbitrarily large.

However, the following observation shows that the mutual edge flow change ratios (Me,e1) are

always bounded by 1. The proof is intuitive using flow conservation in the power flows.

Observation 3.2. For any non-cut-edge e1 “ tv, uu and any edge e ‰ e1, Me,e1 ď 1.

Proof. Suppose X is a n ˆ 1 matrix with 1 in vth entry, ´1 in uth entry, and 0 elsewhere.

Using Theorem 3.1 or superposition property, it is easy to verify that after a failure in an edge

e1 “ tv, uu, A1`p~p ´ pvuXq “ A`~p . Thus, ~θ1 ´ ~θ “ pvuA
1`X ñ ∆~θ “ pvuA

1`X. On the

other hand, it is easy to see that ∆~θ is the phase angle of the nodes in G1 when ~p “ pvuX.

Thus, the flows should be smaller than the supply value which is equal to |pvu|. Hence, for any

e “ ti, ju P E1, |∆pij | ă |pvu| ñMe,e1 ď 1. �

Corollary 3.3. After a failure in a non-cut-edge e1 “ tu, vu, Me,e1 ď mint1, rpu,vq
1´rpu,vqu.

Proof. Combining Observation 3.2 and Corollary 3.2 gives the result. �

Observation 3.2 and Corollary 3.2 provide some initial upper bounds on the mutual edge

flow change ratios. In the next subsection, we study the mutual edge flow change ratios in detail

and demonstrate how they can be used to evaluate the robustness of graphs against failures.

We present simulations to show the relations between the mutual flow change ratios and the

two distance measures. Figs. 3.6 and 3.7 show the mutual edge flow change ratio (Me,e1) as
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Figure 3.6: The average mutual edge flow change ratios (Me,e1) versus the distance from the

initial edge failure. All graphs have 1374 nodes. Each point represents the average of 40 different

initial single edge failure events.
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Figure 3.7: The average mutual edge flow change ratios (Me,e1) versus the resistance distance

from the initial edge failure. All graphs have 1374 nodes. Each point represents the average of

40 different initial single edge failure events. For clarity, the markers appear for every 5 data

points.

the function of distance (dpe, e1q) and resistance distance (rpe, e1q) from the failure, respectively.

The figures show that increasing the number of edges (increasing p in Erdős-Rényi graph and

increasing k in Watts and Strogatz, and Barábasi and Albert graphs) affects the Me,e1-rpe, e
1q

relation more than the Me,e1-dpe, e
1q relation. This suggests that the resistance distance better

captures the structure of a graph. Both figures show a monotone relation between the mutual

edge flow change ratios and the distances/resistance distances. However, this monotonicity is

smoother in the case of the distance.
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Figure 3.8: The average mutual edge flow change ratios (Me,e1) versus the distance from the

initial edge failure using estimated reactance values in the WI and TI. Each point represents the

average over all possible initial single edge failure events.

Moreover, Fig. 3.6, unlike Fig. 3.4, shows that after a single edge failure, the mutual edge

flow change ratios decrease exponentially as the distance from the initial failure increases. Thus,

it suggests that probabilistic tools may be used to model the mutual edge flow change ratios

(Me,e1) better than the edge flow change ratios (Se,e1).

To show these relations when the estimated reactance values (as described in Subsection 5.2.3)

are used, we computed the average mutual edge flow change ratios (Me,e1) in the entire WI and

the TI. As can be seen in Fig. 3.8, in the TI, the mutual edge flow change ratios decrease ex-

ponentially as the distance from the initial failure increases. This is similar to the exponential

decrease observed in Fig. 3.6 when all the reactance values are equal. Similarly, in the WI this

exponential decrease occurs for the distance up to 7-hops from the initial failure. However, for

the longer distances, the changes remain as small as « e´5.

As can be seen in Fig. 3.9, the Me,e1-rpe, e
1q relation is very similar to Fig. 3.7. Fig. 3.9 shows

that the Me,e1-rpe, e
1q relation is not as smooth as the Me,e1-dpe, e

1q relation.



CHAPTER 3. ANALYZING FAILURES AND CASCADES 37

0 5 10 15

−
15

−
10

−
5

0

Resistance distance (r(e, e′))

L
og

av
er

ag
e
M

e,
e′

(a) WI

0.0 0.5 1.0 1.5 2.0

−
35

−
30

−
25

−
20

−
15

−
10

−
5

Resistance distance (r(e, e′))

L
og

av
er

ag
e
M

e,
e′

(b) TI

Figure 3.9: The average mutual edge flow change ratios (Me,e1) versus the resistance distance

from the initial edge failure using estimated reactance values in the WI and TI. Each point

represents the average over all possible initial single edge failure events.

3.4.2 Graph Robustness

In this subsection, we define the failure cost of an edge and the average edge failure cost in a

graph. Using Corollary 3.1, we analytically compute these costs. We then demonstrate that the

results can be used to study the robustness of graphs to single edge failures. Recall that we

assume all the lines have reactance values qual to 1.

Definition 3.2. The failure cost of an edge e in G is denoted by FCe and defined as follows:

FCe :“ 1
m´1

ř

e1PE
e1‰e

pMe1,eq
2.

The failure cost of an edge e is a good measure of the average changes that occur in the flows

of the other edges to compensate for the failure in an edge e. It can help constructing a reliable

power grid in two ways: (i) by designing networks with a minimum maximum failure cost, and

(ii) by setting the power supply and demand values such that edges with high failure costs carry

small flows. The following Lemma analytically shows the relation between the failure cost of a

non-cut-edge and the resistance distance between its ending nodes. It can be considered as a

generalization of the upper bound provided in Corollary 3.2.
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Lemma 3.6. In a connected graph G, for any non-cut-edge e “ ti, ju,

FCe “
1

m´ 1

rpi, jq

1´ rpi, jq
. (3.1)

Proof. Recall that E “ te1, e2, . . . , emu. Assume e :“ ew “ ti, ju. Denote the set of edges of G

with direction (as in Subsection 2.3.1) by E “ tε1, ε2, . . . , εmu. Recall the definition of matrix R

from Subsection 2.3.2. It is easy to see that, @1 ď w, z ď m : rwz “ a`ip ´ a
`
iq ´ a

`
jp ` a

`
jq where

εw “ pi, jq, εz “ pp, qq.

Based on the definition of the resistance distance, it is easy to see that @1 ď w ď m : rww “

rpi, jq where εw “ pi, jq. Using Corollary 3.1, it is also easy to see that Mez ,ew “
|rwz |

1´rww
.

Consider D P t´1, 0, 1unˆm, the incidence matrix of the graphG as defined in Subsection 2.3.1.

From the definition, R “ DtA`D. On the other hand, A “ DDt. Thus, R “ DtpDDtq`D.

From [14, eq. 3.11.2], pDDtq` “ pDtq`D`. Moreover, from [14, eq. 3.8.2], pDtq` “ pD`qt.

Thus,

R “ DtpDDtq`D “ DtpDtq`D`D “ pD`DqtpD`Dq.

From the properties of the pseudo-inverse [14, Theorem 3.9], D`D is symmetric and D`DD` “

D`. Hence,

R “ pD`DqtpD`Dq “ D`DD`D “ D`D.

Hence, from the properties of the pseudo-inverse, R2 “ D`DD`D “ pD`DD`qD “

D`D “ R. Now we compute the wwth entry at both sides of the equation R2 “ R,

pR2qww “ pRqwwñ
m
ÿ

z“1

r2
wz “ rwwñ

m
ÿ

z“1
z‰w

r2
wz “ rww ´ r

2
ww

ñ

m
ÿ

z“1
z‰w

r2
wz

p1´ rwwq2
“

rww
1´ rww

.

As we mentioned at the beginning of the proof, from the definition of the matrix R, it is easy

to see that rww “ rpi, jq and Mez ,ew “
|rwz |

1´rww
. Hence,

rpi, jq

1´ rpi, jq
“

m
ÿ

z“1
z‰w

pMez ,ewq
2 “ pm´ 1qFCew .

�
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Eq. (3.1) is very insightful. Intuitively, similar to the inequality in Corollary 3.2, it demon-

strates that failures in edges with high resistance distance values have a strong effect on the

other edges. However, it is more accurate, since it provides an equality instead of an inequality.

Moreover, (3.1) allows to obtain a bound on the average edge failure cost, which is defined below

as a metric for the robustness of a graph to a single edge failure.

Definition 3.3. In a graph G with n nodes and m edges, the average edge failure cost is defined

as, FCG :“ 1
m

ř

ePE FCe.

Using (3.1), the following Lemma provides a lower bound for the average edge failure cost

in a graph.

Lemma 3.7. In a 2-edge-connected graph G,

1

m

´m´ 1

n´ 1
´
m´ 1

m

¯´1
ď FCG, (3.2)

and equality holds if for any two edges e “ ti, ju and e1 “ tv, uu, rpi, jq “ rpv, uq.

Proof. We use the same notation as in the proof of Lemma 3.6. Since G is 2-edge-connected,

it does not have a cut-edge. Thus, from Lemma 3.6, for any edge e “ ti, ju, pm ´ 1qFCe “

rpi, jq{p1´ rpi, jqq. Hence,
ř

ePE FCe “
1

m´1

ř

ti,juPE
rpi,jq

1´rpi,jq .

From the proof of Lemma 3.6, R “ D`D. Thus, trpRq “ trpD`Dq “ trpDD`q. On

the other hand, from [14, eq. 3.11.7], DD` “ pDDtqpDDtq`. Since DDt “ A, therefore

DD` “ AA` and from the proof of Theorem 3.1, DD` “ AA` “ I ´ 1
nJ. Hence, trpRq “

trpI´ 1
nJq “ n´ 1. Therefore,

ř

ti,juPE rpi, jq “
řm
w“1 rww “ trpRq “ n´ 1.

It is easy to see that fpxq :“ x
1´x is a convex function in r0, 1q. Thus, the minimum of the

summation
ř

ti,juPE
rpi,jq

1´rpi,jq subject to
ř

ti,juPE rpi, jq “ n ´ 1 is when all the rpi, jqs are equal.

In this case, @ti, ju P E : rpi, jqopt “
n´1
m and

ř

ti,juPE
rpi,jqopt

1´rpi,jqopt
“ m n´1

m´n`1 “ p
1

n´1 ´
1
mq
´1.

Hence,

ÿ

ePE

FCe“
1

m´ 1

ÿ

ti,juPE

rpi, jq

1´ rpi, jq
ě

´m´ 1

n´ 1
´
m´ 1

m

¯´1
.

�
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Lemma 3.7 provides a lower bound on the average edge failure cost in a graph (FCG). More

importantly the proof demonstrates that between all the graphs with n nodes and m edges, the

one with equal resistance distance values between all pairs of connected nodes minimizes this

metric.

The following Corollary shows that for symmetric graphs the equality holds in Lemma 3.7.

Corollary 3.4. In a symmetric graph G, FCG “ p
m2´m
n´1 ´pm´ 1qq´1. Moreover, for any graph

H with the same number of nodes and edges as G, FCH ě FCG.

Proof. Since G is symmetric, for any two edges ti, ju, tv, uu P E, there is an automorphism

σ : V Ñ V , such that σpiq “ v and σpjq “ u. Suppose Π is the permutation matrix representing

σ, then the admittance matrix of σpGq is Â “ ΠAΠt. Since σ is an automorphism, Â “ ΠAΠt “

A. It is also easy to verify that Â
`
“ ΠA`Πt “ A`. Thus, â`ii ` â

`
jj ´ 2â`ij “ a`ii ` a

`
jj ´ 2a`ij .

On the other hand, from Â
`
“ ΠA`Πt, â`ii “ a`vv, â

`
jj “ a`uu, and â`ij “ a`vu. Hence, a`vv `

a`uu ´ 2a`vu “ a`ii ` a
`
jj ´ 2a`ij ñ rpv, uq “ rpi, jq. Therefore, for any two edges ti, ju, tv, uu P E,

rpv, uq “ rpi, jq. Now by using Lemma 3.7, it is easy to see that FCG “ p
m2´m
n´1 ´ pm ´ 1qq´1.

Moreover, from Lemma 3.7, for any graph H with the same number of nodes and edges as G,

FCH ě FCG. �

Corollary 3.4 demonstrates that symmetric graphs have the lowest average edge failure cost

among all the graphs with the same number of nodes and edges. Moreover, from Lemma 3.7

and Corollary 3.4 it can be concluded that as graphs become more symmetrical, their average

edge failure cost (FCG) decreases. To show this numerically, we computed the average edge

failure cost and the maximum mutual edge flow change ratio (maxe,e1PEMe,e1) versus the rewiring

probability (p) in Watts and Strogatz graphs with 30 nodes and 60 edges. We chose the Watts

and Strogatz graph, since in this type of graphs, as p increases, the symmetry of the graph

decreases.

Fig. 3.10 shows the average edge failure cost of the graph (FCG) and the maximum mutual

edge flow change ratio (maxe,e1PEMe,e1) versus the probability of rewiring (p). Initially (p “ 0),

G is a 4-regular graph (namely, every node is connected to exactly 4 other nodes). However, as

p increases, G tends toward a random graph with no symmetry. Thus, an increase in p in the
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Figure 3.10: The average edge failure cost of the graph (FCG) and the maximum mutual edge

flow change ratio (maxe,e1PEMe,e1) versus the probability of rewiring (p) in a Watts and Strogatz

graph with 30 nodes and 60 edges. Each point is the average over 100 generated graphs with

the same parameters.

Watts and Strogatz graph can be considered as decrease in the symmetry of the graph. As we

expected, the figure shows that as p increases, both the average edge failure cost of the graph

(FCG) and the maximum mutual edge flow change ratio (maxe,e1PEMe,e1) increase.

Overall, results suggest that as graphs become more symmetrical, they become more robust

against single edge failures.

3.5 Efficient Cascading Failure Evolution Computation

Based on the results we obtained in Section 3.3, we present the Cascading Failure Evolution

– Pseudo-inverse Based (CFE-PB) Algorithm which identifies the evolution of the cascade.

The CFE-PB Algorithm uses the Moore-Penrose Pseudo-inverse of the admittance matrix for

solving (2.7). Computing the pseudo-inverse of the admittance matrix requires Op|V |3q time.

However, the algorithm obtains the pseudo-inverse of the admittance matrix in round i from the

one obtained in round pi´ 1q, in Op|Fi||V |
2q time. Moreover, in some cases, the algorithm can

reuse the pseudo-inverse from the previous round. Since once lines fail, there is a need for low
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Algorithm 2 - Cascading Failure Evolution – Pseudo-inverse Based (CFE-PB)

Input: A connected graph G “ pV,Eq and an initial edge failures event F0 Ď E.

1: Compute A`, F˚0 Ð F0 and iÐ 0.

2: while Fi ‰ H do

3: for each tr, su P Fi do

4: if tr, su is a cut-edge (see Lemma 3.1) then

5: Find the connected components after removing tr, su. (see Lemma 3.2)

6: Adjust the total demand (supply) to equal the total supply (demand) within each connected

component.

7: else update A` after removing tr, su. (see Lemma 3.4)

8: Compute the phase angles ~θ “ A`~p and compute new flows fepF
˚
i q from the phase angles.

9: Find the set of new edge failures Fi`1 “ te||fe| ą ce, e P EzF
˚
i u. F

˚
i`1 Ð F˚i YFi`1 and iÐ i`1.

10: return t “ i´ 1, pF0, . . . , Ftq, and fepF
˚
t q @e P EzF

˚
t .

complexity algorithms to control and mitigate the cascade, the CFE-PB Algorithm may provide

insight into the design of efficient cascade control algorithms.

We now describe the CFE-PB Algorithm. It initially computes the pseudo-inverse of the

admittance matrix (in Op|V |3q time) and this is the only time in which it computes A` without

using a previous version of A`. Next, starting from F0, at each round of the cascade, for each

e P Fi, it checks whether e is a cut-edge (Line 4). This is done in Op1q (Lemma 3.1). If yes,

based on Lemma 3.3, in Lines 5 and 6, the total demand is adjusted to equal the total supply

within each connected component (in OpV q time). Else, in Line 7, A` after the removal of e

is computed in Op|V |2q time (see Lemma 3.4). After repeating this process for each e P Fi, the

phase angles and the flows are computed in Op|V |2q time (Line 8). The rest of the process is

similar to the CFE Algorithm.

The following theorem provides the complexity of the algorithm (the proof is based on the

Lemmas 1–4). We show that the algorithm runs in Op|V |3 ` |F ˚t ||V |
2q time (compared to the

CFE Algorithm which runs in Opt|V |3q). Namely, if t “ |F ˚t | (one edge fails at each round), the

CFE-PB Algorithm outperforms the CFE Algorithms by Opmint|V |, tuq.
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Theorem 3.2. CFE-PB Algorithm runs in Op|V |3 ` |F ˚t ||V |
2q.

Proof. Finding the pseudo inverse of the matrix requires Op|V |3q time. Therefore, Line 1 takes

Op|V |3q time. Lines 5 and 6 in the algorithm take Op|V |q time and Line 7 takes Op|V |2q,

therefore the whole for loop takes at most Op|Fi||V |
2q time at each step. Using A` computed

in the for loop, Lines 8 and 9 take Op|V |2q time. Thus, the total running time of the algorithm

is at most Op|V |3q `Opp|F0| ` |F1| ` ¨ ¨ ¨ ` |Ft|q|V |
2q “ Op|V |3q `Op|F ˚t ||V |

2q. �

Note that a similar approach (the step by step rank-1 update) can be applied to other linear

equations solution methods (e.g., LU factorization [77]). Yet, using the pseudo-inverse allows

developing tools for analyzing the effect of a single edge failure (as showed in Section 3.4) and

supports the development of an algorithm for finding the most vulnerable edges (see Section 3.6).

3.6 Hardness and Heuristic

In this section, we establish that deciding if there exists a failure event (of size at most a given

value) such that the yield after stabilization is less than a given threshold, is NP-complete.

Using the results from Section 3.4, however, we introduce a heuristic for the problem of finding

an initial failure that causes a cascade resulting with the minimum possible yield (minimum

yield problem). We numerically show that in most cases, solutions obtained by the heuristic

lead to a yield comparable to the solutions obtained by more numerically complex methods.

Lemma 3.8. Given G, a real number y, 0 ď y ď 1, and an integer k ě 1, deciding if there exists

a set of initial edge failures of the size at most k resulting in a yield less than y is NP-complete.

Proof. Consider following problem:

1. Suppose G “ pV,Eq is an instance of the classical flow problem, with a single source node

tsu and set of sink nodes T . Assume demands are equal to 1 and lines have unbounded

capacity (Op|V |q). Does a subset of edges A Ď E with |A| ď k exist such that |Tfail| ě l?

(Tfail is the set of sink nodes which get disconnected from the source node s after removing

set of edges A.)
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It is proved in [20, Theorem 7], that problem above is NP-complete. We want to use this result

to proof Lemma 3.8. For this reason we provide a polynomial time reduction from problem

above to minimum yield problem.

2. Suppose G “ pV,Eq is an instance of the power flow problem, with set of supply node

S “ tsu and set of demand nodes T . Assume pt “ ´1 for all t P T , and ps “ |T |. Assume

all the lines have capacities equal to |T | and reactance values equal to 1. Is there a set of

initial failures with size less than k resulting in yield Y ď 1´ l
|T |?

Claim. Suppose the graphs in problems 1 and 2 are the same, then the answer to problem 1 is

yes if, and only if, the answer to problem 2 is yes.

Proof. (ñ) Assume the answer to problem 1 is yes. It means that there exists a set of edges

A Ď E with |A| ď k such that their removal disconnects at least l of the sink nodes from the

source node. Now in problem 2, choose F0 “ A. Since two graphs are the same, at least l of

the demand nodes are disconnected from the supply node s. As a result, final yield is at most

|T | ´ l. Since initial supplied demand was |T |, Y ď 1´ l
|T | .

(ð) Now the other way, assume the answer to problem 2 is yes. It means that there is an initial

set of edge failures F0 Ď E with |F0| ď k such that Y ď 1´ l
|T | . First, since all the edges have

capacity equal to |T | which is an upper bound for a flow in an edge, after initial set of failures,

there is no cascade. Therefore, there is no further edge failures. Second, with the same reason,

as long as a demand node is connected to the supply node, its demand can be satisfied. Now

since Y ď 1´ l
|T | , with initial set of failure F0, at least l of the demand nodes are disconnected

from supply node s. In problem 1 choose A “ F0, since the graphs in two problems are the

same, by removing set of edges A from G, at least m of the sink nodes are disconnected from

source node s. Since |A| “ |F0| ď k, the answer to problem 1 is also yes. ˝

It can be concluded from this claim that problem 1 can be reduced to problem 2. Hence, the

minimum yield problem is NP-hard and its decision version is NP-complete. �

As indicated in Lemma 3.8, the minimum yield problem is NP-hard. We now present a

heuristic algorithm for solving this problem when xe “ 1 @e P E. We refer to it as the Most
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Algorithm 3 - Most Vulnerable Edges Selection – Resistance distance Based (MVES-RB)

Input: A connected graph G “ pV,Eq and an integer k ě 1.

1: Compute A`.

2: Compute the phase angles ~θ “ A`~p and compute flows fe from the phase angles.

3: Compute the resistance distance rpi, jq “ rpeq @e “ ti, ju P E.

4: Sort edges e1, e2, . . . , e|E| such that v ď u iff |fevrpevq| ě |feurpeuq|.

5: return e1, e2, . . . , ek.

Vulnerable Edge Selection – Resistance distance Based (MVES-RB) Algorithm. From Corol-

lary 3.6, edges with large rpi, jq have larger failure costs. Thus, edges with large rpi, jq ˆ |fij |

have greater impact on the flow changes on the other edges. Based on this result, the MVES-RB

Algorithm selects the k edges with highest rpi, jq ˆ |fij | values as the initial set of failures in

Op|V |3q.

The MVES-RB Algorithm is in the same category as the algorithms that identify the set of

failures with the largest impact (i.e., algorithms that solve the N´k problem [30,113]). However,

none of the previous works focusing on the N ´ k problem, considers cascading failures. To

evaluate the performance of the MVES-RB Algorithm, we compare its performance to that of

the four other intuitive methods for selecting the initial set of failures: (i) Random, (ii) Greedy,

(iii) Max-flow, and (iv) Stepwise greedy.

In Random selection, k initial edge failures are randomly selected in Opkq time. In Greedy

selection, for each edge e P E, the yield is computed after an initial failure in that edge. Then,

the k edges that have the lowest resulting yield values are removed. The Greedy selection takes

Opt|V |3|E|q time. In Max-flow selection, the k edges with the maximum amount of initial flow

are selected in Op|V |3q time. Stepwise-greedy selection is a step by step selection method. At

each step, an edge e is selected such that if e is removed together with the previously selected

edges, the yield is minimized. For k “ 1, both Stepwise-greedy and Greedy selection select

an edge that upon its failure minimizes the yield. The running time of the Stepwise selection

method is Opt|V |3|E|kq.
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Figure 3.11: Comparison between the effectiveness of different methods for selecting the most

vulnerable edges when the factor of safety is α “ 0.1.
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Figure 3.12: Comparison between the effectiveness of different methods for selecting the most

vulnerable edges when the factor of safety is α “ 0.2.
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To compare the performance of different selection methods, we computed the yield after

selecting k “ 1, . . . , 15 edges as the initial failed edges in the IEEE 118- and 300-bus benchmark

systems. For all the edges the reactance values are xe “ 1. For capacities, we consider two

options: (i) for each edge ce “ p1 ` αq|fe|,
4 where fe is the initial flow on the edge, and (ii)

all edges have equal capacities equal to ce “ 1.2 maxe1 |fe1 | (thereby removing the effect of

asymmetry in the capacities).

Figs. 3.11 and 3.12 illustrate the results when capacities are chosen based on the initial

flows with α “ 1.1 and α “ 1.2, respectively. As can be seen, the Stepwise-greedy method

that has the worst running time outperforms the other methods in most of the cases. However,

the Max-flow method and the MVES-RB Algorithm that have much lower running time than

the Stepwise-greedy method, perform relatively well and in most cases better than the Greedy

method. The Random selection method that has the lowest running time also seems to perform

well in some cases.

Fig. 3.13 illustrates the results when all the edges have equal capacities. As can be seen,

in that case, the Random selection is not comparable to other methods. As it was previously

the case, the Stepwise-greedy method outperforms other methods here as well. The MVES-

RB Algorithm, the Max-flow, and Greedy methods perform equally good and none of them

outperforms the other. The running time of the MVES-RB Algorithm and Max-flow method,

however, is much less than the Greedy method.

Overall, the Stepwise-greedy method outperforms others in most of the cases. However,

its high running time makes this method impractical in larger networks. Thus, since both the

MVES-RB Algorithm and the Max-flow method have a much lower running time and perform

relatively good in the most cases, they seem to be better options.

4Following [27], we assume that the capacities are 1 ` α times the initial flows. α is often referred to as the

Factor of Safety (FoS) of the grid.
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Figure 3.13: Comparison between the effectiveness of different methods for selecting the most

vulnerable edges when capacities are all equal to 1.2 maxe |fe|.
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3.7 Conclusion

In order to better understand failures and the evolution of cascades in the power grid, we studied

properties of the admittance matrix of the grid and provided analytical tools for computing the

impact of a single edge failure on the flows on the other edges. Based on these tools, we derived

upper bounds on the flow changes after a single edge failure and introduced a metric to assess

the robustness of graphs to single edge failures. We illustrated via simulations the impact of such

failures. Then, we showed the unique properties of the cascading failure model and introduced

a pseudo-inverse based efficient algorithm to identify the cascade evolution. Finally, we proved

that the minimum yield problem is NP-hard and introduced a simple heuristic to detect the

most vulnerable edges.

In a follow up to our work presented in this chapter, in [138], we extensively studied cascading

failures’ spatial and temporal properties in the U.S. Western Interconnection (WI) power grid

with collaboration with researchers at Yeshiva University. Based on simulations, we observed

that the yield has a bimodal distribution (i.e., the failure of a randomly selected line leads either

to an insignificant power loss or to a major blackout). We found that there is a latent period

in the development of major blackouts where few lines are overloaded and the yield remains

high. The duration of this latent period is proportional to the line tolerance (the ratio of the

maximum load a line can carry to its initial load). The existence of the latent period suggests

that intervention during the early stages of a cascade can significantly reduce the risk of a major

blackout. Our recent observations as well as the results provided in this Chapter show that due

to their unique properties, cascades in power grids require more studies to be fully understood

and controlled.

In another recent collaborative work [40], we studied cascades under the more detailed AC

power flow model and compared the severity of the cascade under the AC and DC models.

We observed that despite the strong correlation between the results under the two models, the

DC cascade model can lead to an inaccurate and overly optimistic cascade predictions in large

power grids. Hence, more studies under the AC power flows is needed to obtain a more accurate

understanding of the cascades in power grids.
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Chapter 4

Quantifying the Effects of k-line

Failures

Power grids are required to withstand a single component failure, known as the N´1 contingency

standard. However, one or more lines can often be out of service for various reasons such as

maintenance and construction works. This can result in the violation of the N ´ 1 standard

and vulnerability of the power grid to a single failure, as was the case in Turkey in 2015 [12].

Therefore, higher order contingency analysis is necessary to detect critical events caused by more

than a single failure.

Due to the large number of possibilities, high order contingency analysis is computationally

expensive. Therefore, most of the previous tools are effective for analyzing contingencies caused

by failures in one or two components of the grid [30, 47, 58, 59, 66, 67, 92, 144]. In order to

circumvent this issue, in this chapter, we introduce the disturbance value of a failure. We show

that this value can be efficiently computed for any set of line failures independently of the size

of the grid and can be effectively used to filter out less crucial contingencies. The disturbance

value can therefore significantly reduce the time complexity of contingency analysis by revealing

contingencies that are vital for more in depth analysis.

First, we extend and build on the results in Section 3.4 which focused on single line failures

to analytically compute the effect of multiple line failures on redistribution of power flows. We
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refer to an event resulting in the failure of k distinct lines, a k-line failure event. Similar to the

most of the previous work on contingency analysis, we use the linearized DC approximation of

the power flows, due to the complexities associated with the AC power flow model. We present

an analytical update of the pseudo-inverse of the admittance matrix after a k-line failure event.

Our approach is similar to [79], but we use the pseudo-inverse instead of the truncated inverse of

the admittance matrix which requires selecting a node as the slack bus. An advantage of using

pseudo-inverse is that it allows having a unified formula for all k-line failures regardless of their

location and their connectivity to the slack bus.1 Using this result, we define and analytically

compute the k-line outage distribution matrix which generalizes the definition of the line outage

distribution factors for single line failures [155] or as we called it, mutual edge flow change ratio

in Chapter 3.

While the k-line outage distribution matrix captures all effects of a k-line failure on flow

changes, it is not efficient to compute and store this matrix for contingency analysis in large

power grids. To overcome this challenge, we use the matrix of equivalent reactance values as we

did in Subsection 3.4.2 to efficiently compute the sum of changes in the power flows after a k-line

failure and to provide a metric that captures the essence of the flow changes after failures. In

particular, we define and analytically compute the disturbance value of a failure (the weighted

sum of squares of the flow changes) and show that this computation can be done for a k-line

failure in Op1q as long as k is much smaller than the total number of lines, the case in contingency

analysis of the power grids. Hence, the disturbance value of a k-line failure can be computed

independently of the size of the grid.

To show that the disturbance values provide a separation between failures with higher impact

and lower impact, we compute the disturbance values for all possible choices of 3-line failures

in the IEEE 118-bus and 300-bus systems. We demonstrate that by ranking cases based on

their disturbance values and considering only cases with high disturbance value, we are able to

1Another advantage of using pseudo-inverse is that our results can be tied to the related notions of Laplacian

and resistance distances in graph theory [22]. This enables further use of existing tools in graph theory for

contingency analysis in power grids as in [128].
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decrease the total number of cases needed to be analyzed for contingency analysis by more than

90%.

To analyze all the k-line failure scenarios, one needs to compute the disturbance values

for all possible
`

m
k

˘

cases which requires Opmkq time. To alleviate this issue, we provide an

approximation for the disturbance values. We show that by approximating the disturbance

value of a k-line failure, one can only focus on the rm ăă m lines with the highest 1-line

disturbance values and analyze only
`

rm
k

˘

cases instead of
`

m
k

˘

cases. Moreover, we numerically

show that the approximation error is below 10% in most of the cases in the 118- and 300-bus

systems.

To show that disturbance values effectively rank k-line failures, we numerically compute

the relationship between disturbance value of all 3-line failures and the severity of the initiated

cascades in the IEEE 118- and 300-bus systems. We show that although the disturbance value

does not take into account the capacities of the lines, it can predict the average severity of the

cascade initiated by a failure.

Finally, we numerically show the usefulness of the disturbance values in predicting changes

under the more detailed AC power flows after a k-line failure. In particular, we compute the

disturbance values under the AC power flows and show that the disturbance values under the AC

and DC differ only in scaling. We also study the correlation between the voltage changes after

a k-line failure and disturbance values, and show that k-line failures with higher disturbance

values cause more voltage changes as well.

Since the AC power flow equations are nonlinear, there are k-line failures after which the

AC power solver does not converge to a solution. We show that almost all such failures in the

IEEE 118- and 300-bus systems have the disturbance values that are between the top 10% of

all the k-line failures in terms of the disturbance values.

4.1 Related Work

Many great ideas have been developed for contingency analysis in power grids since the advent

of the modern power transmission network. Detecting most important lines and nodes solely
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based on the topology of the power grid was studied in [151] using network centrality measures.

Compensation theorem and current injection methods were used to analyze the effect of line

failures in [58,59,66,92,155]. In particular, [155] introduced the notion of line outage distribution

factors that inspired many other studies including the work presented in this and previous

chapter. [86,144] used matrix updates to study the effect of two line failures and used the results

to introduce an algorithm for the N ´ 2 contingency problem (contingencies caused by failures

in at most 2 components of the grid). In a follow up work [87], contingency and Influence graphs

were introduced to study N ´ 2 contingency analysis.

More optimization-based techniques for contingency analysis of the grids were explored in [47,

63]. In particular, [47] focused on identifying the most probable failure modes in static load

distribution using a linear-program. In a recent innovative paper, probabilistic algorithms were

developed to identify collections of multiple contingencies that initiate cascading failure [83].

High order contingency analysis was studied in [30, 45, 114]. In [45], the contingencies were

ordered based on their empirical occurrence probabilities and only contingencies with high proba-

bility were considered. A mixed-integer model for the N ´k contingency problem was presented

and used in [30]. However, this method does not scale well as k increases. In [114], the resistance

distances are used as in [128] to identify most important lines and to prune the graph. The con-

tingency analysis was then performed on the reduced graph instead of the entire graph in order

to reduce the total number of contingencies. However, since resistance distances are computed

independently of supply and demand values, such an approach may miss contingencies that are

caused by failures in lines carrying large power flows.

The main advantages of using disturbance value for contingency analysis, as proposed in this

chapter, over previous work is that: (i) using techniques from linear algebra, the disturbance

value can be efficiently computed for any number of line failures independently of the size of a

grid, and therefore it scales well for high order contingency analysis, (ii) due to its simplicity, it

is easy to implement, and (iii) since the disturbance value is based on the power flows as well

as the admittance matrix, it captures both the topological and operational properties of the

system.
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4.2 Model

We consider contingencies caused by the set of line failures of size k denoted by L Ď E. We

refer to these failures as k-line failures. Without loss of generality, for convenience we assume

L “ te1, e2, . . . , eku. We denote the graph after failures by G1 “ pV 1, E1q, in which E1 “ E´L and

V 1 “ V . We also assume that removing edges in L from G does not disconnect the graph. Notice

that failures that disconnect the grid have the highest priority, since they most likely divide the

grid into unbalanced islands in terms of supply/demand values that may result in further failures.

Therefore, such failures should always be considered for more in depth contingency analysis. In

Section 4.4, we show that some of our results can be used to approximately rank k-line failures

that disconnect the grid based on their criticality among themselves.

Hence, here we assume G1 is connected. Upon failures, the power flows redistributed in G1

based on the equation A1~θ1 “ ~p, in which A1 is the admittance matrix of G1. In Section 4.3, we

use linear algebra to compute A1` and quantify the effect of k-line failures.

Notation. In this Chapter, ~yk denotes the subvector of ~y with its first k entries. We use k̄

to show the indices other that 1 to k (e.g., ~fk̄ denotes the subvector of ~f with its k ` 1 to m

entries). We denote the submatrix of Q limited to the first k columns by Qk and the submatrix

of Q limited to the first k rows and columns by Qk|k. We define ∆~fk̄ “
~fk̄´

~f 1
k̄

to show the flow

changes on the lines in EzL after the failure in lines in L.

4.3 Failure Analysis

In this section, we study the effect of k-line failures on the flow changes on the other lines using

the DC power flows as described in Section 2.3.

The following lemma is the generalization of Lemma 3.1 and is similar to the idea used

in [79, Theorem 2] to detect the connected components after multiple line failures. Our proof is

different from the proof of a similar Theorem in [79, Theorem 2].

Lemma 4.1. Matrix I´Y
1{2
k|kD

t
kA

`DkY
1{2
k|k is invertible if, and only if G1 is connected.



CHAPTER 4. QUANTIFYING THE EFFECTS OF K-LINE FAILURES 55

Proof. First, it is easy to see that I ´ Y
1{2
k|kD

t
kA

`DkY
1{2
k|k is invertible if, and only if I ´

Yk|kD
t
kA

`Dk is invertible. Now assume, G1 is disconnected. Without loss of generality, as-

sume C “ te1, e2, . . . , eru is a minimal subset of te1, e2, . . . , eku such that GzC is disconnected.

Since, C is a minimal subset, GzC has only two connected components G1 and G2 and each

ei P C has one end in G1 and the other end in G2. Again with out loss of generality, assume that

all the edges in C are directed from G1 to G2. We prove that vector ~v P Rk defined as vi “ yii

for i ď r and vi “ 0 for i ą r is an eigenvector of Yk|kD
t
kA

`Dk associated with the eigenvalue

1. Notice that if we set ~p “ Dk~v, then θi “ 1 for all i P G1 and θi “ 0 for all i P G2 gives a

solution to DC power flow problem in G. It is easy to see that in this setting ~fk “ ~v. On the

other hand, ~fk “ Yk|kD
t
kA

`~p, and since ~fk “ ~v and ~p “ Dk~v, therefore Yk|kD
t
kA

`Dk~v “ ~v.

Hence, Yk|kD
t
kA

`Dk has eigenvalue 1 and I´Yk|kD
t
kA

`Dk is not invertible.

Now assume, I´Yk|kD
t
kA

`Dk is not invertible. Then, I´Yk|kD
t
kA

`Dk has an eigenvalue

0 and Yk|kD
t
kA

`Dk has an eigenvalue 1. Assume ~v is the eigenvector associated with the

eigenvalue 1 of Yk|kD
t
kA

`Dk. It is again easy to see that since Yk|kD
t
kA

`Dk~v “ ~v, if we set

~p “ Dk~v, then ~fk “ ~v is the solution to the power flow problem in G. From the flow conservation

equations, it is also easy to verify that ~fk̄ “ 0. Now, by contradiction assume G1 is connected.

Then, there should be a path in G1 from a node i to node j such that θi ‰ θj . Therefore, there

should be an edge e “ pw, zq in this path such that θw ‰ θz and thus fe ‰ 0. However, since

e P G1 and ~fk̄ “ 0 we know that fe “ 0 which is a contradiction. Therefore, G1 is not connected.

From the proof it can be seen that if ~v is an eigenvector associated with the eigenvalue 1 of

Yk|kD
t
kA

`Dk, then nodes with the same phase angle values in the solution of the power flow

problem in G with ~p “ Dk~v form a connected component in G1. This can be used to efficiently

find the connected components of G1 after a k-line failure. �

In the following lemma, we generalize Theorem 3.1 for single line failures and provide an

analytical update of the pseudo-inverse of the admittance matrix following a k-line failure.

Lemma 4.2. If G1 is connected,

A1` “ A` `A`DkY
1{2
k|krI´Y

1{2
k|kD

t
kA

`DkY
1{2
k|ks

´1Y
1{2
k|kD

t
kA

`.
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Proof. First, from Lemma 4.1, since G1 is connected, rI´Y
1{2
k|kD

t
kA

`DkY
1{2
k|ks

´1 is defined. Now

to show the equality, it is easy to see that AA` “ I´ 1
nJ, in which I is the identity matrix and

J is all 1 matrix (For more details see the proof of Theorem 3.1). Hence, from [14, Theorem 4.8],

since A1 “ A´DkYk|kD
t
k “ A´DkY

1{2
k|kpDkY

1{2
k|kq

t, the pseudo inverse of A1 can be computed

as,

A1` “ A` `A`DkY
1{2
k|krI´Y

1{2
k|kD

t
kA

`DkY
1{2
k|ks

´1Y
1{2
k|kD

t
kA

`.

�

From Lemma 4.2, the changes in phase angles after k-line failures can be computed as,

~θ1 ´ ~θ “ pA1` ´A`q~p

“ A`DkY
1{2
k|krI´Y

1{2
k|kD

t
kA

`DkY
1{2
k|ks

´1Y
1{2
k|kD

t
kA

`~p

“ A`DkY
1{2
k|krI´Y

1{2
k|kD

t
kA

`DkY
1{2
k|ks

´1Y
´1{2
k|k

~fk

“ A`DkY
1{2
k|krI´Y

1{2
k|kRk|kY

1{2
k|ks

´1Y
´1{2
k|k

~fk. (4.1)

Recall from Subsection 2.3.2 that matrix R is the matrix of equivalent reactance values.

Using (4.1), we can compute the changes in the flows as,

∆~fk̄ “ Yk̄|k̄D
t
k̄A

`DkY
1{2
k|krI´Y

1{2
k|kRk|kY

1{2
k|ks

´1Y
´1{2
k|k

~fk

“ Yk̄|k̄Rk̄|kY
1{2
k|krI´Y

1{2
k|kRk|kY

1{2
k|ks

´1Y
´1{2
k|k

~fk. (4.2)

It is important to see that Yk̄|k̄Rk̄|kY
1{2
k|krI´Y

1{2
k|kRk|kY

1{2
k|ks

´1Y
´1{2
k|k is independent of ~p and

solely depends on the structure properties of the network. Hence, following a similar definition

in [155] for single line failures, we define this matrix as k-line outage distribution matrix and

denote it by L :“ Yk̄|k̄Rk̄|kY
1{2
k|krI´Y

1{2
k|kRk|kY

1{2
k|ks

´1Y
´1{2
k|k . Hence, ∆~fk̄ “ L~fk.

While k-line outage distribution matrix captures all effects of a k-line failure on the flow

changes, it is not efficient to compute and store it for contingency analysis in large power grids.

In order to overcome this problem, we use the matrix of equivalent reactance values to efficiently

compute the sum of changes in the power flows after k-line failures and to provide a metric to

capture the essence of the flow changes after failures. The following lemma is the main step

towards this goal. It demonstrates that Y1{2RY1{2 is an idempotent matrix. Recall that we
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used a similar idea in the proof of Lemma 3.6. We use this property, to provide the results in

Corollaries 4.1 and 4.2.

Lemma 4.3. Y1{2RY1{2 “ Y´1{2D`DY1{2, and therefore

pY1{2RY1{2q2 “ Y1{2RY1{2.

Proof. We know from before that R “ DtA`D and A “ DYDt “ pDY1{2qpDY1{2qt. Hence,

Y1{2RY1{2 “ Y1{2DtA`DY1{2 “ pDY1{2qtA`pDY1{2q

“ pDY1{2qt
`

pDY1{2qpDY1{2qt
˘`
pDY1{2q

“ pDY1{2qt
`

pDY1{2qt
˘`
pDY1{2q`pDY1{2q

“
`

pDY1{2q`pDY1{2q
˘t
pDY1{2q`pDY1{2q.

From the properties of the pseudo-inverse, pDY1{2q`pDY1{2q is a symmetric matrix. Moreover,

pDY1{2q`pDY1{2qpDY1{2q` “ pDY1{2q`. Therefore,

Y1{2RY1{2 “ pDY1{2q`pDY1{2qpDY1{2q`pDY1{2q

“ pDY1{2q`pDY1{2q “ Y´1{2D`DY1{2.

From this,

pY1{2RY1{2q2 “ pY´1{2D`DY1{2q2

“ Y´1{2D`DD`DY1{2

“ Y´1{2D`DY1{2 “ Y1{2RY1{2.

�

Corollary 4.1. Rk|k̄∆
~fk̄ “ Rk|k

~fk.

Proof. To make equations cleaner in the proof, define H :“ Y1{2RY1{2. From Lemma 4.3,

H2 “ H. Hence, if we use block multiplication, then Hk|k “ H2
k|k ` Hk|k̄Hk̄|k. Using this



CHAPTER 4. QUANTIFYING THE EFFECTS OF K-LINE FAILURES 58

equation,

∆~fk̄ “ Yk̄|k̄Rk̄|kY
1{2
k|krI´Y

1{2
k|kRk|kY

1{2
k|ks

´1Y
´1{2
k|k

~fk

ñY
1{2
k|kRk|k̄∆

~fk̄ “ Hk|k̄Hk̄|krI´Hk|ks
´1Y

´1{2
k|k

~fk

ñY
1{2
k|kRk|k̄∆

~fk̄ “ Hk|kY
´1{2
k|k

~fk

ñY
1{2
k|kRk|k̄∆

~fk̄ “ Y
1{2
k|kRk|k

~fk ñ Rk|k̄∆
~fk̄ “ Rk|k

~fk.

�

Corollary 4.1 shows the use of matrix R in evaluating the effect of k-line failures without

computing the flows directly. This equation can be used to estimate the effect of k-line failures.

Since the matrix of equivalent reactance values needs to be computed only once, the matrix

equation in Corollary 4.1 can be written for any k-line failures without further computations.

To quantify the effect of k-line failures more efficiently, in the following, we define a metric

that captures the effect of k-line failures by a single value and show that it can be computed

in Op1q. Inspired by the notion of energy in resistive networks, we define δkp1, 2, . . . , kq :“

∆~f t
k̄
Y´1
k̄|k̄

∆~fk̄ as the disturbance value of a k-line failure. It is easy to see that y´1
ii ∆fi captures

the changes in the phase angle differences between the end buses of a single line. Hence, the

disturbance value ∆~f t
k̄
Y´1
k̄|k̄

∆~fk̄ “
řm
i“k`1 y

´1
ii ∆f2

i reflects both the big phase difference changes

(which is important for the stability of the system) and the big flow changes (which is important

for thermal safety of a line). Notice that the disturbance values can be defined also based on

the phase angle of the nodes instead of the power flows using (2.6).

In the following lemma, we provide the key step in computing the disturbance value of a

failure analytically and efficiently in Corollary 4.2.

For convenience in equations, define C :“ rI´Y
1{2
k|kRk|kY

1{2
k|ks

´1 and Φ :“ Y
1{2

k̄|k̄
Rk̄|kY

1{2
k|krI´

Y
1{2
k|kRk|kY

1{2
k|ks

´1. From (4.2), we know Y
´1{2

k̄|k̄
∆~fk̄ “ ΦY

´1{2
k|k

~fk.

Lemma 4.4. ΦtΦ “ ´I`C.
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Proof. To make equations cleaner in the proof, define H :“ Y1{2RY1{2. From Lemma 4.3,

H2 “ H. Hence, if we use block multiplication, then Hk|k “ H2
k|k `Hk|k̄Hk̄|k. Thus,

Hk|k “ H2
k|k `Hk|k̄Hk̄|k ñ Hk|krI´Hk|ks “ Hk|k̄Hk̄|k

ñ Hk|k “ Hk|k̄Hk̄|krI´Hk|ks
´1.

It is easy to see that Φ “ Hk̄|krI´Hk|ks
´1. Hence, using equation above,

ΦtΦ “ rI´Hk|ks
´1Hk|k̄Hk̄|krI´Hk|ks

´1

“ rI´Hk|ks
´1Hk|k

“ rI´Hk|ks
´1Hk|k ´ rI´Hk|ks

´1 ` rI´Hk|ks
´1

“ ´rI´Hk|ks
´1r´Hk|k ` Is ` rI´Hk|ks

´1

“ ´I` rI´Hk|ks
´1 “ ´I`C.

�

Corollary 4.2. ∆~f t
k̄
Y´1
k̄|k̄

∆~fk̄ “
~f tkY

´1{2
k|k r´I`CsY

´1{2
k|k

~fk.

Corollary 4.2 provides a very important tool for contingency analysis in the power grids. It

shows that the disturbance value of a k-line failure can be computed in Opk3q time which is

independent of the size of the network and only depends on the size of the initial failures. Since

most of the times in contingency analysis k ăă m, Opk3q « Op1q. Corollary 4.2 can be used

for fast ranking of the contingencies based on the disturbance values and pruning most of the

cases based on this value. This can significantly reduce the time complexity of the contingency

analysis for large k.

Moreover, notice that following Lemma 4.1, matrix C is well defined if, and only if, the k-line

failure does not disconnect the grid. Therefore, Corollary 4.2 can also indicate in Op1q whether

a k-line failure disconnects the grid.

We computed the disturbance values for all possible choices of 3-line failures in the IEEE

118-bus and 300-bus systems. Since, the IEEE 118-bus system has 186 lines, it is easy to see that

there are
`

186
3

˘

“ 1, 055, 240 possible choices for the initial set of failures. Using Corollary 4.2,
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we could compute the disturbance values for all set of failures (and detect cases that disconnect

the grid) in less than a minute. Out of those, 159, 591 of them make the graph disconnected.

The cumulative distribution function of the disturbance values for the rest of 895,649 cases

are shown in Fig. 4.1. As can be seen, most of the cases do not result in a high (more than

5,000) disturbance value. Only 10% of the cases have a significant disturbance value. The figure

suggests that disturbance values can provide a separation between the failures with higher impact

and lower impact.

Fig. 4.1 also shows the cumulative distribution function of the disturbance values for all

possible 3-line failures in IEEE 300-bus system that do not disconnect the grid (5,473,725 cases).

As can be seen, again most of the cases do not result in a high disturbance value and only less

than 10% of the total cases have a significant disturbance value (more than 35,000).2

The numerical results support our previous statement that the disturbance values can sig-

nificantly reduce the total number of cases that are needed to be considered in the contingency

analysis of the grids. Moreover, since Corollary 4.2 provides a very fast way of computing the

disturbance values, it can significantly decrease the time complexity of the contingency analysis

in power grids.

4.4 Approximating the Disturbance Values

In the previous section, we demonstrated that using Corollary 4.2, the disturbance value of a

k-line failure can be computed efficiently in Op1q. However, to analyze all the k-line failure

scenarios, one needs to compute the disturbance values for all possible
`

m
k

˘

cases which requires

Opmkq time. To alleviate this issue, in this section we provide an approximation for the distur-

bance values that allows one to focus on the lines with high 1-line disturbance values instead of

all the lines.

2Notice that the threshold level for “high disturbance value” depends on the level of safety that a system

operator likes to maintain. As can be seen in Fig. 4.1, more than 80% of the cases result in a very small

disturbance value. Hence, 1% to 20% of the cases with the highest disturbance values can be selected for deeper

analysis depending on the level of safety.
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Figure 4.1: The cumulative distribution function of the disturbance values for all 3-line failures

in the IEEE 118- and 300-bus systems that do not disconnect the grid.

The idea of our approximation lies in the structure of the matrix R. As shown in Fig. 4.2,

most of the entries of matrix R in the IEEE 118- and 300-bus systems have very small values

compare to its diagonal entries. Hence, we can approximate R by its diagonal entries as R «

diagpRq :“ rR. Using this approximation and Corollary 4.2, the disturbance values can be

computed as:

∆~f tk̄Y
´1
k̄|k̄

∆~fk̄ “
~f tkY

´1{2
k|k r´I` rI´Y

1{2
k|kRk|kY

1{2
k|ks

´1sY
´1{2
k|k

~fk

« ~f tkY
´1{2
k|k r´I` rI´Y

1{2
k|k

rRk|kY
1{2
k|ks

´1sY
´1{2
k|k

~fk

“

k
ÿ

i“1

fiy
´1{2
ii p´1`

1

p1´ y
1{2
ii riiy

1{2
ii q

qy
´1{2
ii fi

“

k
ÿ

i“1

f2
i

rii
p1´ yiiriiq

.

In another words, we approximate the disturbance value of a k-line failure as the sum of the

disturbance values of the k single line failures:

δkp1, 2, . . . , kq «
k
ÿ

i“1

δ1piq. (4.3)
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(a) IEEE 118-bus (b) IEEE 300-bus

Figure 4.2: Heatmap for the absolute value of the entries of matrix R for the IEEE 118- and

300-bus systems. Darker points have higher values.

The advantage of this approximation is that to detect k-line failures with high disturbance

values, one can focus only on the rm ăă m lines with the highest 1-line disturbance values. So

instead of analyzing
`

m
k

˘

cases, one can analyze only
`

rm
k

˘

cases.

Another advantage of using the approximation (4.3) for disturbance values is that it can

used to quantify the effect of k-line failures that disconnect the grid as well. Although failures

that disconnect the grid may have more devastating effect because of the imbalance they may

cause between supply and demand, we believe that this approximation can be used to rank these

failures among themselves. Validating the usefulness of approximation (4.3) for the failures that

disconnect the grid is part of the future work.

To quantify the quality of the approximation (4.3), we define the approximation error per-

centage (ε):

ε “

ˇ

ˇ

ˇ
δkpi1, i2, . . . , ikq ´

řk
j“1 δ1pijq

ˇ

ˇ

ˇ

δkpi1, i2, . . . , ikq
ˆ 100.

Fig. 4.3 shows the approximation error in the IEEE 118- and 300-bus systems. As can

be seen, in both systems, for most of the cases the error is less than 10%. In particular, the
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(a) IEEE 118-bus (b) IEEE 300-bus

Figure 4.3: Approximation error percentage of the approximate disturbance values for all the

3-line failures than do not disconnect the grid in the IEEE 118- and 300-bus systems.

approximation error in the important cases (the ones with high disturbance value) is very low

(see orange lines in Fig. 4.3). Moreover, the correlation between the approximation and actual

disturbance values is about 0.98 in both the IEEE 118- and 300-bus systems.

4.5 Cascading Failures

To show that disturbance values effectively rank k-line failures, we numerically compute the

relationship between disturbance value of all 3-line failures and the severity of the initiated

cascades in the IEEE 118- and 300-bus systems.

We for cascade model as described in Subsection 3.2.1 with deterministic outage rule: namely,

a line e “ ti, ju fails when the magnitude |fe| of the flow on that line exceeds its capacity ce.

The line flow capacities are estimated as ce “ p1`αqmaxt|fij |, fu, where f is the median of the

initial magnitude of line flows and α “ 0.2 is the lines’ factor of safety. To measure the severity
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(a) Yield (b) Number of Line Failures

Figure 4.4: The relationship between the disturbance values and the average severity of cascades

initiated by all the 3-line failures than do not disconnect the grid in the IEEE 118- and 300-bus

systems.

of a cascade, we compute yield (the ratio between the demand supplied at the end of a cascade

and the original demand) and total number of line failures at the end of the cascade.

Fig. 4.4 depicts the relationship between the disturbance values and the average severity of

cascades initiated by all the 3-line failures than do not disconnect the grid in the IEEE 118- and

300-bus systems. As can been seen in Fig. 4.4a, in both systems, the average yield decreases

as the disturbance value increases. Moreover, Fig. 4.4b shows that the average number of line

failures at the end of the cascade increases on average, as the disturbance value increases.

The results in this section suggest that although the disturbance value does not take into

account the capacities of the lines, it can predict the average severity of the cascade initiated by

a failure.
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(a) IEEE 118-bus (b) IEEE 300-bus

Figure 4.5: Scatter plot of the disturbance values under the AC and DC power flows for all the

3-line failures that do not disconnect the grid in the IEEE 118- and 300-bus systems.

4.6 Disturbance Values under the AC Power Flow Model

In this section, we numerically show the usefulness of the disturbance values in predicting the

changes under the more detailed AC power flows after a k-line failure. To solve the AC power

flows, we used the MATPOWER AC power flow solver [164].

We first computed the disturbance values under the AC power flows. To do so, we used the

phase angles of the nodes computed before and after a k-line failure under the AC model (recall

that the disturbance values can be defined also based on the phase angle). Fig. 4.5 shows the

relationship between the disturbance values computed under DC (using corollary 4.2) and AC

power flows. As can be seen, the disturbance values under the AC and DC are only different in

scale. The correlation between these two values is 0.99 and 0.93 in the IEEE 118- and 300-bus

systems, respectively. Hence, detecting the important cases based on the disturbance values in

the DC is almost similar to the AC model.
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(a) IEEE 118-bus (b) IEEE 300-bus

Figure 4.6: Mean sum squared of the voltage changes for the 3-line failures that do not disconnect

the grid with the disturbance value less than a certain value in the IEEE 118- and 300-bus

systems.

Second, we studied the correlation between the voltage changes after a k-line failure and

disturbance values. For this purpose, we computed the mean sum squared of the voltage changes

after all 3-line failures that do not disconnect the grid in the IEEE 118- and 300-bus systems.

As can be seen in Fig. 4.6, on average, 3-line failures with higher disturbance values cause more

voltage changes as well. This demonstrates that the disturbance values which can be computed

very efficiently using corollary 4.2, can also predict the disturbances in the node voltages whose

computation is of higher complexity.

Finally, since the AC power flow equations are nonlinear (see Appendix 2.2), there are 3-line

failures after which the AC power solver does not converge to a solution. The CDF of the

disturbance values for these 3-line failures is depicted in Fig. 4.7. As can be seen, for all such

failures in the IEEE 118-bus system the disturbance values are above 5000, meaning that they

are between the top 10% of all the 3-line failures in terms of the disturbance values (see Fig. 4.1).
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Figure 4.7: The CDF of the disturbance values for the 3-line failures that do not disconnect

the grid but produce enough instability such that the AC power solver does not converge to a

solution.

The same is true in the IEEE 300-bus system. Most of the 3-line failures that result in

the divergence of the AC power flow solver, are between the top 10-20% cases in terms of the

disturbance values.

Overall, the results in this section demonstrate that the disturbance values can be useful

for predicting the changes under the AC power flow model. Since following corollary 4.2 the

disturbance values can be computed much faster compared to the computation of steady state

changes under the AC power flows (which requires solving a nonlinear set of equations several

times), this significantly reduces the computational complexity associated with the contingency

analysis in the grid.

4.7 Conclusion

The results in this chapter provide efficient tools for quantifying the effect of k-line failures. The

most unique aspect of our approach is the use of the matrix of equivalent reactance values to

efficiently capture the effect of k-line failures. We defined the disturbance value of a failure and
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show that this metric can be computed for any set of failures in Op1q. Moreover, based on the

approximation of the disturbance values, the total number of cases that need to be considered

can be significantly reduced as well. Our numerical results showed that disturbance values

provide a clear separation between the failures with higher impact and lower impact under both

the AC and DC power flows.

Despite providing a fast and useful measure for quantifying the severity of a k-line failure,

the disturbance value does not capture the thermal capacity of the lines as well as further

instabilities caused by separation of the grid into several islands. Hence, the disturbance values

alone cannot be used to detect important contingencies. Since thorough contingency analysis

for all high order scenarios is intractable, however, disturbance values can be used to reduce the

total number of cases needed to be analyzed in contingency analysis and can significantly reduce

the computational complexity associated with this analysis.
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Chapter 5

Cyber-physical Attacks (DC Model)

Power grids are comprised of two components: (i) the physical infrastructure of the power

transmission system (power lines, substations, power stations), and (ii) the Supervisory Control

and Data Acquisition (SCADA) system that monitors and controls the grid (the control network)

(Fig. 5.1). The physical infrastructure is the target of physical attacks and SCADA is the target

of cyber attacks.

In the case of a physical attack, the system’s stability can be maintained if SCADA receives

precise information about the location of the attack and takes proper action accordingly. If

however, the flow of information is obstructed by a cyber attack, the SCADA is prevented from

taking necessary and appropriate actions. This problem, the joint cyber and physical attacks

on power grids, is the focus of our work. We develop methods to estimate the state of the power

grid following a joint cyber and physical attack, and study the resilience of different topologies

as well as the resilience to different kinds of attacks.

We use the DC power flow model to describe the state of the grid. We also use a modified

version of the control network model [85] that includes Phasor Measurement Units (PMU),

Phasor Data Concentrators (PDC), and a control center (Fig. 5.1). We define a zone as a set

of buses (nodes), power lines (edges), PMUs, and an associated PDC. We analyze an attack

that disconnects lines within a zone (physical attack) and obstructs the flow of information from

the PMUs within the zone to the control center (cyber attack). For example, an adversary can
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Figure 5.1: Components of the power grid and potential attacks: physical attacks target the

physical infrastructure (lines, substations, etc.); Cyber attacks target the SCADA system – an

adversary can obstruct the flow of information from the PMUs within the zone to the control

center.

perform the cyber attack by disabling the zone’s associated PDC. Alternatively, the adversary

can attack the communication network between the PMUs and the PDC, or between the PDC

and the control center. Because our control network model is a generic model of SCADA that

monitors the status of the grid, most of the results and methods provided in this chapter can

be interpreted and used for more complicated control systems and scenarios.

As a result of an attack, some lines get disconnected, and the phase angles and the status of

the lines within the attacked zone H “ pVH , EHq become unavailable (Fig. 5.2). Our objective

is to recover the phase angles and detect the disconnected lines using the information available

outside of the attacked zone.

Recall from Chapter 2 that power flows are governed by the laws of physics, where a line

failure results in changes to flows and node phase angles throughout the power grid. We use
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G

H

Attacked Zone

PDC PDCPDCPDC

Figure 5.2: The attack model. G is the power grid graph and H is an induced subgraph of G

that represents the attacked zone. An adversary attacks a zone by disconnecting some of its

power lines (red dashed lines) and disallowing the information from the PMUs within the zone

to reach the control center.

this property and show that it is possible to estimate the state in the attacked zone using

the information available outside of the zone. Specifically, we develop methods for retrieving

information from the attacked zone by applying matrix analysis and graph theoretical tools to

the matrix representation of the DC equations.

First, we prove that it is NP-hard to detect the set of line failures given the phase angle of the

nodes before and after the attack in general case. However, we present necessary and sufficient

conditions on the structure of a zone such that our methods are guaranteed to recover the state

of the grid inside the attacked zone. We prove that if there is a matching between the nodes

inside and outside the attacked zone that covers the inside nodes (VH), then the phase angles of

the nodes in the attacked zone are recoverable by solving a set of linear equations of size |VH |.

We also prove that if H is acyclic, the disconnected lines in H are detectable by solving a set

of linear equations of size |EH |. Moreover, we show that if H is planar, under some constraints,

the disconnected lines are detectable by solving a Linear Programming (LP) problem.
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We develop another method for simultaneous recovery of phase angles and detection of

disconnected lines by solving a single LP problem. We show that this method is guaranteed to

recover the information under certain constraints on the attack (i.e., on the disconnected lines)

if there is a partial matching between the nodes inside and outside of H, and if H is planar.

Based on these results, we present the Post-Attack Recovery and Detection (PARD) Algorithm.

We propose that our methods can be generalized to the case where multiple zones are attacked

simultaneously. We show that if the attacked zones are relatively distant from each other, any

of the methods provided in this chapter can be applied to recover the information and detect

the failures in the attacked zones.

We briefly study the problem of information recovery in the presence of measurement noise.

By relaxing some of the constraints introduced in developing the methods used in the PARD

Algorithm, we provide a method for information recovery in the noisy scenarios as well. We

numerically evaluate the performance of the method and show that if the Signal to Noise Ratio

(SNR) is high enough, it can successfully recover the information.

We study the problem of partitioning power grids into the minimum number of attack-

resilient zones (i.e., zones in which the information can be recovered by the methods mentioned

above). We show that this problem is not approximable to within n1´ε for all ε ą 0, unless

P=NP. However, since power grids are often represented by planar graphs, we introduce our

Zone Selection (ZS) Algorithm and demonstrate that the ZS Algorithm provides a constant ap-

proximation ratio for these graphs. We present numerical results to demonstrate the operation

of the ZS Algorithm on several power grids. This algorithm can also be used for designing a

secure control network for smart grids. Finally, we present numerical results to assess the rela-

tionship between the structural properties of the power grid and its resilience to joint attacks.

5.1 Related Work

The vulnerability of general networks to attacks has been studied extensively (e.g., [16, 90, 112]

and references therein). In particular, attacks and failures in power grids has been studied using

probabilistic failure propagation models (e.g., [38, 42, 156], and references therein) as well as
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using deterministic DC power flows [27, 30, 62, 96]. Malicious data attacks on the power grid

control network have also been studied [55, 89, 98, 148]. To the best of our knowledge however,

no previous work has focused on vulnerability of power grids to joint cyber and physical attacks.

In Section 5.4, we study the problem of recovering the phase angles and detecting discon-

nected lines after a joint cyber and physical attack, a problem related to line outage identification

from changes in phase angles [73,142,143]. These studies however, were based on complete kno-

wledge of phase angle measurements and in the case of [142,143] were limited to two line failures.

The problem of line failure identification in an internal system using the information from an

external system was studied in [163], where a heuristic algorithm was proposed for only one and

two line failures.

In Section 5.7, we disucss the problem of partitioning the power grid into the minimum

number of attack-resilient zones. This problem is similar to PMU placement problems [88, 102,

161]. Recently, PMU placemnet problem has attracted much attention in India after the major

blackouts of 2013 [88]. In [161] the problem of PMU placement for line outage detection was

studied. However, none of these previous works addressed the problem of PMU placement from

the security point of view where both the PDC/PMUs and the physical network are under

attack.

In Section 5.7, we reduce the attack-resilient zone partitioning problem to the problem

of partitioning a graph into subgraphs where each subgraph is (i) acyclic, and (ii) there is a

matching between nodes inside and outside the subgraph that covers all the subgraph nodes.

This problem is closely related to the problems of vertex arboricity (which is known to be NP-

hard to be determined [74, p.193]) and k-matching cover of a graph (which can be found in

Opn3q time [150]). However, to the best of our knowledge, the joint problem ((i) and (ii) above)

was not studied before.

5.2 Model and Preliminaries

In this Chapter, we use the DC power flows as described in Section 2.3.
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5.2.1 Control Network

We use a modified version of the model described in [85] to model the SCADA system to which

we refer as the control network. Fig. 5.1 illustrates the components of the control network. We

assume that there is a Phasor Measurement Unit (PMU) at each node of G. The PMU at node i

reports the phase angle θi as well as the status of the lines (either operational or failed) adjacent

to node i. Phasor Data Concentrators (PDC) gather the data collected by PMUs. The data

gathered by PDCs is sent to a control center which monitors and controls the entire grid. A

zone is a subgraph induced by a subset of nodes with a single associated PDC.

5.2.2 Attack Model

We study attacks on power grids that affect both the physical infrastructure and the control

network. We assume that an adversary attacks a zone by: (i) disconnecting some edges within

the attacked zone (physical attack), and (ii) obstructing the flow of information from the PMUs

within the zone to the control center (cyber attack). An adversary can perform the cyber attack

by, for example, disabling the zone’s associated PDC. Alternatively, the communication network

between the PMUs and the PDC or between the PDC and the control center can be attacked.

We assume that disconnecting edges within a zone does not make G disconnected.

Fig. 5.2 shows an example of an attack on the zone represented by H. Due to the attack,

some edges are disconnected (we refer to these edges as failed lines) and the phase angles and

the status of the lines within the attacked zone become unavailable. We denote the set of failed

lines in zone H by F Ď EH . Upon failure, the failed lines are removed from the graph and the

flows are redistributed according to (2.5)-(2.6).

Notation. Throughout this and next chapter, we denote an attacked zone by H “ pVH , EHq.

Without loss of generality we assume that the indices are such that VH “ t1, 2, . . . , |VH |u and

EH “ te1, e2, . . . , e|EH |u. We denote the complement of the zone H by H̄ “ GzH. If X,Y are

two subgraphs of G, AX|Y and AVX |VY both denote the submatrix of the admittance matrix

of G with rows from VX and columns from VY . For instance, A can be written in any of the
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following forms,

A “

»

–

AH|H AH|H̄

AH̄|H AH̄|H̄

fi

fl ,A “

”

AG|H AG|H̄

ı

,A “

»

–

AH|G

AH̄|G

fi

fl .

We use the very same notation for the vectors. For instance ~θH and ~θH̄ are the vectors of phase

angle of the nodes in H and H̄, respectively. We use the prime symbol p1q to denote the values

after an attack. For instance, G1, A1, and ~θ1 are used to represent the graph, the admittance

matrix of the graph, and the phase angles of the nodes after an attack. DH P t´1, 0, 1u|VH |ˆ|EH |

is the submatrix of D as defined in Subsection 2.3.1, with rows from VH and columns from EH .

5.2.3 Graph Theoretical Terms

In this chapter, we use several graph theoretical terms and theorems mostly borrowed from [36].

We briefly review some of the important definitions in this subsection.

Subgraphs, Cuts, and Cycles: Let X and Y be subsets of the nodes of a graph G. GrXs

denotes the subgraph of G induced by X. We denote by ErX,Y s the set of edges of G with

one end in X and the other end in Y . We denote the complement of a set X by X̄ “ V zX.

The coboundary of X is the set ErX, X̄s and is denoted by BpXq. Bpvq denotes the coboundary

of X “ tvu. GrX, X̄s denotes the subgraph of G induced by the edges from ErX, X̄s. NpXq

is the set of neighbors of the nodes in X excluding X itself, and NcpXq “ X Y NpXq. We

say that Q Ď E is G-separable, if there are pairwise edge-disjoint cycles Cqpq P Qq, such that

@q P Q, q P Cq [123].

Planar Graphs: A graph G is planar, if it can be drawn in the plane so that its edges intersect

only at their ends. A planar graph G partitions the rest of the plane into a number of edgewise-

connected open sets called the faces of G.

Given a planar graph G, its dual graph G˚ is defined as follows. Corresponding to each face

c of G there is a node c˚ of G˚, and corresponding to each edge e of G there is an edge e˚ of G˚.

Two nodes c˚1 and c˚2 are joined by the edge e˚ in G˚, if and only if their corresponding faces c1

and c2 are separated by the edge e in G. It is easy to see that the dual G˚ of a planar graph G

is itself a planar graph [36].
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5.3 Hardness

Using the notation provided in the previous section, the problem can be stated as follows: Given

A, ~θ,H, and ~θ1
H̄

, recover phase angles ~θ1H and detect the line failures F . In this section, we study

the computational complexity of this and related problems.

First, we prove that the problem of finding the set of line failures given the phase angle of the

nodes before and after the attack is NP-hard. We prove this by reduction from the 3-partition

problem.

Definition 5.1. Given set S “ ts1, s2, . . . , s3ku of 3k elements and a bound B, such that
ř3k
i“1 si “ kB and for 1 ď i ď 3k, B{4 ă si ă B{2, the 3-partition problem is the pro-

blem of whether S can be partitioned into k disjoint sets S1, . . . , Sk such that for 1 ď i ď k,
ř

sjPSi
sj “ B (note that each Si must therefore contain exactly 3 elements from S).

Lemma 5.1 (Garey and Johnson, 1975 [74]). The 3-partition problem is strongly NP-complete.

Lemma 5.2. Given A, ~θ, and ~θ1, it is strongly NP-hard to determine the set of line failures F .

Proof. We reduce the 3-partition problem to this problem. Assume S is a given set as described

in Def. 5.1, we form a bipartite graph G “ pV,Eq such that V “ X Y Y , E “ ttx, yu|x P X, y P

Y u, X “ t1, . . . , ku, and Y “ tk ` 1, . . . , 4ku. For all edges in G, we set the reactance values

equal to 1. For each i P X, we set pi “ B and for each j P Y we set pj “ ´sj´k. Define the

vector of phase angles ~θ as follows:

θi “

$

’

&

’

%

0 i ď k

´si´k{k i ą k.

If A is the admittance matrix of G, it is easy to check that A~θ “ ~p. Now define ~θ1 as follows:

θ1i “

$

’

&

’

%

0 i ď k

´si´k i ą k.

We prove that there exist a set of line failures F such that A1~θ1 “ ~p if, and only if, there exist

a solution to the 3-partition problem.
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First, lets assume that there exist a solution to the 3-partition problem such as S1, . . . , Sk.

Set ES “ tti, ju|sj´k P Siu. We show that F “ EzES implies A1~θ1 “ ~p. Notice that F “ EzES

means that G1 “ pV,ESq. Given the pi and the reactance values, it is easy to check that the

defined ~θ1 satisfies the DC power flow equations (2.5)-(2.6) in G1. Hence, A1~θ1 “ ~p.

Now, lets assume there exist a set of line failures F such that A1~θ1 “ ~p. Set ES “ EzF and

G1 “ pV,ESq. Given the phase angles ~θ1, it is easy to see that for any ti, ju P ES , pij “ sj´k.

This implies that for j P Y , at most one edge in ES is incident to j. On the other hand,

using (2.5), for any i P X,
ř

jPNpiq1 sj´k “ B in which by Npiq1 we mean the set of neighbors

of node i in G1. Given that each node j P Y is incident to at most one edge in ES , defining

Si “ tsj´k|j P Npiq
1u for 1 ď i ď k gives a good solution to the 3-partition problem.

Hence the problem of finding the set of line failures from changes in the phase angle measu-

rements is at least as hard as finding a solution to the 3-partition problem and therefore it is an

NP-hard problem in the strong sense. �

In Lemma 5.2, we proved that given the phase angle of the nodes before and after the attack,

it is NP-hard to detect the set of line failures F . In the following lemma, we show that even if

the attack area H is known (since ~θ1H is not given) the problem remains NP-hard.

Lemma 5.3. Given A, ~θ, H, and ~θ1
H̄

, it is strongly NP-hard to determine the set of line failures

F .

Proof. The idea of the proof is very similar to the proof of Lemma 5.2. Again we reduce the

3-partition problem with a given set S as described in Def. 5.1 to this problem. Consider sets

X1 “ t1, . . . , ku, X2 “ tk ` 1, . . . , 2ku, Y2 “ t2k ` 1, . . . , 5ku, Y1 “ t5k ` 1, . . . , 8ku. We form

a bipartite graph G “ pV,Eq such that V “ X1 Y X2 Y Y2 Y Y1 and E “ tti, k ` iu|1 ď i ď

ku Y ttx, yu|x P X2, y P Y2u Y ttj, j ` 3ku|2k ` 1 ď j ď 5ku. Notice that the defined bipartite

graph here is very similar to the one defined in the proof of Lemma 5.2 except that here for

each node in X2 and Y2 there exist a dummy node in X1 and Y1, accordingly, that is directly

connected to its counterpart. We set H “ GrX2 Y Y2s, it is easy that H has exactly the same

topology as the graph G in the proof of Lemma 5.2. Again for all edges in G, we set the reactance

values equal to 1. For each i P X2 Y Y2 we set pi “ 0, for each i P X1, we set pi “ B, and for
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each j P Y1 we set pj “ ´sj´5k. Define the vector of phase angles ~θ as follows:

θi “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

B 1 ď i ď k

0 k ` 1 ď i ď 2k

´si´2k{k 2k ` 1 ď i ď 5k

´si´5k{k ´ si´5k 5k ` 1 ď i ď 8k

If A is the admittance matrix of G, it is easy to check that A~θ “ ~p. Now define ~θ1 as follows:

θ1i “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

B 1 ď i ď k

0 k ` 1 ď i ď 2k

´si´2k 2k ` 1 ď i ď 5k

´2si´5k 5k ` 1 ď i ď 8k

Now given ~θ1
H̄

, we later show in Section 5.4 that ~θ1H can be uniquely recovered by solving a set

of linear equations in polynomial time. So without loss of generality, for now we can assume

that ~θ1 is given. We prove that there exist a set of line failures F in H such that A1~θ1 “ ~p if, and

only if, there exist a solution to the 3-partition problem. Given the way we build the graph G

and since the set of failures should be in H, the rest of the proof is exactly similar to the proof

of Lemma 5.2. �

Lemma 5.3 clearly indicates that the problem of detecting the line failures after an attack

as described in Subsection 5.2.2 is NP-hard. However, in the following sections, we provide

sufficient conditions on the structural properties of the attacked area H and the set of line

failures F such that the phase angles can be recovered and the line failures can be detected

efficiently after the attack.

5.4 Attack Analysis

In this section, we study the effects of an attack and provide analytical methods for recovering

the phase angles and detecting failed lines in the attacked zone H. We find conditions on
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the structural properties of a zone and constraints on the failed lines for which these methods

successfully recover the phase angles and detect the failed lines. These conditions depend on the

connections between VH and V̄H as well as the inner connections of the nodes in H. Therefore,

we refer to them as external and internal conditions on H, respectively. Finally, we briefly

study the case in which multiple zones are attacked simultaneously. Table 5.1 summarizes the

results regarding the resilience of a zone based on its internal and external conditions, and the

constraints on the set of failed lines F .

In this section, when we describe our methods, we assume that there are no edges ti, ju P EH

for which θ1i “ θ1j (we refer to these edges as null-edges). Following (2.6), a null-edge does

not carry any flow. Thus, we cannot detect the status of those edges since they cannot be

distinguished from failed lines. However, we can detect the null-edges and treat them separately

(we consider this in the PARD Algorithm provided in the next section).

5.4.1 Recovery of Phase Angles

In this subsection, we introduce a method to recover the phase angles of the nodes in an attacked

zone H. We provide sufficient conditions on GrVH , V̄Hs such that the method recovers the phase

angles of the nodes in VH successfully. As we mentioned, since these conditions depend only on

the connections between VH and V̄H , we refer to them as the external conditions on H.

The following lemma is the first step towards designing the method for recovering the phase

angles and for detecting the failed lines (see Subsection 5.4.2).

Lemma 5.4. supppAp~θ ´ ~θ1qq Ď VH .

Proof. Suppose F “ tei1 , ei2 , . . . , eiku Ď EH are the edges that are disconnected from the grid

after the attack on the zone H. Define the column vectors ~x1, ~x2 . . . ~xk P t´1, 0, 1un associated

with the failed lines as follows. If eij “ tsj , tju then ~xj is 1 in its s th
j entry, ´1 in its tthj entry,

and 0 everywhere else. It is easy to see that A1 is related to A as A1 “ A´
řk
j“1 asjtj ~xj ~xj

t. Since

the graph G does not get disconnected after an attack, the flow equations in G1 are A1~θ1 “ ~p.
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On the other hand, A~θ “ ~p, therefore A~θ ´A1~θ1 “ 0. Thus,

0 “ A~θ ´A1~θ1 “ A~θ ´A~θ1 `
k
ÿ

j“1

asjtj ~xj ~xj
t~θ1

ñ supppAp~θ ´ ~θ1qq Ď
k
ď

i“1

tsj , tju Ď VH .

�

One of the immediate results of Lemma 5.4 is the following corollary. This corollary gives

a true statement about ~θ1 (recall that ~θ1 is partly unknown). It states that ~θ1 is in the solution

space of the matrix equation (5.1).

Corollary 5.1. For any U Ď H̄, AU |NcpUqp
~θNcpUq ´

~θ1NcpUqq “ 0. In particular, when U “ H̄,

AH̄|Gp
~θ ´ ~θ1q “ 0. (5.1)

For simplicity of the notations and equations, through the most of this chapter, we consider

the case in which U “ H̄. However, as we briefly describe in Subsection 5.4.4, using a smaller

U allows the recovery of the phase angles after an attack on multiple zones.

We find sufficient conditions such that the solution ~θ1H to (5.1) is unique (given ~θ and ~θ1
H̄

),

and consequently ~θ1H can be recovered after any attack on H. We first define a well-supported

zone.

Definition 5.2. A zone H is called well-supported, if ~θ1H can be recovered after any attack on

H.

Using Corollary 5.1, the following theorem gives sufficient condition for a zone H to be

well-supported.

Theorem 5.1. A zone H is well-supported, if AH̄|H has linearly independent columns.

Proof. From Corollary 5.1 we know that AH̄|Gp
~θ´~θ1q “ 0, therefore AH̄|H

~θ1H “ AH̄|H̄p
~θH̄´

~θ1
H̄
q`

AH̄|H
~θH . The only unknown in this equation is ~θ1H . Now since AH̄|H has linearly independent

columns, this equation has a unique solution ~θ1H which can be computed in polynomial time.

Thus, ~θ1H can be recovered in this case and zone H is well-supported. �
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It can be seen that the sufficient condition in Theorem 5.1 depends on the reactance values.

However, the following corollary relaxes the condition in Theorem 5.1. It shows that if GrVH , V̄Hs

has a matching that covers VH , then for almost any reactance values for the edges in ErVH , V̄Hs,

H is well-supported. The idea is that the set of reactance values for the edges in ErVH , V̄Hs

for which AH̄|H does not have linearly independent columns is a measure zero set in the real

space [119].

Corollary 5.2. If there is a matching in GrVH , V̄Hs that covers VH , then H is well-supported

almost surely.1

Proof. SupposeM “ pU, VHq is the matching forGrVH , V̄Hs that covers VH , and suppose U Ď V̄H

are the matched nodes which are in V̄H . Since M is the matching in GrVH , V̄Hs that covers H,

thus |U | “ |VH |. Regarding Theorem 5.1, to show that H is well-supported almost surely, we

need to show that the columns of the matrix AH̄|H are linearly independent almost surely. For

this reason, we show that detpAU |VH q ‰ 0 almost surely. detpAU |VH q can be considered as a

polynomial of the nonzero entries of the admittance matrix using Leibniz formula. Now assume

U “ tu1, u2, . . . , u|VH |u are matched to VH “ tv1, v2, . . . , v|VH |u in order. It can be seen that
ś|VH |
i“1 auivi is a term with nonzero coefficient in detpAU |VH q. Therefore, detpAU |VH q is not a

zero polynomial in terms of its nonzero entries. Now since the set of reactance values for the

edges in ErVH , V̄Hs such that detpAU |VH q “ 0 is a measure zero set in the real space, thus

detpAU |VH q ‰ 0 almost surely. �

In reality, since the reactance values are derived by the physical properties of the lines, we

expect that these values are relatively random around a mean value. Thus, following Corol-

lary 5.2, the existence of a matching that covers every node in VH is enough for a zone to be

well-supported (see Fig. 5.3 for an example of a graph in which every node in a zone is covered

by a matching). Hence, in the following sections we consider the existence of a matching as a

sufficient external condition on H to be well-supported.

1In probability theory, one says that an event happens almost surely, if it happens with probability one.
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Table 5.1: Summary of the results in Section 5.4. The external/internal conditions on the

structural properties of a zone H such that after an attack with certain constraints, the phase

angles can be recovered and the failed lines can be detected by solving (5.5). Matching and partial

matching refer to matchings in GrVH , V̄Hs that cover VH and VHzpV
in
H Y V out

H q, respectively.

External conditions Internal conditions Attack constraints Resilience Results

Matching Acyclic None attack-resilient Corollary 5.2/Lemma 5.6

Matching Planar
@ cycle C, |C X F | ă |CzF |

F˚ is H˚-separable
weakly-attack-resilient Corollary 5.2/Theorem 5.2

Partial

matching
Acyclic @v P V in

H , |Bpvq X F | ă |BpvqzF | weakly-attack-resilient Lemmas 5.6,5.9/Corollary 5.5

Partial

matching

Planar

No cycle contains an

inner-connected-

node

@ cycle C, |C X F | ă |CzF |

@v P V in
H ,

|Bpvq X F |b ă |BpvqzF |b

F˚ is H˚-separable

weakly-attack-resilient Theorem 5.3/Corollary 5.5

Zone 1

Zone 2

Zone 3

Zone 4

Figure 5.3: An example of a graph and set of zones such that each zone is both well-supported

and acyclic.

5.4.2 Detecting Failed Lines

In this subsection, we assume that after an attack, the phase angles are recovered using the

method in Subsection 5.4.1 (i.e., by solving (5.1)). We introduce methods to detect the failed

lines using ~θ1. We provide sufficient conditions on H such that these methods detect the failed

lines successfully. As we mentioned, since these conditions depend only on the connections

between the nodes in H, we refer to them as internal conditions on H.

The following Lemma is the foundation for our approach to find the failed lines. It limits

the set of failed lines to the solution space of the matrix equation (5.2). It can be considered as

the complement of Corollary 5.1.
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Lemma 5.5. There exists a vector ~x P R|EH | such that

suppp~xq “ ti|ei P F u and

DH~x “ AH|Gp
~θ ´ ~θ1q. (5.2)

Moreover, for any W Ď G such that NcpHq ĎW , DH~x “ AH|W p
~θW ´ ~θ1W q.

Proof. We use the notation that we used in proof of Lemma 5.4. Recall from the proof of

Lemma 5.4 that Ap~θ ´ ~θ1q “ ´
řk
j“1 asjtj ~xj ~xj

t~θ1. It is easy to see that if ~d1, ~d2, . . . , ~dm are

the columns of the incidence matrix D, then @jp1 ď j ď kq, there exists bj P R such that

bj ~dij “ ´asjtj ~xj ~xj
t~θ1. Therefore, Ap~θ ´ ~θ1q “

řk
j“1 bj

~dij . Thus, if we define ~y P Rm such that

@eij P F, yij “ bj and 0 elsewhere, then Ap~θ´ ~θ1q “ D~y and suppp~yq Ď ti1, i2, . . . , iku. However,

from the Corollary 5.1 we know that AH̄|Gp
~θ ´ ~θ1q “ 0. Moreover, since F Ď EH , ~yH̄ “ 0.

Thus, we can restrict the equation only to the components of the zone H, which means that

AH|Gp
~θ´ ~θ1q “ DH~yH . Now it is easy to see that since we assumed that no null-edges are in F ,

all the bis are nonzero and suppp~yHq “ ti1, i2, . . . , iku. Therefore, ~x “ ~yH is a solution to (5.2)

and suppp~xq “ ti|ei P F u. Now, since for any i P H and j R NcpHq we have aij “ 0, it is easy

to see that for any W Ď G such that NcpHq ĎW , DH~x “ AH|W p
~θW ´ ~θ1W q. �

Lemma 5.5 provides important information regarding the failed lines. It states that there

exists a solution ~x to (5.2) such that suppp~xq reveals the set of failed lines. However, the solution

to (5.2) may not be unique. Again, for simplicity of the notations and equations, through the

most of this chapter, we consider the case in which W “ G. However, as we briefly describe in

Subsection 5.4.4, using a smaller W allows the failed lines detection after an attack on multiple

zones.

The lemma below provides a necessary and sufficient condition on H such that the solution

to (5.2) is unique.

Lemma 5.6. The solution to (5.2) is unique and suppp~xq “ ti|ei P F u, if and only if H is

acyclic.

Proof. It is easy to see that the solution to (5.2) is unique if and only if DH has linearly

independent columns. It is known that rankpDHq “ |VH | ´ c in which c is the number of
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connected components of H [22, Theorem 2.3]. Therefore, DH has linearly independent columns

if and only if each connected component of DH is a tree, which means that DH should be

acyclic. �

According to Lemma 5.6 the set of failed lines for any attack can be detected, if and only if

H is acyclic. Fig. 5.3 shows an example of a graph and set of zones such that each zone is both

well-supported and acyclic (case I in Table 5.1).

Although Lemma 5.6 requires H to be an acyclic graph in order for the solution of (5.2)

to be unique, by setting some constraints on the failed lines F , we provide a method to detect

the failed lines in broader class of graphs. The underlying idea is that the set of failed lines is

expected to be relatively sparse compared to the overall set of edges within a zone. Thus, we

are interested in the solutions of (5.2) that are relatively sparse. The `0-norm should be used

to capture the sparseness of a vector. However, since minimizing `0-norm is a combinatorial

problem in general cases, we prefer to use `1-norm which is known to be a good approximation

of the `0-norm. Thus, we consider the following minimization problem,

min }~x}1 s.t. DH~x “ AH|Gp
~θ ´ ~θ1q. (5.3)

Notice that (5.3) is still linear and can be solved using Linear Programming. Moreover, when the

solution to (5.3) also appears to be sparse, which is usually the case in the considered scenario,

there are very fast algorithms to solve it [64].

The Lemma below states that by solving (5.3), the failed lines can be detected in more cases

than by solving (5.2). The idea that we use in proof of Lemma 5.7 is the core idea in proofs of

Theorems 5.2 and 5.3, as well. Namely, the null space of DH is in one-to-one correspondence

with the cycle space of the graph H. Therefore, there are graph theoretical interpretations to

the solution space of (5.2). Hence, by using tools from graph theory and linear algebra, we find

the solution to (5.2) with the minimum `1-norm.

Lemma 5.7. If H is a cycle and |EH X F | ă |EHzF |, the solution to (5.3) is unique and

suppp~xq “ ti|ei P F u.
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Proof. Here without loss of generality, we assume that DH is the incidence matrix of H when

edges of H has been oriented clockwise. Since H is connected, it is known that rankpDHq “

|VH | ´ 1 [22, Theorem 2.2]. Therefore, dimpNullpDHqq “ 1. Suppose ~e P R|EH | is the all one

vector. It is easy to see that DH~e “ 0. Since dimpNullpDHqq “ 1, ~e is the basis for the null

space of D. Suppose ~x is a solution to (5.2) such that suppp~xq “ ti|ei P F u (from Lemma 5.5

we know that such a solution exists). To prove that ~x is the unique solution for (5.3), we only

need to prove that @c P Rzt0u, }~x}1 ă }~x´ c~e}1. Without loss of generality we can assume that

x1, x2, . . . , xk are the nonzero elements of ~x, in which k “ |F |. From the assumption we know

that |EH X F | ă |EHzF |, therefore k ă |EH |{2. Hence, we have

}~x´ c~e}1 “
k
ÿ

i“1

|xi ´ c| ` p|EH | ´ kq|c|

“

k
ÿ

i“1

p|xi ´ c| ` |c|q ` p|EH | ´ 2kq|c|

ě

k
ÿ

i“1

|xi| ` p|EH | ´ 2kq|c| ą
k
ÿ

i“1

|xi| “ }~x}1.

Thus, the solution to (5.3) is unique. �

Corollary 5.3. If all the cycles in H are edge-disjoint and for any cycle C in H, |C X F | ă

|CzF |, then the solution to (5.3) is unique and suppp~xq “ ti|ei P F u.

The following Theorem extends the idea in the proof of Lemma 5.7 and provides sufficient

conditions for failed lines in a planar graph H to be detected by solving (5.3) (recall from

subsection 5.2.3 that H˚ is the dual of the planar graph H and F ˚ is the dual of the set of failed

lines). For the proof details see Section 5.B.

Theorem 5.2. In a planar graph H, the solution to (5.3) is unique and suppp~xq “ ti|ei P F u,

if: (i) for any cycle C in H, |C X F | ă |CzF |, and (ii) F ˚ is H˚-separable.

Fig. 5.4 shows an example of a zone H for which the set of failed lines can be detected by

solving (5.3) based on Theorem 5.2 (case II in Table 5.1).

The Corollary below states that in planar bipartite graphs, condition (ii) in Theorem 5.2

immediately holds, if condition (i) holds. For the proof details see Section 5.B.
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𝑂3
∗

Figure 5.4: An example of a zone H and a set of failed lines (shown by red dashed lines) that

can be detected by solving (5.3) based on Theorem 5.2. The diamond orange nodes are the

nodes of the dual graph H˚. As can be seen, the dual of the failed lines can be covered by three

edge disjoint cycles O˚1 , O
˚
2 , O

˚
3 (shown by dotted lines) in H˚. Thus, as Theorem 5.2 requires,

F ˚ is H˚-separable.

Corollary 5.4. In a planar bipartite graph H, the solution to (5.3) is unique and suppp~xq “

ti|ei P F u, if for any cycle C in H, |C X F | ă |CzF |.

Theorem 5.2 and Corollary 5.4 are important since power grids are usually considered to be

planar. For instance, lattice graphs are planar bipartite.

5.4.3 Simultaneous Phase Angles Recovery and Failed Lines Detection

In Subsection 5.4.1 we showed that the phase angles of the zone H are recoverable, if there is a

matching in GrVH , V̄Hs that covers VH . However, in reality, this condition might be very difficult

and costly to maintain (i.e., it may require to increase the number of zones). Therefore, in this

subsection, using similar ideas as in subsection 5.4.2, we relax the external conditions on H.

The key idea which is summarized in the following Lemma, is to combine Corollary 5.1 and

Lemma 5.5.

Lemma 5.8. There exist vectors ~x P R|EH | and ~δH P R|VH | such that suppp~xq “ ti|ei P F u,

~δH “ ~θH ´ ~θ
1
H , and

DH~x “ AH|H
~δH `AH|H̄

~δH̄ (5.4)

AH̄|H
~δH `AH̄|H̄

~δH̄ “ 0
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where ~δH̄ “
~θH̄ ´

~θ1
H̄

and is known.

From Subsections 5.4.1 and 5.4.2 we know that the solution to (5.4) is unique, if and only if

H is acyclic and AH̄|H has linearly independent columns. Therefore, to deal with cases for which

AH̄|H does not have linearly independent columns, we consider a similar optimization problem

as in (5.3) but with more constraints. For this reason, as we mentioned in Subsection 5.4.2, since

the set of failed lines is expected to be relatively sparse compared to the overall set of edges, we

consider the following optimization problem,

min }~x}1 s.t. (5.5)

DH~x “ AH|H
~δH `AH|H̄

~δH̄

AH̄|H
~δH `AH̄|H̄

~δH̄ “ 0.

The following Lemma states that if there is an independent set of nodes in H with no

neighbors in H̄, then under some conditions on F , we can recover F and ~θ1H by solving (5.5)

even when AH̄|H does not have linearly independent columns (case III in Table 5.1). First, we

define inner-connected nodes.

Definition 5.3. A node v P VH is called H-inner-connected if Npvq Ď VH . It is called H-outer-

connected if Npvq Ď VH̄ . We denote the set of H-inner-connected and H-outer-connected nodes

by V in
H and V out

H , respectively.

For any L Ď E, define its size weighted by the susceptance values, as |L|b :“
ř

ePL |be|, in

which be is the susceptance of the line e. Notice that when the susceptance values for all the

lines equal to ´1, then |L|b “ |L|.

Lemma 5.9. Suppose H-inner-connected nodes form an independent set in H. If H is acyclic,

rankpAH̄|Hq “ |VH |´ |V
in
H |, and @v P V in

H , |BpvqXF |b ă |BpvqzF |b, then the solution ~x, ~δ to (5.5)

is unique. Moreover, suppp~xq “ ti|ei P F u and ~δH “ ~θH ´ ~θ
1
H .

Proof. The idea of the proof is very similar to the proof of Lemma 5.7. Suppose ~x, ~δH is the

solution to (5.4) such that suppp~xq “ ti|ei P F u and ~δH “ ~θH ´ ~θ1H . From Lemma 5.8 we know
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that such a solution exists. We show that this solution is the unique solution to (5.5) in this

setting.

Without loss of generality in addition to assuming VH “ t1, 2, 3, . . . , |VH |u and EH “

te1, e2, . . . , e|EH |u, we can assume the labeling of the nodes in G is such that V in
H “ t1, 2, . . . , tu

is the set of H-inner-connected nodes. Suppose ~α1, ~α2, . . . , ~αt P R|VH | are the coordinate vec-

tors, in other words ~αi is 1 at its ith entry and 0 everywhere else. It is easy to see that

@i P V in
H : AH̄|H~αi “ 0. On the other hand, since rankpAH̄|Hq “ |VH | ´ t and ~αis are linearly

independent, ~α1, ~α2, . . . , ~αt form a basis for NullpAH̄|Hq.

Assume DH is the incidence matrix of H when its edges are oriented such that for each

i P V in
H , the edges are coming out of i. Now suppose ~z is another solution to (5.5), it is easy to

see that DHp~z ´ ~xq “ AH|H~α for a vector ~α P NullpAH̄|Hq. Since ~α P NullpAH̄|Hq, there are

unique coefficients c1, c2, . . . , ct P R such that ~α “ c1 ~α1 ` c2 ~α2 ` ¨ ¨ ¨ ` ct ~αt. Thus,

DHp~z ´ ~xq “ AH|H~α “ AH|Hpc1~α1 ` c2~α2 ` ¨ ¨ ¨ ` ct~αtq

“ c1AH|H~α1 ` c2AH|H~α2 ` ¨ ¨ ¨ ` ctAH|H~αt.

Suppose ~dj is the column associated with edge ej in DH . Notice that for each i P V in
H ,

Bpiq Ď EH . Therefore, @i P V in
H and @ej P Bpiq, ~dj is a column of DH . It can be seen that for any

i P V in
H ,

ř

j:ejPBpiq
´bej

~dj “ AH|H~αi. If for any i P V in
H , we define vector ~βi P R|EH | as follows,

βij :“

$

’

&

’

%

´bej if ej P Bpiq

0 otherwise,

then DH
~βi “ AH|H~αi for any i P V in

H . Thus,

DHpc1
~β1 ` ¨ ¨ ¨ ` ct~βtq “ c1AH|H~α1 ` ¨ ¨ ¨ ` ctAH|H~αt

ñ DHp~z ´ ~xq “ DHpc1
~β1 ` c2

~β2 ` ¨ ¨ ¨ ` ct~βtq.

Now since H is acyclic, DH has linearly independent columns. Thus, from the equation above

we can conclude that,

~z ´ ~x “ c1
~β1 ` c2

~β2 ` ¨ ¨ ¨ ` ct~βt

ñ ~z “ ~x` c1
~β1 ` c2

~β2 ` ¨ ¨ ¨ ` ct~βt.
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Using equation above, we show that }~z}1 ą }~x}1 unless c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0. First,

notice that since V in
H is an independent set, @i ‰ j P V in

H , Bpiq X Bpjq “ H. Suppose @i P

V in
H , |Bpiq X F |b “ ki, we have

}~z}1 “ }~x` c1
~β1 ` c2

~β2 ` ¨ ¨ ¨ ` ct~βt}1

“
ÿ

iPV in
H

´

p|Bpiq|b ´ kiq|ci| `
ÿ

jPFXBpiq

|xj ` bejci|
¯

`
ÿ

iPF zBpV in
H q

|xi|

“
ÿ

iPV in
H

´

p|Bpiq|b ´ 2kiq|ci| `
ÿ

jPFXBpiq

`

|xj ` bejci| ` |bejci|
˘

¯

`
ÿ

iPF zBpV in
H q

|xi|

ě
ÿ

iPV in
H

´

p|Bpiq|b ´ 2kiq|ci| `
ÿ

jPFXBpiq

|xj |
¯

`
ÿ

iPF zBpV in
H q

|xi|

“
ÿ

iPV in
H

`

p|Bpiq|b ´ 2kiq|ci|
˘

`
ÿ

iPV in
H

ÿ

jPFXBpiq

|xj | `
ÿ

iPF zBpV in
H q

|xi|

“
ÿ

iPV in
H

`

p|Bpiq|b ´ 2kiq|ci|
˘

` }~x}1.

Now, since from the assumptions @i P V in
H , ki ă |Bpiq|b{2, it is easy to see that

ř

iPV in
H
pp|Bpiq|b ´

2kiq|ci|q ` }~x}1 ą }~x}1, unless c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0. Since ~z is a solution to (5.5), we

should have c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0, and ~z “ ~x. Thus, ~x is the unique solution to (5.5) and

suppp~xq “ ti|ei P F u. From the proof, it is easy to see that ~δH is also unique. �

To generalize Lemma 5.9, first let us consider cases in which H contains H-outer-connected

nodes. The Lemma below shows that the value of δ for these nodes is unique.

Lemma 5.10. If v is H-outer-connected and ~δH is a solution to (5.4), then δv is unique and

equal to δv “ 1{avv
ř

uPNpvq´avuδu.

Proof. First, notice that since v is H-outer-connected, Npvq Ď V̄H . Now, let us compute the

vth entry of the vectors on the both side of the equation DH~x “ AH|H
~δH ` AH|H̄

~δH̄ . Since

v is H-outer-connected, the vth row of DH is a zero vector. Thus, pDH~xqv “ 0 for any ~x.

One the other hand, from the definition of admittance matrix A, pAH|H
~δHqv “ avvδv and

pAH|H̄
~δH̄qv “

ř

uPNpvq avuδu. Since pDH~xqv “ pAH|H
~δHqv ` pAH|H̄

~δH̄qv, we can conclude that

δv “ 1{avv
ř

uPNpvq´avuδu. Thus, the proof is complete. �
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Zone H

Figure 5.5: An example of a zone H and an attack such that the phase angles can be recovered

and the failed lines can be detected by solving (5.5) based on Theorem 5.3. The squared green

nodes are the H-inner-connected nodes. The failed lines are shown by red dashed edges.

In the following theorem, we generalize Lemma 5.9. This theorem combines Lemma 5.9 and

Theorem 5.2, and provides a broader class of graphs in which solving (5.5) recovers phase angles

and detects the failed lines after an attack. For the proof details see Section 5.B.

Theorem 5.3. In a planar graph H, the solution ~x, ~δH to (5.5) is unique with suppp~xq “ ti|ei P

F u and ~δH “ ~θH ´ ~θ1H , if the following conditions hold: (i) @v P V in
H , |Bpvq X F |b ă |BpvqzF |b,

(ii) for any cycle C in H, |C X F | ă |CzF |, (iii) F ˚ is H˚-separable, (iv) in AH̄|H , columns

associated with nodes that are neither H-inner-connected nor H-outer-connected are linearly

independent, (v) no cycle in H contains a H-inner-connected node, and (vi) H-inner-connected

nodes form an independent set.

Note that when H is well-supported, there are no H-inner-connected or H-outer-connected

nodes. Thus, conditions (i), (iv), (v), and (vi) immediately hold and Theorem 5.3 reduces to

Theorem 5.2.

Fig. 5.5 shows an example of a zone H and an attack such that the phase angles can be

recovered and the failed lines can be detected by solving (5.5) using Theorem 5.3 (case IV in

Table 5.1). As it can be seen, this theorem covers a broad set of graphs and attacks for which we

can recover the phase angles and detect the failed lines. Notice that here, with similar argument

as in Corollary 5.2 we can replace condition (iv) in Theorem 5.3 with a simpler matching

condition as follows.
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Corollary 5.5. If there is a matching in GrVH , V̄Hs that covers VHzpV
in
H YV

out
H q, then condition

(iv) in Theorem 5.3 holds almost surely.

To conclude, we define the attack-resilient and weakly-attack-resilient notions to summarize

the resilience of a zone to joint cyber and physical attacks.

Definition 5.4. A zone H is called attack-resilient, if it is both well-supported and acyclic.

Definition 5.5. A zone H is called weakly-attack-resilient, if ~θ1H and F can be uniquely found

after a constrained attack on the zone H by solving (5.5).

It is easy to see that an attack-resilient zone is also weakly-attack-resilient.

5.4.4 Recovery and Detection After Attacks on Multiple Zones

In this subsection, we study the case in which multiple zones are attacked simultaneously. When

the attacked zones are close to each other, it may not always be possible to recover information.

However, if the attacked zones are relatively distant from each other, any of the methods provided

in the previous subsections (depending on the conditions on the zones and attacks) can be applied

to recover the information and detect the failures in the attacked zones.

The idea is to use Corollary 5.1 and Lemma 5.5 for sets U and W much smaller than H̄ and

G, respectively. Assume H1 and H2 are two attacked zones. Let U1 and U2 be two sets with

the minimum size such that U1 Ď H̄1, H1 Ď NcpU1q, U2 Ď H̄2, and H2 Ď NcpU2q. Following

Corollary 5.1, AU1|NcpU1qp
~θNcpU1q ´

~θ1NcpU1q
q “ 0 and AU2|NcpU2qp

~θNcpU2q ´
~θ1NcpU2q

q “ 0. Now

if NcpU1q X H2 “ NcpU2q X H1 “ H (i.e., H1 and H2 are distant enough), and both AU1|H1

and AU2|H2
have linearly independent columns, then similar to the proof of Theorem 5.1, the

phase-angles of the nodes in H1 and H2 can be recovered by solving a set of linear equations.

To detect the failed lines, let W1 and W2 be two sets with the minimum size such that

W1,W2 Ď G, NcpH1q Ď W1, and NcpH2q Ď W2. Following Lemma 5.5, there exist vectors

~x1, ~x2 P R|EH | such that suppp ~x1q and suppp ~x2q give the failed lines in H1 and H2, and also

DH1 ~x1 “ AH1|W1
p~θW1 ´

~θ1W1
q and DH2 ~x2 “ AH2|W2

p~θW2 ´
~θ1W2

q. Now, if H1 and H2 are acyclic

and W1 X H2 “ W2 X H1 “ H, then similar to the Lemma 5.6, the solutions to DH1 ~x1 “
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AH1|W1
p~θW1 ´

~θ1W1
q and DH2 ~x2 “ AH2|W2

p~θW2 ´
~θ1W2

q are unique and the failed lines can be

detected by suppp ~x1q and suppp ~x2q.

Notice that the methods in subsection 5.4.3 can also be simply used to recover the phase

angles and detect the failed lines in the attacked zones that are distant enough. The following

corollary summarizes our discussion in this subsection.

Corollary 5.6. The phase angles and the failed lines can be recovered/detected after a simulta-

neous attack on zones H1, H2, . . . ,Hk, if followings hold: (i) for any 1 ď i ď k, if Hi was the only

attacked zone, then the phase angle of the nodes and the failed lines could be recovered/detected

using the methods in subsections 5.4.1,5.4.2, and 5.4.3, (ii) there exist U1, U2, . . . , Uk Ď G and

W1,W2, . . .Wk Ď G such that:

1. For any 1 ď i ď k, Ui Ď H̄i, Hi Ď NcpUiq, and NcpHiq ĎWi.

2. For any 1 ď i ‰ j ď k, NcpUiq XHj “ H and Wi XHj “ H.

Proof. For any 1 ď i ď k, consider equations AUi|NcpUiqp
~θNcpUiq ´

~θ1NcpUiqq “ 0 and DHi ~xi “

AHi|Wi
p~θWi ´

~θ1Wi
q instead of (5.1) and (5.2). Then, recover the phase angle of the nodes and

detect the failed lines at each Hi separately using any of the methods provided in subsecti-

ons 5.4.1,5.4.2, and 5.4.3. �

5.5 Post-Attack Recovery and Detection Algorithm

In this section, we present the Post-Attack Recovery and Detection (PARD) Algorithm for

recovering the phase angles and detecting the failed lines after an attack on a zone H. Based on

the results provided in previous subsections, if a zone H is weakly-attack-resilient, the PARD

Algorithm will recover the phase angles and detect the failed lines after a constrained attack.

Notice that if there are some failed lines but no data is missing, then from the data that

is gathered by the PDCs from the PMUs, all the information regarding the status of the lines

and phase angles is available and there is no need for the algorithm. Thus, as the first step, the

PARD Algorithm detects the attacked zone H by checking the missing data (line 1). Then, it

solves (5.5) by Linear Programming to obtain ~x, ~δH . If H is weakly-attack-resilient, from the
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Algorithm 4 - Post-Attack Recovery & Detection (PARD)

Input: A connected graph G, phase angles before the attack ~θ, and partial phase angles after the attack

~θ1
H̄

.

1: Detect the attacked zone H by checking for missing data.

2: Compute ~x, ~δH the solution to (5.5) by Linear Programming.

3: Compute ~θ1H “
~θH ´ ~δH .

4: Compute F “ tei|i P suppp~xqu.

5: Detect the set of null-edges that appear after the attack as N “ tti, ju P EH |θ
1
i “ θ1ju.

6: return N , F , ~θ1H .

results in previous subsections, we know that ~x, ~δH are unique, ~θ1H “ ~θH ´ ~δH (line 3), and

F “ tei|i P suppp~xqu (line 4). Finally, using ~θ1 computed in previous line, the PARD Algorithm

detects the set of null-edges N (line 5), and returns N , F , and ~θ1H .

5.6 Attack Analysis in the Presence of Measurement Noise and

Uncertainty

In this section, we briefly discuss the problem of information recovery after an attack in the

presence of a measurement noise and uncertainty. We follow [89] and model the measurement

noise by changing (2.7) to Ap~θ´~eq “ ~p where ~e P R|V |ˆ1 is a Gaussian measurement noise with

a diagonal covariance matrix Σ. Following [163], ~e can also account for the perturbations in ~p

after failures. It is obvious that in the presence of noise, the optimization problem (5.5) has

no feasible solution. However, since the `1-norm is relatively robust against noise, one possible

approach to generalize the optimization problem (5.5) to the noisy case is to relax the conditions

as follows:

min }~x}1 s.t. (5.6)

}DH~x´AH|H
~δH ´AH|H̄

~δH̄}2 ă ε

}AH̄|H
~δH `AH̄|H̄

~δH̄}2 ă ε.
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Algorithm 5 - 3-Acyclic Partition of Planar (3APP)

Input: A non-empty planar graph G.

1: Find a node v P V such that degpvq ď 5.

2: if Gzv “ H then set Q1 “ Q2 “ Q3 “ H.

3: else Find 3-partition of Gzv using 3APP Algorithm as

Q1, Q2, Q3.

4: Add v to the partition that |Npvq XQi| is minimum.

5: return Q1, Q2, Q3.

It is easy to see that the optimization problem (5.6) is a second-order cone program that can be

solved using gradient decent methods. After solving (5.6), the line failures can then be detected

as before by F “ tei|i P suppp~xqu.

Generalizing Theorem 5.3 to take into account the noisy case modeled by (5.6) is part of

the future work. However, in Section 5.8, we show via simulation that solving the optimization

problem (5.6) can correctly recover the phase angles and detect the failed lines depending on

the level of the Signal to Noise Ratio (SNR).2

5.7 Zone Selection Algorithm

In this section we use the results from Section 5.4 to provide an algorithm for partitioning

the power grid into the minimum number of attack-resilient zones. From Lemma 5.6 and Corol-

lary 5.2, for a zone H to be attack-resilient, it is sufficient that H is acyclic and there is a

matching in GrVH , V̄Hs that covers every node in VH . Fig. 5.3 shows an example of a partiti-

oning such that each zone is attack-resilient. Thus, we define a matched-forest partition of a

graph G as follows.

Definition 5.6. A matched-forest partition of a graph G into H1, H2, . . . ,Hk is a partition such

that for any i, Hi is acyclic and GrVHi , V̄His has a matching that covers VHi.

2We define the SNR (in dB) as 20 log10p}
~θ}2{}~e}2q.



CHAPTER 5. CYBER-PHYSICAL ATTACKS (DC MODEL) 95

Algorithm 6 - Zone Selection (ZS)

Input: A connected graph G.

1: Find an optimal matching cover M1,M2, . . . ,Mt of G [150].

2: For each Mi, separate the matched nodes into two set of nodes V2i´1, V2i such that @tv, uu P M ,

v P V2i´1 and u P V2i.

3: For any 1 ď i ď 2t, Qi “ Viz
Ťi´1

j“1Qj .

4: for each Qi do

5: if GrQis is acyclic then continue

6: if GrQis is a planar graph then

7: Use 3APP Algorithm to partition GrQis.

8: else

9: Use any greedy algorithm to partition GrQis into acyclic subgraphs.

10: Name the resulted partitions P1, . . . , Pk.

11: return P1, . . . , Pk.

The problem of finding a matched-forest partition of G is closely related to two previously

known problems of vertex arboricity and k-matching cover of a graph. The vertex arboricity

apGq of a graphG is the minimum number of subsets into which the nodes ofG can be partitioned

so that each subset induces an acyclic graph. It is known that determining apGq is NP-hard [74,

p.193].

A k-matching cover of a graph G is a union of k matchings of G which covers V . The

matching cover number of G, denoted by mcpGq, is the minimum number k such that G has

a k-matching cover. An optimal matching cover of a graph on n nodes can be found in Opn3q

time [150].

Using these results, we study the time complexity of the minimum matched-forest partition

problem.3 The following Lemma shows that it is hard to find the minimum matched-forest

partition of a graph. For the proof details see Section 5.B.

3To the best of our knowledge, this is the first time that the problem is studied.
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Lemma 5.11. The problem of finding the minimum matched-forest partition of a graph G is

NP-hard.

Moreover, we show that finding the minimum matched-forest partition is even hard to ap-

proximate. We use the well-known result by Zuckerman [165] that for all ε ą 0, it is NP-hard

to approximate chromatic number to within n1´ε.

Lemma 5.12. For all ε ą 0, it is NP-hard to approximate the minimum matched-forest partition

of a graph G to within n1´ε.

Proof. For a graph G, assume χpGq is its chromatic number. Since each color gives an inde-

pendent set of G, induced subgraph by the nodes with the same color is acyclic with no edges.

Thus, it is easy to see that apGq ď χpGq. Suppose there is an α-approximation algorithm for the

minimum matched-forest problem. Define Ĝ as in proof of Lemma 5.11. Assume this algorithm

partitions Ĝ into k subsets. From the proof of Lemma 5.11, it is easy to see that k ď αapGq. On

the other hand, since each acyclic graph has the chromatic number of at most 2, this algorithm

gives the 2k coloring of graph G. However, 2k ď 2αapGq ď 2αχpGq. Thus, this algorithm gives a

2α-approximation of the chromatic number of G. However, the result by Zuckerman [165] states

that for all ε ą 0, it is NP-hard to approximate chromatic number to within n1´ε. Therefore,

for all ε ą 0, it is NP-hard to approximate the minimum matched-forest problem to within n1´ε

as well. �

Despite these hardness results, we provide the polynomial-time Zone Selection (ZS) Algo-

rithm to find a matched-forest partition of a graph. We prove that the ZS Algorithm provides

a constant approximation for the minimum matched-forest partition of a graph G when G is

planar.

Before describing the ZS Algorithm in detail, we first describe an algorithm that is used in

the ZS Algorithm, when G is planar. It is known that for a planar graph G, apGq ď 3 [41]. Based

on the proof provided in [41], we introduce a recursive 3-Acyclic Partition of Planar (3APP)

Algorithm. The Lemma below shows the correctness of this Algorithm.
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Lemma 5.13. The 3APP Algorithm partitions the nodes of a planar graph G into 3 subsets

such that each subset induces an acyclic graph.

Proof. It is known that every planar graph has a node of degree less than or equal to 5 [154].

Therefore, line 1 of the algorithm can always find v. At line 4, recursively we know that subgraphs

induced by Q1, Q2, Q3 in Gzv are acyclic. Now since degpvq ď 5, there exists a partition such

that |Npvq XQi| ď 1. Without loss of generality we can assume that |Npvq XQ1| ď 1. Hence,

adding v to Q1 does not produces any cycles. Thus, subgraphs induced by Q1 Y tvu, Q2, Q3 in

G are acyclic. �

We now present the ZS Algorithm. The ZS Algorithm first finds an optimal matching cover

M1,M2, . . . ,Mt of G using an Opn3q algorithm introduced in [150] (line 1). Then, in lines 2 and

3, it uses this matching cover to partition V into Q1, Q2, . . . , Q2t. It is easy to see that for each

Qi, Mri{2s X ErQi, Q̄is is the matching in GrQi, Q̄is that covers nodes in Qi. Then, in order to

satisfy the acyclicity condition on the partitions, it partitions Qis that do not induce an acyclic

graph, into subsets so that each subset induces an acyclic graph. When GrQis is a planar graph,

it uses 3APP Algorithm to partition GrQis. When it is not, it uses any greedy algorithm to

do so. Thus, the resulted partition P1, P2, . . . , Pk satisfies the conditions of a matched-forest

partition.

The lemma below states that when G is planar, the ZS Algorithm provides a constant

approximation of the optimal matched-forest partition. We demonstrate the results obtained by

the algorithm in the following section. For the proof details see Section 5.B.

Lemma 5.14. If G is planar, the ZS Algorithm provides a 6-approximation of the minimum

matched-forest partition of G in Opn3q.

Notice that the planarity of G is a sufficient but not a necessary condition for the successful

execution of the 3APP Algorithm. Hence, as we show in Section 5.8, the ZS algorithm can be

applied to almost any power grid network without checking its planarity as long as the 3APP

algorithm is executed successfully.
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5.8 Numerical Results

5.8.1 Evaluating grid structural robustness and the performance of the ZS

Algorithm

In this section, we (i) numerically study the relationship between the structural properties of

a grid and its resilience to joint cyber and physical attacks, and (ii) demonstrate the results

obtained by the ZS Algorithm in several known power grid networks.

To assess the relationship between the structural properties of a grid and its resilience to

attacks, we quantify the resilience by the fraction of the node induced subgraphs of G that

form attack-resilient zones. Recall from Section 5.4 that a zone H is attack-resilient, if it is

well-supported and acyclic. We first study the relationships between the number of edges and

the fraction of induced subgraphs that form well-supported, acyclic, and attack-resilient zones.

These relationships can be best demonstrated in random graphs [68], since by increasing p (the

probability that two nodes are connected), the total number of edges increases.

We generated random graphs with n “ 30 and n “ 50 nodes with various p values. For each

p, we generated 100 random graphs and in each graph randomly selected 100 subgraphs of size

10. We then computed the fraction of subgraphs that form well-supported, acyclic, and attack-

resilient zones. As can be seen in Fig. 5.6, as p increases, the fraction of subgraphs that form

acyclic zones decreases and the fraction that form well-supported zones increases. In Fig. 5.6(a),

when p « 0.14 these two fractions are equal and the fraction of attack-resilient subgraph is

maximized. As can be seen in Fig. 5.6(b), the value of p for which these two fractions are equal

(i.e., the fraction of attack-resilient subgraphs is maximized) decreases as n increases.

We also illustrate the relationships between the size of the zone |VH | and the fraction of

induced subgraphs that form well-supported, acyclic, and attack-resilient zones. It is known that

scale-free graphs are relatively good representatives of power grid networks [23], and therefore,

we focus here on such graphs. Fig. 5.7 shows the relationships in scale-free graphs with n “ 30

nodes and m “ 56 or 104 edges. As can be seen in 5.7(a), as the size of the zone increases,

the fraction of zones that are well-supported decreases faster than the fraction of zones that
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Figure 5.6: The relationships between the number of edges in random graphs (or equivalently

p), and the fraction of induced subgraphs that form well-supported and acyclic zones of size

|VH | “ 10. For each p, 100 random graphs were generated and in each graph, 100 subgraphs

were chosen randomly.

are acyclic. Thus, the well-supportedness is the restricting factor for attack-resilience. However,

this trend is different in 5.7(b). Since the graph has more edges, as the size of the zone increases,

the fraction of zones that are acyclic decreases faster than the fraction of zones that are well-

supported. Here, the acyclicity is the restricting factor.

Overall, these results show that the structure of the grid plays an important role in its

resilience and should be considered when designing a control network.4

We now demonstrate results obtained by the ZS Algorithm in several known power networks.

Table 5.2 lists the considered grids and number of resulting partitions. For example, Fig. 5.8

shows the partitions obtained by ZS Algorithm in the IEEE 14-Bus and 30-Bus benchmark

systems [5]. As can be seen, in both cases the graphs can be partitioned into two attack-

resilient zones. We also evaluated the ZS Algorithm on the IEEE 118 and 300-bus systems, the

4Clearly, random and scale free graphs do not model power grids perfectly. However, we used them to gain

insight into the relations between structural properties and resilience. In future work, we will study more realistic

network topologies [133].
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Figure 5.7: The relationship between the size of the zone |VH | in scale-free graphs, and the

fraction of induced subgraphs that form well-supported and acyclic zones of size |VH |. For each

case, 1000 subgraphs were chosen randomly.

Polish grid (available with MATPOWER [164]), the Colorado state grid, and the U.S. Western

Interconnection network.5 For example, the 6 zones into which the Colorado grid is partitioned

appear in Fig. 5.9. Recall form Section 5.7 that when G is planar, the ZS Algorithm is a 6-

approximation algorithm for the minimum matched-forest problem. However, as can be seen

from the examples above, in practice, it partitions the networks into few zones.

We note that the ZS Algorithm does not take the geographical constraints into account.

Thus, when partitioning very large networks such as the Western Interconnection (see Fig. 5.10),

the nodes in the same partition may be geographically distant from each other. This is impracti-

cal, since the PMUs from the same zone should send the data to a single PDC. However, it is

easy to see that if a zone is attack-resilient, any of its subgraphs is also attack-resilient. The-

refore, the partitions obtained by the ZS Algorithm can be further divided into smaller zones

based on geographical constraints (e.g., into zones within different states in Fig. 5.10). This

5The data of the Western Interconnection (and of Colorado) was obtained from the Platts Geographic Infor-

mation System (GIS) [3].
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Table 5.2: Number of partitions into which the ZS Algorithm divides different networks.

Network Nodes Edges Partitions

IEEE 14-Bus 14 20 2

IEEE 30-Bus 30 41 2

IEEE 118-Bus 118 179 5

IEEE 300-Bus 300 409 14

Polish grid 3120 3684 10

Colorado state grid 662 864 6

Western interconnection 13135 16860 9

Zone 1

Zone 2

(a) IEEE 14 bus

Zone 1

Zone 2

(b) IEEE 30 bus

Figure 5.8: Partitioning of the IEEE 14 and IEEE 30 bus systems into 2 attack resilient zones

(using the ZS Algorithm).

approach does not result in an optimal partitioning. Hence, obtaining an efficient partitioning

with geographical constraints is a subject of future work.

5.8.2 Recovering the Information in the Presence of a Measurement Noise

In this subsection, we show via simulation that solving the optimization problem (5.6) can

correctly recover the phase angles and detect the failed lines in the presence of the measurement

noise depending on the SNR level. To evaluate the results, we count number of false negatives

and false positives. False negatives are the failed lines that are not detected in the solution

of (5.6). False positives are the edges that are detected as failed lines in the solution of (5.6)
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Figure 5.9: Partitioning of the Colorado state grid into 6 attack-resilient zones (using the ZS

Algorithm). Nodes with the same color are in the same zone.

despite the fact that they were not failed. We use the Matlab-based solver CVX [78] for solving

the optimization problem (5.6).

We provide simulation results with the graph and zone H shown in Fig. 5.11 (it is easy to

see that H is attack-resilient). Notice that the graph in Fig. 5.11 can be part of a much bigger

graph, however following Corollary 5.1 and Lemma 5.5, only the local information is needed

to recover the information inside the attacked zone. As we mentioned in Section 5.6, in the

simulations, we assume that the readings from the PMUs somewhat differ from the solution of

(2.7) (i.e., to the DC power flow). Hence, if ~θ and ~θ1 are the phase angles obtained from the

PMUs (before and after the attack, respectively), then Ap~θ ´ ~eq “ ~p and A1p~θ1 ´ ~e1q “ ~p for

unknown Gaussian noise vectors ~e and ~e1 with equal covariance matrices.

Figs. 5.12 and 5.13 show two attack scenarios with different SNR values and the information

recovered by solving (5.6). Fig. 5.14 shows the average number of false negatives and positives in

detecting line failures by solving (5.6) versus the SNR level for different numbers of line failures.

As can be seen, for any number of line failures, when the SNR is above a certain level (e.g.,

40 dB) the solution to (5.6) can detect the line failures with acceptable accuracy (less than

one false negative and zero false positives on average). Using the CVX solver, the solution to
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Figure 5.10: Partitioning of the U.S. Western Interconnection into 9 attack-resilient zones (using

the ZS Algorithm). Nodes with the same color are in the same zone.

the optimization problem (5.6) can be found in 0.07 sec in our system with Intel Core i7-2600

@3.40GHz CPU and 16GB RAM for the graph depicted in Fig. 5.11.
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Figure 5.11: The graph and the zone H that are used in the simulations in Subsection 5.8.2. All

the edges in the graph have admittance value equal 1. The supply/demand values are chosen

randomly.
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Zone H
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𝑒1 𝑒2 𝑒3 𝑒4

𝑒5𝑒7𝑒9

𝑒8

Actual

 𝜃𝐻
′

Recovered 

 𝜃𝐻
′

0.1062 0.1030

0.0882 0.0872

0.0042 0.0075

0.0062 0.0036

0.0342 0.0334

-0.0758 -0.0752

-0.0971 -0.0937

-0.0925 -0.0919

0.0442 0.0441

0.0322 0.0321

 𝑥 -0.0074 -0.0068 0 0 0 -0.0857 0 0 0

supp(  𝑥) 1 1 0 0 0 1 0 0 0

SNR = 50dB

Figure 5.12: An example of an attack and recovered information in the presence of the measu-

rement noise for SNR“ 50dB. Red dashed lines show the attacked lines. As can be seen, the

attacked lines can be detected successfully in this case.
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-0.1623 -0.1496
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-0.0329 0.0321

 𝑥 0 0 0 0 0 -0.1938 0 -0.1164 0

supp(  𝑥) 0 0 0 0 0 1 0 1 0

SNR = 30dB

Figure 5.13: An example of an attack and recovered information in the presence of the measu-

rement noise for SNR“ 30dB. Red dashed lines show the attacked lines. As can be seen, 2 out

of the 3 attacked lines can be detected in this case.
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Figure 5.14: The average number of false negatives and positives in detecting line failures by

solving (5.6) in the presence of the measurement noise versus the SNR. Each data point is the

average over 100 trials. (a)-(h) Show this relationship for different number of line failures (|F |).

Figs. 5.12 and 5.13 provide the detailed information for two of the points in (c).
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5.9 Conclusion

We studied joint cyber and physical attacks on power grids. We developed methods to estimate

the state of the grid inside the attacked zone using only the information available outside of the

attacked zone. We identified graph topologies and constraints on the attacked edges for which

these methods are guaranteed to recover the state information. We briefly studied the problem

of information recovery in the presence of measurement noise and showed that by relaxing some

of the constraints the same methods can be used for information recovery in noisy scenarios.

Moreover, we showed that the problem of partitioning the grid into the minimum number of

attack-resilient zones is not approximable to within n1´ε for all ε ą 0 unless P=NP. However,

for planar graphs, we developed an approximation algorithm for the partitioning problem and

numerically illustrated the operation of the algorithm.

This is one of the first steps towards understanding the vulnerabilities of power grids to

joint cyber and physical attacks and developing methods to mitigate their effects. In the next

Chapter, we evaluate the performance of the recovery method presented in Section 5.6 when the

phase angles are obtained using the AC power flow model.
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5.A Preliminaries from Graph Theory

In this appendix, we provide some of the known theorems and definitions used in the proofs

provided in Section 5.B.

A bond of a graph is a minimal nonempty edge cut, that is, a nonempty edge cut none of

whose nonempty proper subsets is an edge cut.

A graph in which each node has even degree is called an even graph. A circuit is the union

of edge-disjoint cycles. It is easy to see that a cycle is also a circuit.

Theorem 5.4 (Theorem 5.2 [123]). Let G “ pV,Eq be a planar Eulerian graph, and let F Ď E.

Then the following are equivalent: (i) F is G-separable, (ii) for each bond D, |DXF | ď |D´F |.

Theorem 5.5 (Theorem 10.16 [37]). Let G be a connected planar graph, and let G˚ be a planar

dual of G. (i) If C is a cycle of G, then C˚ is a bond of G˚. (ii) If B is a bond of G, then B˚

is a cycle of G˚.

Theorem 5.6 (Theorem 6.1.16 [154]). The followings are equivalent for a planar graph G, (i)

G is bipartite, (ii) every face of G has even length, and (iii) the dual graph G˚ is Eulerian.

Theorem 5.7 (Euler’s formula [36]). For any planar graph G with n nodes, m edges, r faces,

and c connected components, the following formula holds, n` r ´m “ c.

Lemma 5.15 (Corollary 2.16 [36]). The symmetric difference of two even subgraphs is an even

subgraph.

5.B Proofs

In this appendix, we provide the omitted proofs.

Proof of Theorem 5.2. Recall that we can assume VH “ t1, 2, . . . , |VH |u and EH “ te1, e2, . . . , e|EH |u.

We assign an arbitrary orientation to the edges of H and fix the embedding of H on the plane.

We show the set of oriented edges by EH “ tε1, ε2, . . . , ε|EH |u. Suppose H has r faces and
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C1, C2, . . . , Cr are the cycles that surrounded those faces. For each cycle Ci, define vector

~ci P t´1, 0, 1u|EH | as follows,

cij “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if εj R Ci,

1 if εj P Ci and εj traverse Ci clockwise,

´1 if εj P Ci and εj traverse Ci counterclockwise.

It is easy to see that @i,DH~ci “ 0. Therefore, ~ci P NullpDq. On the other hand it is easy to

see that ~cis are linearly independent. If c is the number of connected components of H, then

dimpNullpDqq “ |EH |´ |VH |` c which from Euler’s formula is equal to r. Thus, ~cis form a basis

for the null space of the incidence matrix D. Now suppose ~x is the solution to (5.2) such that

suppp~xq “ ti|ei P F u (from Lemma 5.5 we know that such a solution exists). We need to prove

that for any ~z “ ~x` y1 ~c1 ` ¨ ¨ ¨ ` yr ~cr, }~z}1 ď }~x}1 iff y1 “ y2 “ ¨ ¨ ¨ “ yr “ 0. Please notice that

since ~cis are the cycles associated with the faces of the planar graph H, each edge ej appears in

at most two cycles Ct and Cs. Thus, the entries of ~z, zjs are in one of the following forms, (i)

zj “ 0, (ii) zj “ xj , (iii) zj “ xj ˘ yt, (iv) zj “ xj ˘ pyt ´ ysq, or (v) zj “ ˘pyt ´ ysq.

First, we show that }~z}1 ě }~x}1. Suppose F “ tei1 , ei2 , . . . , eiku. From the assumption, we

know that F ˚ is H˚-separable. Thus, there are pairwise edge-disjoint cycles O˚j p1 ď j ď kq

in H˚, such that @eij P F, e˚ij P O˚j . For each jp1 ď j ď kq define NOpjq “ tp|e˚p P O˚j u.

From the definitions it is easy to see that @p, qp1 ď p ‰ q ď kq, NOppq X NOpqq “ H. Thus,

}~z}1 ě
řk
j“1

ř

pPNOpjq
|zp|. On the other hand, from the triangle inequality, it is easy to see that

for all 1 ď j ď k,
ř

pPNOpjq
|zp| ě |xij |. Thus, }~z}1 ě

řk
j“1

ř

pPNOpjq
|zp| ě

řk
j“1 |xij | “ }~x}1.

Now we show that }~z}1 “ }~x}1 is not possible unless y1 “ y2 “ ¨ ¨ ¨ “ yr “ 0. If tj1, j2, . . . , jtu

are the indices for which yj1 “ yj2 “ ¨ ¨ ¨ “ yjt “ w, then yj1 ~cj1 ` ¨ ¨ ¨ ` yjt ~cjt “ w~c2 for which

from Lemma 5.15, ~c2 is the vector associated with the circuit C2 “ Cj1∆Cj2∆ . . .∆Cjt (∆ is

the symmetric difference). Therefore we can rewrite ~z as ~x`w1
~c21`w2

~c22` ¨ ¨ ¨ `wq
~c2q for which

w1 ą w2 ą ¨ ¨ ¨ ą wq. If q “ 0, then there is nothing left to prove. If q “ 1, then it can be easily

concluded from Lemma 5.7 that it is not possible to have }~z}1 “ }~x}1 unless w1 “ 0 ñ y1 “

y2 “ ¨ ¨ ¨ “ yr “ 0. Now assume q ą 1, from what we showed previously, we know that in order

to have }~z}1 “ }~x}1, we should have }~z}1 “
řk
j“1

ř

pPNOpjq
|zp| “

řk
j“1 |xij | “ }~x}1. Equality
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}~z}1 “
řk
j“1

ř

pPNOpjq
|zp| shows that suppp~zq Ď

Ťk
j“1NOpjq. Equality

řk
j“1

ř

pPNOpjq
|zp| “

řk
j“1 |xij | shows that w1 should appear in }~z}1, half of the time positive and half of the time

negative. However, since w1 has the largest value, it appears always as w1 ´wi in the instances

like |w1 ´ wi|. Now from assumption we know that |suppp~xq X C21 | ă |C
2
1 |{2. Thus, there are

more than |C21 |{2 instances like |w1 ´ wi| or |w1| in }~z}1. Therefore, it is not possible that w1

appears half of the time positive and half of the time negative in }~z}1, which shows that if q ą 1

then }~z}1 ‰ }~x}1. Thus, the proof is complete. �

Proof of Corollary 5.4. H is bipartite, therefore from Theorem 5.6, H˚ is Eulerian. For any C

in H, |CXF | ă |CzF |, therefore from Theorem 5.5 for any bond C˚ in H˚, |C˚XF ˚| ă |C˚zF ˚|.

Combining these two, from Theorem 5.4 we can conclude that F ˚ is H˚-separable. Thus, we

can simply apply Theorem 5.2. �

Proof of Lemma 5.8. From Corollary 5.1 we know that ~δH “ ~θH´~θ
1
H is a solution to AH̄|H

~δH`

AH̄|H̄
~δH̄ “ 0. Now if ~δ “ ~θ ´ ~θ1, from Lemma 5.5 we know that there exists a vector ~x P R|EH |

such that suppp~xq “ ti|ei P F u and DH~x “ AH|H
~δH`AH|H̄

~δH̄ . Thus, the proof is complete. �

Proof of Theorem 5.3. First, using Lemma 5.10, since the phase angles for theH-outer-connected

nodes can be computed uniquely, without loss of generality and for simplicity, we can assume that

H does not contain any H-outer-connected nodes. Suppose ~c1, . . .~cr are the vectors associated

with the faces in H as we defined in the proof of Theorem 5.2. Suppose ~β1, . . . , ~βt are the vec-

tors associated with the coboundry of the H-inner-connected nodes as we defined in the proof of

Lemma 5.9. All we need to prove is that if ~x is the solution to (5.4) such that suppp~xq “ ti|ei P F u

then for any solution ~z for (5.4), }~z}1 ą }~x ` y1~c1 ` ¨ ¨ ¨ ` yr~c1 ` w1
~β1 ` ¨ ¨ ¨ ` wt~βt}1 unless

y1 “ ¨ ¨ ¨ “ yr “ w1 “ ¨ ¨ ¨ “ wt “ 0. The rest of the proof is exactly similar to proofs of

Lemma 5.9 and Theorem 5.2. The key is Condition (v) implies that the cycles (~cis) and coboun-

dries (~bis) are edge disjoint. Thus, since all the conditions for Lemma 5.9 and Theorem 5.2 also

hold here, with exactly the same approach as in the proofs of Lemma 5.9 and Theorem 5.2 we

can conclude this Theorem. �
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Proof of Lemma 5.11. We show that finding the minimum matched-forest partition is at least

as hard as vertex arboricity. Suppose G “ pV,Eq is given and we are interested in apGq. We

build a new graph Ĝ “ pV̂ , Êq by getting a copy of graph G, G2 “ pV 2, E2q and connect every

node in G to its counterpart in G2. Thus, V̂ “ V Y V 2 and Ê “ E YE2Y ttvi, v
2
i u|vi P V u. We

prove that Ĝ has a matched-forest partition of size k if and only if apGq ď k. First, let us assume

Ĝ has a matched-forest partition of size k, namely Ĥ1, Ĥ2, . . . , Ĥk. Since subgraphs induced by

Ĥ1, Ĥ2, . . . , Ĥk in Ĝ are acyclic and partition V̂ , it is easy to see that subgraphs induced by

Ĥ1 X V, Ĥ2 X V, . . . , Ĥk X V in G are acyclic and partition V . Thus, apGq ď k. Now, let us

assume apGq ď k. There should exists a partition of nodes of G into subsets H1, H2, . . . ,Hk such

that each subset induces an acyclic graph. Assume H21 , H
2
2 , . . . ,H

2
k are the counterparts of these

subsets in G2. For any i, 1 ď i ď k ´ 1 define Ĥi “ Hi YH2i`1, and Ĥk “ Hk YH21 . It is easy

to see that Ĥ1, Ĥ2, . . . , Ĥk is a matched-forest partition of size k for Ĝ. Thus, we proved that

Ĝ has a matched-forest partition of size k if and only if apGq ď k. It means that the minimum

matched-forest partition of Ĝ is equal to apGq, which shows that the minimum matched-forest

partition is at least as hard as vertex arboricity and therefore it is NP-hard. �

Proof of Lemma 5.14. Suppose OPT is the minimum number of matched-forest partitions of

G and OPTm is the number of optimal matching cover of G. Since for any subset VH in the

partition of G “ pV,Eq into matched-forest partitions there exists a matching that covers VH ,

we can cover V with OPT matchings. Thus, OPTm ď OPT . Now since G is planar, ZS

Algorithm uses 3APP to partition Qis into atmost 3 subsets. Hence, if k is the number of

subsets returned by ZS Algorithm then k ď 3 ˆ 2 ˆ OPTm ď 6 ˆ OPT . Thus, ZS Algorithm

provides a 6-approximation of the minimum matched-forest partition of G.

As for the running time, ZS algorithm takes Opn3q time to find the optimal matching cover

of G and Op|Qi|q to partition Qi. Now since k ď n and |Qi| ď n, line 4 does not take more than

Opn2q. Thus, the total running time is Opn3q. �
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Chapter 6

Cyber-physical Attacks (AC Model)

We follow the model that was introduced in the Chapter 5 to study cyber-physical attacks on

power grids. Under this model, we assume that an adversary attacks an area by: (i) disconnecting

some lines within that area (failed lines), and (ii) obstructing the information from within the

area to reach the control center. Given the phase angles of the buses outside the attacked area

(before and after the attack), our objective is to estimate the phase angles and detect the failed

lines in the attacked area. Unlike the previous chapter which was based on the DC power flow

model, in this chapter, we assume that the phase angles are given under the more accurate AC

power flow model.

As we proved in Section 5.3, the problem of the line failures detection using phase angle

measurments is combinatorial in nature, since the solution space is the discrete set of all possible

line failures. Despite the complexities, we present the Convex OPtimization for Statistical State

EStimation (COPSSES) Algorithm to estimate the phase angles of the buses and detect the failed

lines inside the attacked area. The algorithm is based on a variation of the convex relaxation that

was introduced in Section 5.6 for information recovery under the noisy DC power flow model.

Here, we adapt a similar idea in the COPSSES Algorithm and show that it can estimates the

phase angles and detects the line failures accurately under the AC power flow model. The

novelty of our approach is the transformation of the line failures detection problem to a convex
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optimization problem. Therefore, the COPSSES Algorithm can be used to detect any number

of line failures without affecting its running time.

We evaluate the performance of the COPSSES Algorithm in the IEEE 118- and 300-bus

systems, and show that it estimates the phase angles of the buses with less that 1% error, and

can detect the line failures with 80% accuracy for single, double, and triple line failures. The

algorithm can detect failures beyond triple line failures.

In a recent work [73], a linear multinomial regression model is proposed as a classifier for

a single line failure detection using transient PMU data. Due to the time complexity of the

learning process for more than a single line failure, this method is impractical for detecting

higher order failures. To the best of our knowledge, our work is the first to provide a method for

line failures detection under the AC power flow model that can be used to detect any number

of line failures.

6.1 State Estimation

We can formulate the state estimation problem after a cyber-physical attack similar to the

previous Chapter as follows: Given A, ~θ, and ~θ1
H̄

, the objective is to estimate ~θ1H and detect

F . To address this problem, we use and build on the idea that we introduced in the previous

Chapter. We proved in Chapter 5 that if the phase angles of the nodes are given under the

DC power flow equations, there exist vectors ~x P R|EH | and ~δH P R|VH | satisfying following

optimization problem for ε1 “ ε2 “ 0, and that suppp~xq “ ti|ei P F u and ~δH :“ ~θH ´ ~θ
1
H :

min }~x}1 s.t.

}DH~x´AH|H
~δH ´AH|H̄

~δH̄}2 ď ε1 (6.1)

}AH̄|H
~δH `AH̄|H̄

~δH̄}2 ď ε2.

where ~δH̄ :“ ~θH̄ ´
~θ1
H̄

.

The novelty of this method is that it provides a convex relaxation for the line failures de-

tection problem which is combinatorial in nature. Notice that for ε1 “ ε2 “ 0, the optimization

problem (6.1) is a Linear Program (LP). We proved that under several conditions on H, the
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solution to (6.1) is unique, therefore the relaxation is exact and the state of the grid can be

recovered by solving (6.1) (suppp~xq gives the failed lines and the phase angles can be computed

as ~θ1H “
~θH ´ ~δH). In particular, when H is acyclic and there is a matching between the nodes

in H and H̄ that covers H, the solution to (6.1) is unique for any set of line failures.1

Since the DC power flows only provides an approximation of the phase angles, it is obvious

that if the phase angles of the nodes are given under the AC power flows, the optimization

problem (6.1) for ε1 “ ε2 “ 0 is no longer feasible. One way to overcome this challenge is to

relax the exact conditions by selecting ε1, ε2 ą 0.

It is easy to see that if ε1, ε2 ą 0, the optimization problem (6.1) becomes a second-order

cone program that can still be efficiently solved using gradient decent methods.

The only challenge in using (6.1) for state estimation is that ε1 and ε2 need to be determined.

To overcome this challenge, we present the Convex OPtimization for Statistical State EStimation

(COPSSES) Algorithm. The idea is to change εi from si to ti and compute the solution to (6.1)

for each setup. If F is an array that contains all the detected line failures for each setup, then

the appearance frequency of each line in F gives a rough probability that the line is failed. PF

denotes the appearance frequency table of the lines in F . Moreover, the computed vector ~θH´~δH

in each iteration is an estimate of the phase angles inside the attacked zone. By computing the

mean and variance of all the estimated phase angle vectors in each iteration, it can improve this

estimation. We refer to the mean and variance of the estimated phase angles in H as ~µ1H , ~σ
1
H .

The COPSSES Algorithm is summarized in Algorithm 7.

6.2 Numerical Results

In this section, we evaluate the performance of the COPSSES Algorithm. We use the CVX [78]

for solving the optimization problem (6.1) and use MATPOWER [164] to compute ~θ and ~θ1

under the AC power flow model.

1We proved in Chapter 5 that the solution to (6.1) is unique under less restricted conditions. However, for

simplicity, we focus on the simplest case.
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Algorithm 7 Convex OPtimization for Statistical State EStimation (COPSSES)

Input: A connected graph G, attacked zone H, ~θ, and ~θ1
H̄

1: for ε1 “ s1 to t1 do

2: for ε2 “ s2 to t2 do

3: Compute ~x, ~δH the solution to (6.1) by second order cone programming;

4: Compute ~θH ´ ~δH as the estimated phase angles;

5: Compute F “ tei|i P suppp~xqu;

6: F “ rF , F s;
7: Θ1H “ rΘ

1
H ,
~θH ´ ~δH s

8: Compute the appearance frequency of each line in F to form an appearance frequency table PF ;

9: Compute the row mean and variance of Θ1H as ~µH , ~σH ;

10: return PF , ~µ
1
H , ~σ

1
H ;

We use the IEEE 118- and 300-bus benchmark systems as the test networks [1] and consider

the attacked zones H1 and H2 within these networks, repectively. Fig. 6.1 shows the topology

of the attacked zone H1 within the 118-bus system. Fig. 6.2 also shows the topology of the

attacked zone H2 within the 300-bus system. It is easy to see from Figs. 6.1 and 6.2 that H1

and H2 are both acyclic. For both of the attacked zones there is also a matching between the

nodes in Hi and H̄i that covers Hi.

To compute the error in the estimated phase angles, we compute }~µ1Hi ´
~θ1Hi}2{}

~θ1Hi}2ˆ 100.

Recall that ~µ1Hi is the vector of average estimated phase angles of the nodes in the attacked zone

obtained by the COPSSES Algorithm and ~θ1Hi is the vector of the actual phase angles of the

nodes.

To quantify the performance of the COPSSES Algorithm in detecting the failed lines, we can

use the appearance frequency table PF to detect the most likely failed lines using a threshold

value t. The idea is that if a line is detected as failed in at least ptˆ 100q% of the settings, then

we consider that line as a line that is most likely failed. If t “ 0.5, then the solution is similar

to the maximum likelihood set of failures based on PF . We consider t “ 0.2, 0.5, 0.8.
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Figure 6.1: Topology of the attacked zone in the 118-bus system with 21 nodes and 22 lines

(referred to as H1).

In this section, in the COPSSES Algorithm, we use s1 “ 3, t1 “ 7, s2 “ 1, and s2 “ 20.

Therefore, the COPSSES Algorithm estimates the state under 100 different settings for ε1 and

ε2. Notice that increasing the intervals rsi, tis increases the accuracy at the expense of the

running time.

6.2.1 Single line failures

In this subsection, we consider all possible single line failure scenarios in zones H1 and H2 as

the failed lines.

6.2.1.1 118-bus System

For all single line failure scenarios, the error in the estimated phase angles using the COPSSES

Algorithm is below 1%.

To show the results for the detected line failures, we use a heatmap matrix as in Fig. 6.3.

As can be seen, in most of the cases, the correct line is detected as the most probable failed line

by the COPSSES Algorithm. For example:
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Figure 6.2: Topology of the attacked zone in the 300-bus system with 16 nodes and 15 lines

(referred to as H2).

- For i “ 1, in 95% of the settings, line 1 is detected as the only failed line. In 5% of the

settings, however, no failure is detected.

- For i “ 15, in 100% of the settings, line 15 is detected as the failed line. However, in 3, 12,

16, 20, 20, 23, and 20% of the times, lines 12, 14, 16, 17, 18, 19, and 20 are also detected

as the failed lines.

Fig. 6.4 also shows the number of false negatives and positives if we use the appearance

frequency table PF and a threshold value t to detect the most likely failed lines. As can be

seen, for t “ 0.5, for almost 80% of the cases there are no false negatives or false positives. For

t “ 0.2, for almost 95% of the cases, there are no false negatives while for almost 80% of the

cases there are no false positives either.

6.2.1.2 300-bus System

In this case, the phase angle estimation is also very accurate. For all single line failure scenarios,

the error in the estimated phase angles using the COPSSES Algorithm is below 2%.
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Figure 6.3: Detected line failures after all single line failures in zone H1 within the IEEE 118-bus

system. The color intensity of each pi, jq square shows the number of times line j is detected as

failed when only line i is actually failed.

Fig. 6.5 shows the heatmap matrix of the failed line and detected failed lines. As can be

seen, in this case also the actual failed line is detected as the most probable failed line by the

COPSSES Algorithm, most of the time. For example:

- For i “ 5, in 95% of the settings, line 5 is detected as the only failed line. In 5% of the

settings, however, the optimization problem (6.1) is infeasible.

- For i “ 7, in 75% of the settings, line 7 is detected as the failed line. However, in 40 and

13% of the settings, lines 3 and 5 are also detected as the failed lines, respectively. In 25%

of the settings, (6.1) is infeasible.

As in the 118-bus system case, Fig. 6.6 shows the number of false negatives and positives

using the appearance frequency table PF and a threshold value t. As can be seen, for t “ 0.2

and t “ 0.5, the number of false positive and negatives is zero for most of the cases.

6.2.2 Double line failures

In this subsection, we consider all double line failure scenarios in zones H1 and H2 as the failed

lines.
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Figure 6.4: The CDF of the number of false negatives and positives in detecting single line

failures in H1 within the 118-bus system using the COPSSES Algorithm and a threshold value

t.

6.2.2.1 118-bus System

In this case, as in the single line failure, the phase angle estimation is very accurate. For

all double line failure scenarios, the error in the estimated phase angles using the COPSSES

Algorithm is below 2%.

Since there are many double line failure cases, we cannot show the failed lines detection

results as a matrix heatmap. However, as in the previous subsection, we can show the number

of false negatives and positives if we use the appearance frequency table PF and a threshold

value t to detect the most likely failed lines. As can be seen in Fig. 6.7, for t “ 0.2 for more

than 80% of the cases there is no false negative. Moreover, for more than 80% of the cases there

is less than a single false positive line detection.

6.2.2.2 300-bus System

In this case, as in the single line failure scenario and the 118-bus system, the phase angle

estimation is very accurate. For all double line failure scenarios, the error in the estimated

phase angles is below 2%.
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Figure 6.5: Detected line failures after all single line failures in zone H2 within the IEEE 300-bus

system. The color intensity of each pi, jq square shows the number of times line j is detected as

failed when only line i is actually failed.

To show the performance of the COPSSES Algorithm in detecting failures, as in the 118-bus

case, we compute the number of false negative and positive failure detections using PF and a

threshold value t. As can be seen in Fig. 6.8, in this case also for t “ 0.2, the detection is

relatively accurate. In almost 70% of the cases, there are no false negatives while in 80% of the

cases, there is no false positives either.

6.2.3 Triple line failures and beyond

Here, due to the page limit, we only consider up to 3 line failures in our numerical results.

However, the COPSSES Algorithm can be used to estimate the state in the attacked zone for

any number of line failures.

In this subsection, we consider 100 randomly sampled triple line failures from all possible

triple line failures in H1 and H2 as the failed lines.
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Figure 6.6: The CDF of the number of false negatives and positives in detecting single line

failures in H2 within the 300-bus system using the COPSSES Algorithm and a threshold value

t.

6.2.3.1 118-bus System

The phase angle estimation is nearly perfect for the triple line failure scenarios as in the previous

cases. The error for the estimated phase angles is less that 1% for all the sampled triple line

failure cases.

Fig. 6.9 shows the number of false negatives and positives, if we use the appearance frequency

table PF and a threshold value t to detect the most likely failed lines. As can be seen, for t “ 0.2,

in 80% of the times there is no false negatives while in 80% of the times there is at most 1 false

positive.

6.2.3.2 300-bus System

The phase angle estimation of the COPSSES Algorithm is surprisingly perfect for the triple line

failures scenarios in the H2. The error for the estimated phase angles is 0% for all the sampled

triple line failure cases.

As in the previous cases, to evaluate the performance of the COPSSES Algorithm in detecting

failures, we compute the number of false positives and negatives by selecting different threshold

values t. As can be seen in Fig. 6.10, for t “ 0.2, the Algorithm performs relatively well. In 70%
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Figure 6.7: The CDF of the number of false negatives and positives in detecting double line

failures in H1 within the 118-bus system using the COPSSES Algorithm and a threshold value

t.
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Figure 6.8: The CDF of the number of false negatives and positives in detecting double line

failures in H2 within the 300-bus system using the COPSSES Algorithm and a threshold value

t.

of the cases, there is no false negatives while for more than 80% of the cases, there is no false

positives either.
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Figure 6.9: The CDF of the number of false negatives and positives in detecting triple line

failures in H1 within the 118-bus system using the COPSSES Algorithm and a threshold value

t. 100 randomly sampled triple line failures are considered.
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Figure 6.10: The CDF of the number of false negatives and positives in detecting triple line

failures in H2 within the 300-bus system using the COPSSES Algorithm and a threshold value

t. 100 randomly sampled triple line failures are considered.
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6.3 Conclusion

We provided an algorithm to estimate the state of the grid following a cyber-physical attack

under the AC power flow model. We studied its performance under different scenarios (single,

double, and triple line failures) in IEEE 118- and 300-bus systems and showed that it can

estimate the phase angles almost perfectly (with less that 1% error) in these scenarios. Moreover,

we showed that our algorithm can detect line failures with less that 20% chance of producing

false positives and negatives.

We believe that the COPSSES Algorithm can accurately estimate the state of the grid for

less constrained attacked zones as well as in different scenarios such as false data injection.

Exploring these directions can be of interest to researchers.
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Chapter 7

Power Grid Islanding

Power Grid Islanding is an effective method to mitigate cascading failures in power grids [140].

The objective is to partition the network into smaller connected components, called islands,

such that each island can operate independently for a while. Power gird islanding is performed

in the early stages of a cascading failure to prevent the system to be separated into unbalanced

parts. It also expedites the restoration of the grid after a major failure, by reducing transient

stability problems during system reconnection.

In order for an island to operate, it is necessary that the power supply and demand at

that island are almost equal.1 Equality of supply and demand in an island, however, may not

be sufficient for its independent operation. It is also important that the infrastructure in that

island has the physical capacity to safely transfer the power from the supply nodes to the demand

nodes. When the island is large enough compared to the initial network, it is more likely that

it has enough capacity. This problem has been studied in the power systems community but

almost all the algorithms provided in the literature are heuristic methods that have been shown

to be effective only by simulations [71,107,121,139].

Motivated by this application, we formally introduce and study the Doubly Balanced Con-

nected graph Partitioning (DBCP) problem: Let G “ pV,Eq be a connected graph with a

1If the supply and demand are not exactly equal but still relatively close, load shedding/generation curtailing

can be used in order for the island to operate.
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weight (supply/demand) function p : V Ñ Z satisfying ppV q “
ř

jPV ppjq “ 0. The objective is

to partition V into pV1, V2q such that GrV1s and GrV2s are connected, |ppV1q|, |ppV2q| ď cp, and

maxt |V1|
|V2|

, |V2|
|V1|
u ď cs, for some constants cp and cs. We also consider the case that ppV q ‰ 0, in

which the excess supply/demand should be split roughly evenly.

The problem calls for a partition into two connected subgraphs that simultaneously balances

two objectives, (1) the supply/demand within each part, and (2) the sizes of the parts. The

connected partitioning problem with only the size objective has been studied previously. In

the most well-known result, Lováz and Gyori [80, 99] independently proved, using different

methods, that every k-connected graph can be partitioned into k arbitrarily sized connected

subgraphs. However, neither of the proofs is constructive, and there are no known polynomial-

time algorithms to find such a partition for k ą 3. For k “ 2, a linear time algorithm is provided

in [141] and for k “ 3 an Op|V |2q algorithm is provided in [149].2 The complexity of the problem

with the size objective and related optimization problems have been studied in [43, 48, 65] and

there are various NP-hardness and inapproximability results. Note that the size of the cut is not

of any relevance here (so the extensive literature on finding balanced partitions, not necessarily

connected, that minimize the cut is not relevant.)

The objective of balancing the supply/demand alone, when all ppiq are ˘1, can also be seen

as an extension for the objective of balancing the size (which corresponds to ppiq “ 1). Our

bi-objective problem of balancing both supply/demand and size, can be seen also as an extension

of the problem of finding a partition that balances the size for two types of nodes simultaneously:

Suppose the nodes of a graph are partitioned into red and blue nodes. Find a partition of the

graph into two large connected subgraphs that splits approximately evenly both the red and the

blue nodes.

We now summarize our results and techniques. Since the power grids are designed to wit-

hstand a single failure (“N ´ 1” standard) [29], and therefore 2-connected, our focus is mainly

on the graphs that are at least 2-connected. We first, in Section 7.4, study the connected partiti-

oning problem with only the supply/demand balancing objective, and show results that parallel

2For k “ 2, a much simpler approach than the one in [141] is to use the st-numbering [94] for 2-connected

graphs.
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the results for balancing size alone, using similar techniques: The problem is NP-hard in general.

For 2-connected graphs and weights ppiq “ ˘1, there is always a perfectly balanced partition

and we can find it easily using an st-numbering. For 3-connected graphs and weights ppiq “ ˘1,

there is a perfectly balanced partition into three connected graphs, and we can find it using a

nonseparating ear decomposition of 3-connected graphs [46] and similar ideas as in [149].

The problem is more challenging when we deal with both balancing objectives, supply/demand

and size. This is the main focus and occupies the bulk of this chapter. Our main results are

existence results and algorithms for 2- and 3-connected graphs. It is easy to observe that we

cannot achieve perfection in one objective (cp “ 0 or cs “ 1) without sacrificing completely the

other objective. We show that allowing the supply/demand of the parts to be off balance by at

most the weight of one node suffices to get a partition that is roughly balanced also with respect

to size.

First, in Section 7.4.1, we study the case of 3-connected graphs since we use this later as the

basis of handling 2-connected graphs. We show that if @i, ppiq “ ˘1, there is a partition that

is perfectly balanced with respect to both objectives, if |V | ” 0pmod 4q (otherwise the sizes are

slightly off for parity reasons); for general p, the partition is perfect in both objectives up to

the weight of a single node. Furthermore, the partition can be constructed in polynomial time.

Our approach uses the convex embedding characterization of k-connectivity studied by Linial,

Lováz, and Wigderson [95]. We need to adapt it for our purposes so that the convex embedding

also has certain desired geometric properties, and for this purpose we use the nonseparating ear

decomposition of 3-connected graphs of [46] to obtain a suitable embedding.

Then, in Section 7.4.2, we analyze the case of 2-connected graphs. We reduce it to two

subcases: either (1) there is a separation pair that splits the graph into components that are not

very large, or (2) we can perform a series of contractions to achieve a 3-connected graph whose

edges represent contracted subgraphs that are not too large. We provide a good partitioning

algorithm for case (1), and for case (2) we extend the algorithms for 3-connected graphs to

handle also the complications arising from edges representing contracted subgraphs. Finally, in

Section 7.5, we briefly discuss the problem of finding a connected partitioning of a graph with

two types of nodes that splits roughly evenly both types.
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7.1 Related Work

Power grid islanding is widely studied in power engineering community [71, 121, 140, 146]. Effi-

cient search algorithms for splitting the grid into two balanced (in terms of supply and demand

values) parts is studied in [140, 160]. These algorithm are shown to be effective for small grids.

However, since they depend on searching the entire solution space they are impractical in larger

grids.

Islanding methods using mixed integer programming were studied in [71, 107]. These met-

hods consider operational constraints as well as balancing conditions on the islands to partition

the network into two or more islands. Therefore, from engineering view point, these methods

consider the most realistic constraints between all previous works. However, since these methods

rely on integer variables, they do not guarantee to find the optimal solution in polynomial time.

Moreover, no approximation bounds are provided for these algorithms. These algorithms are

shown to be effective for small networks by simulations.

In a recent series of works, spectral clustering techniques in graph theory are used for power

grid islanding [69,109,121]. Although spectral clustering methods can be implemented efficiently,

since these methods are not bounded by any balancing or operational constraints, the solutions

obtained by these methods are not guaranteed to results in balanced or operable islands. These

methods are shown to perform well by simulations on small networks.

Finally, power grid islanding is also used to group synchronized generators together at the

time of frequency disturbance events. Effective heuristic methods with no guarantee of perfor-

mance are provided to partition the grid during these events in [97,146,158].

7.2 Preliminaries

In this section, we provide a short overview of the definitions and tools used in our work. Most of

the graph theoretical terms used in this chapter are relatively standard and borrowed from [36]

and [154].
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7.2.1 Terms from Graph Theory

Cutpoints and Subgraphs: A cutpoint of a connected graph G is a node whose deletion

results in a disconnected graph. Let X and Y be subsets of the nodes of a graph G. GrXs

denotes the subgraph of G induced by X. We denote by ErX,Y s the set of edges of G with one

end in X and the other end in Y .

Connectivity: The connectivity of a graph G “ pV,Eq is the minimum size of a set S Ă V

such that GzS is not connected. A graph is k-connected if its connectivity is at least k.

7.2.2 st-numbering of a Graph

Given any edge ts, tu in a 2-connected graph G, an st-numbering for G is a numbering for the

nodes in G defined as follows [94]: the nodes of G are numbered from 1 to n so that s receives

number 1, node t receives number n, and every node except s and t is adjacent both to a lower-

numbered and to a higher-numbered node. It is shown in [70] that such a numbering can be

found in Op|V | ` |E|q.

7.2.3 Series-Parallel Graphs

A Graph G is series-parallel, with terminals s and t, if it can be produced by a sequence of the

following operations:

1. Create a new graph, consisting of a single edge between s and t.

2. Given two series parallel graphs, X and Y with terminals sX , tX and sY , tY respectively,

form a new graph G “ P pX,Y q by identifying s “ sX “ sY and t “ tX “ tY . This is

known as the parallel composition of X and Y .

3. Given two series parallel graphs X and Y , with terminals sX , tX and sY , tY respectively,

form a new graph G “ SpX,Y q by identifying s “ sX , tX “ sY and t “ tY . This is known

as the series composition of X and Y .

It is easy to see that a series-parallel graph is 2-connected if, and only if, the last operation is a

parallel composition.
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7.2.4 Nonseparating Induced Cycles and Ear Decomposition

Let H be a subgraph of a graph G. An ear of H in G is a nontrivial path in G whose ends

lie in H but whose internal vertices do not. An ear decomposition of G is a decomposition

G “ P0 Y ¨ ¨ ¨ Y Pk of the edges of G such that P0 is a cycle and Pi for i ě 1 is an ear of

P0 Y P1 Y ¨ ¨ ¨ Y Pi´1 in G. It is known that every 2-connected graph has an ear decomposition

(and vice-versa), and such a decomposition can be found in linear time.

A cycle C is a nonseparating induced cycle of G if GzC is connected and C has no chords.

We say a cycle C avoids a node u, if u R C.

Theorem 7.1 (Tutte [145]). Given a 3-connected graph GpV,Eq let tt, ru be any edge of G and

let u be any node of G, r ‰ u ‰ t. Then there is a nonseparating induced cycle of G through

tt, ru and avoiding u.

Notice that since G is 3-connected in the previous theorem, every node in C has a neighbor in

GzC. Cheriyan and Maheshwari showed that the cycle in Theorem 7.1 can be found in OpEq [46].

Moreover, they showed that any 3-connected graph G has a nonseparating ear decomposition

G “ P0 Y ¨ ¨ ¨ Y Pk defined as follows: Let Vi “ V pP0q Y V pP1q ¨ ¨ ¨ Y V pPiq, let Gi “ GrVis and

Gi “ GrV zVis. We say that G “ P0 Y P1 Y ¨ ¨ ¨ Y Pk is an ear decomposition through edge tt, ru

and avoiding vertex u if the cycle P0 contains edge tt, ru, and the last ear of length greater than

one, say Pm, has u as its only internal vertex. An ear decomposition P0 Y P1 ¨ ¨ ¨ Y Pk of graph

G through edge tt, ru and avoiding vertex u is a nonseparating ear decomposition if for all i,

0 ď i ă m, graph Gi is connected and each internal vertex of ear Pi has a neighbor in Gi.

Theorem 7.2 (Cheriyan and Maheshwari [46]). Given an edge tt, ru and a vertex u of a 3-

connected graph G, a nonseparating induced cycle of G through tt, ru and avoiding u, and a

nonseparating ear decomposition can be found in time Op|V | ` |E|q.

7.2.5 Partitioning of Graphs to Connected Subgraphs

The following theorem is the main existing result in partitioning of graphs into connected

subgraphs and is proved independently by Lováz and Gyori [80,99] by different methods.
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Theorem 7.3 (Lováz and Gyori [80, 99]). Let G “ pV,Eq be a k-connected graph. Let n “

|V |, v1, v2, . . . , vk P V and let n1, n2, . . . , nk be positive integers satisfying n1`n2`¨ ¨ ¨`nk “ n.

Then, there exists a partition of V into pV1, V2 . . . , Vkq satisfying vi P Vi, |Vi| “ ni, and GrVis is

connected for i “ 1, 2, . . . , k.

Although the existence of such a partition has long been proved, there is no polynomial-time

algorithm to find such a partition for k ą 3. For k “ 2, it is easy to find such partition using

st-numbering. For k “ 3, Wada and Kawaguchi [149] provided an Opn2q algorithm using the

nonseparating ear decomposition of 3-connected graph.

7.2.6 Convex Embedding of Graphs

In this subsection, we provide a short overview of the beautiful work by Linial, Lováz, and

Wigderson [95] on convex embedding of the k-connected graphs. Let Q “ tq1, q2, . . . , qmu be

a finite set of points in Rd. The convex hull convpQq of Q is the set of all points
řm
i“1 λiqi

with
ř

i“1 λi “ 1. The rank of Q is defined by rankpQq “ 1 ` dimpconvpQqq. Q is in general

position if rankpSq “ d ` 1 for every pd ` 1q-subset S Ď Q. Let G be a graph and X Ă V .

A convex X-embedding of G is any mapping f : V Ñ R|X|´1 such that for each v P V zX,

fpvq P convpfpNpvqqq. We say that the convex embedding is in general position if the set fpV q

of the points is in general position.

Theorem 7.4 (Linial, Lováz, and Wigderson [95]). Let G be a graph on n vertices and 1 ă k ă

n. Then the following two conditions are equivalent:

1. G is k-connected

2. For every X Ă V with |X| “ k, G has a convex X-embedding in general position.

Notice that the special case of the Theorem for k “ 2 asserts the existence of an st-numbering

of a 2-connected graph. The proof of this theorem is inspired by physics. The embedding is

found by letting the edges of the graph behave like ideal springs and letting its vertices settle.

A formal summary of the proof (1 Ñ 2) is as follows (for more details see [95]). For each

vi P X, define fpviq arbitrary in Rk´1 such that fpXq is in general position. Assign to every
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edge pu, vq P E a positive elasticity coefficient cuv and let c P R|E| be the vector of coefficients.

It is proved in [95] that for almost any coefficient vector c, an embedding f that minimizes the

potential function P “
ř

tu,vuPE cuv}fpuq ´ fpvq}22 provides a convex X-embedding in general

position. Moreover, the embedding that minimizes P can be computed as follows,

fpvq “
1

cv

ÿ

uPNpvq

cuvfpuq for all v P V zX,

in which cv “
ř

uPNpvq cuv. Hence, the embedding can be found by solving a set of linear

equations in at most Op|V |3q time (or matrix multiplication time).

7.3 Balancing the Supply/Demand Only

In this section, we study the single objective problem of finding a partition of the graph into

connected subgraphs that balances (approximately) the supply and demand in each part of the

partition, without any regard to the sizes of the parts. We can state the optimization problem as

follows, and will refer to it as the Balanced Connected Partitioning with Integer weights (BCPI)

problem.

Definition 7.1. Given a graph G “ pV,Eq with a weight (supply/demand) function p : V Ñ Z

satisfying
ř

jPV ppjq “ 0. The BCPI problem is the problem of partitioning V into pV1, V2q such

that

1. V1 X V2 “ H and V1 Y V2 “ V ,

2. GrV1s and GrV2s are connected,

3. |ppV1q| ` |ppV2q| is minimized, where ppViq “
ř

jPVi
ppjq.

Clearly, the minimum possible value for |ppV1q| ` |ppV2q| that we can hope for is 0, which

occurs iff ppV1q “ ppV2q “ 0. It is easy to show that the problem of determining whether

there exists such a ‘perfect’ partition (and hence the BCPI problem) is strongly NP-hard. The

proof is very similar to analogous results concerning the partition of a graph into two connected

subgraphs with equal sizes (or weights, when nodes have positive weights) [43,65]
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Proposition 7.1. (1) It is strongly NP-hard to determine whether there is a solution to the

BCPI problem with value 0, even when G is 2-connected.

(2) If G is not 2-connected, then this problem is NP-hard even when @i, ppiq “ ˘1.

Proof. We use the proof of [43, Theorem 2] with a modest change. The reduction is from the

X3C problem [108], which is a variant of the Exact Cover by 3-sets and defined as follows:

Given a set X with |X| “ 3q and a family C of 3-element subsets of X such that |C| “ 3q and

each element of X appears in exactly 3 sets of C, decide whether C contains an exact cover

for X. Given an instance pX,Cq of X3C, let G “ pV,Eq be the graph with the vertex set

V “ X Y C Y ta, bu and edge set E “
Ť3q
j“1rtCjxi|xi P Cju Y tCjau Y tCjbus. Set ppaq “ 2q,

ppbq “ 9q2` q, ppCjq “ ´1, and ppxiq “ ´3q. It is easy to verify that C contains an exact cover

for X if and only if the BCPI problem has a solution such that ppV1q “ ppV2q “ 0. This shows

the first claim.

For the second claim, attach to nodes a, b, and the xis, paths of length 2q, 9q2 ` q, and 3q,

respectively, and set the supply/demand values of a, b, the xi’s and the new nodes equal to `1

(for the paths for a and b) or ´1 (for the xi’s). �

Although it is NP-hard to tell whether there is a solution satisfying ppV1q “ ppV2q “ 0, even

when @i, ppiq “ ˘1, in this case, if the graph G is 2-connected there is always such a solution.

For general weights p, there is a solution such that |ppV1q|, |ppV2q| ď maxjPV |ppjq|{2 and it can

be found easily in linear time using the st-numbering between two nodes.

Proposition 7.2. Let G be a 2-connected graph and u, v any two nodes in V such that ppuqppvq ą

0.

(1) There is a solution such that u P V1, v P V2, and |ppV1q| “ |ppV2q| ď maxjPV |ppjq|{2.

(2) If @i, ppiq “ ˘1, we can find a solution such that u P V1, v P V2, and ppV1q “ ppV2q “ 0.

In both cases, the solution can be found in Op|E|q time.

Proof. Clearly, part (2) follows immediately from part (1) because in this case, ppV1q, ppV2q are

integer and maxjPV |ppjq|{2 “ 1{2. To show part (1), pick two arbitrary nodes u, v P V with

ppuqppvq ą 0. Since we want to separate u and v, we can assume wlog that initially tu, vu P G.



CHAPTER 7. POWER GRID ISLANDING 134

Since G is 2-connected, an st-numbering between nodes u and v as u “ v1, v2, . . . , vn “ v can be

found in Op|V |`|E|q [70]. Define V
piq

1 :“ tv1, v2, . . . , viu. It is easy to see that ppV
p1q

1 q “ ppuq ą 0

and ppV
pn´1q

1 q “ ´ppvq ă 0. Hence, there must exist an index 1 ď i˚ ă n such that |ppV
pi˚q

1 q| ą 0

and |ppV
pi˚`1q

1 q| ď 0. Since |ppV
piq

1 q´ ppV
pi`1q

1 q| “ |ppi˚` 1q|, either |ppV
pi˚q

1 q| ď |ppi˚` 1q|{2 or

|ppV
pi˚`1q

1 q| ď |ppi˚` 1q|{2; Accordingly set V1 “ V
pi˚q

1 or V1 “ V
pi˚`1q

1 . Let V2 “ V zV1. Hence,

pV1, V2q is a solution with |ppV1q| “ |ppV2q| ď |ppi
˚ ` 1q{2| ď maxjPV |ppjq|{2. It is easy to see

that i˚ can be found in Op|V |q. �

Remark 7.1. The bound in Proposition 7.2 (1) is tight. A simple example is a cycle of length

4 like pv1, v2, v3, v4q with ppv1q “ ´p, ppv2q “ ´p{2, ppv3q “ p, and ppv4q “ p{2. It is easy to

see that in this example |ppV1q| ` |ppV2q| “ maxjPV |ppjq| “ p is the best that one can do.

7.3.1 Connected Partitioning into Many Parts

The BCPI problem can be extended to partitioning a graph into k “ 3 or more parts. Let

G “ pV,Eq be a graph with a weight function p : V Ñ Z satisfying
ř

jPV ppjq “ 0. The

BCPIk problem is the problem of partitioning G into pV1, V2, . . . , Vkq such that for any 1 ď i ď k,

GrVis is connected and
řk
i“1 |ppViq| is minimized.

In the following proposition, we show that for k “ 3, if ppiq “ ˘1,@i, then there is always

a perfect partition (i.e., with ppV1q “ ppV2q “ ppV3q “ 0) and it can be found efficiently. For

general p, we can find a partition such that |ppV1q| ` |ppV2q| ` |ppV3q| ď 2 maxjPV |ppjq|. The

proof and the algorithm use a similar approach as the algorithm in [149] for partitioning a

3-connected graph to three connected parts with prescribed sizes, using the nonseparating ear

decomposition of 3-connected graphs as described in Subsection 7.2.4.

Proposition 7.3. Let G be a 3-connected graph and u, v, w three nodes in V such that ppuq, ppvq, ppwq ą

0 or ppuq, ppvq, ppwq ă 0.

(1) There is a solution such that u P V1, v P V2, w P V3, and |ppV1q| ` |ppV2q| ` |ppV3q| ď

2 maxjPV |ppjq|.

(2) If @i, ppiq “ ˘1, then there is a solution such that u P V1, v P V2, w P V3, and |ppV1q| “
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|ppV2q| “ |ppV3q| “ 0.

In both cases, the solution can be found in Op|E|q time.

Proof. Consider the case of general function p, and let pmax “ maxjPV |ppjq|. We will show

that we can find a solution such that u P V1, v P V2, w P V3 with |ppV1q|, |ppV2q| ď pmax{2.

Since |ppV3q| “ |ppV1q ` ppV2q| (recall ppV q “ 0), this implies that |ppV3q| ď pmax, and hence

|ppV1q|` |ppV2q|` |ppV3q| ď 2pmax. Furthermore, if ppiq “ ˘1 for all i P V , hence pmax “ 1, then

|ppV1q|, |ppV2q| ď pmax{2 implies that ppV1q “ ppV2q “ 0, and therefore also ppV3q “ 0. Thus,

both claims will follow.

Assume u, v, w P V and ppuq, ppvq, ppwq ą 0 (the case of negative ppuq, ppvq, ppwq is sym-

metric). Since we want to separate u from v, we can assume without loss of generality that

tu, vu P E. Using [46], there is a non-separating ear decomposition through the edge tu, vu

and avoiding node w. Ignore the ears that do not contain any internal nodes, and let Q0 Y

Q1 Y ¨ ¨ ¨ Y Qr be the decomposition consisting of the ears with nodes; we have w P Qr. Let

Vi “ V pQ0q Y V pQ1q ¨ ¨ ¨ Y V pQiq, let Gi “ GrVis and Gi “ GrV zVis. We distinguish two cases,

depending on whether ppV0q ď 0 or ppV0q ą 0.

(i) If ppV0q ď 0, then consider an st-numbering between u and v in V0, say u “ v1, v2, . . . , vs “

v. Define V
piq

0 “ tv1, v2, . . . , viu. Since ppuq, ppvq ą 0 and ppV0q ď 0, there must exist

indices 1 ď i˚ ď j˚ ă s such that ppV
pi˚q

0 q ą 0, ppV
pi˚`1q

0 q ď 0 and ppV0zV
pj˚`1q

0 q ą

0, ppV0zV
pj˚q

0 q ď 0.

(a) If i˚ “ j˚, since ppV
pi˚q

0 q ` ppvi˚`1q ` ppV0zV
pi˚`1q

0 q “ ppV0q ă 0, we have ppV
pi˚q

0 q `

ppV0zV
pi˚`1q

0 q ď |ppvi˚`1q|. Now, one of the following three cases happens:

- If ppV
pi˚q

0 q ď |ppvi˚`1q|{2 and ppV0zV
pi˚`1q

0 q ď |ppvi˚`1q|{2, then it is easy to see

that V1 “ V
pi˚q

0 , V2 “ V0zV
pi˚`1q

0 , and V3 “ V zpV1 Y V2q is a good partition.

- If ppV
pi˚q

0 q ą |ppvi˚`1q|{2 and ppV0zV
pi˚`1q

0 q ď |ppvi˚`1q|{2, then ppV
pi˚q

0 q `

ppvi˚`1q “ ppV
pi˚`1q

0 q ď |ppvi˚`1q|{2. Hence, V1 “ V
pi˚`1q

0 , V2 “ V0zV
pi˚`1q

0 ,

and V3 “ V zV0 is a good partition.
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- If ppV
pi˚q

0 q ď |ppvi˚`1q|{2 and ppV0zV
pi˚`1q

0 q ą |ppvi˚`1q|{2, then ppV0zV
pi˚`1q

0 q`

ppvi˚`1q “ ppV0zV
pi˚q

0 q ď |ppvi˚`1q|{2. Hence, V1 “ V
pi˚q

0 , V2 “ V0zV
pi˚q

0 , and

V3 “ V zV0 is a good partition.

(b) If i˚ ă j˚, then either ppV
pi˚q

0 q ď |ppvi˚`1q|{2 or |ppV
pi˚`1q

0 q| ď |ppvi˚`1q|{2, accor-

dingly set V1 “ V
pi˚q

0 or V1 “ V
pi˚`1q

0 . Similarly, either ppV0zV
pj˚`1q

0 q ď |ppvj˚`1q|{2

or |ppV0zV
pj˚q

0 q| ď |ppvj˚`1q|{2, so accordingly set V2 “ V0zV
pj˚`1q

0 or V2 “ V0zV
pj˚q

0 .

Set V3 “ V zpV1 Y V2q. It is easy to check that pV1, V2, V3q is a good partition.

(ii) If ppV0q ą 0, then since ppwq ą 0 and therefore ppVr´1q ă 0, there must exist an index

0 ď j ă r ´ 1 such that ppVjq ą 0 and ppVj`1q ď 0. Consider an st-numbering between u

and v in GrVjs as u “ v1, v2, . . . , vs “ v and define V
piq
j “ tv1, v2, . . . , viu. The ear Qj`1 is

a path of new nodes q1, q2, . . . , qt attached to two (distinct) nodes vx, vy of GrVjs through

edges tvx, q1u, tqt, vyu P E; assume wlog that 1 ď x ă y ď s. For simplicity, we will use

below Qj`1 to denote also the set tq1, q2, . . . , qtu of internal (new) nodes of the ear. Also

define Q
piq
j`1 “ tq1, q2, . . . , qiu and Q

p0q
j`1 “ H. One of the following cases must happen:

(a) Suppose there is an index 1 ď i˚ ă py´ 1q such that ppV
pi˚q
j q ą 0 and ppV

pi˚`1q
j q ď 0

or there is an index x ` 1 ă i˚ ă s such that ppVjzV
pi˚´1q
j q ą 0 and ppVjzV

pi˚q
j q ď

0. Let’s assume there is an index 1 ď i˚ ă py ´ 1q, such that ppV
pi˚q
j q ą 0 and

ppV
pi˚`1q
j q ď 0 (the other case is exactly similar). Then either ppV

pi˚q
j q ď |ppvi˚`1q|{2

or |ppV
pi˚`1q
j q| ď |ppvi˚`1q|{2, accordingly set either V1 “ V

pi˚q
j or V1 “ V

pi˚`1q
j . Set

V 12 “ VjzV1. One of the following cases happens:

- If V1 “ V
pi˚q
j and ppV 12q ď 0, then since ppV

pi˚`1q
j q ď 0, we have ppVjzV

pi˚`1q
j q ą

0. Hence, ppV 12ztvi˚`1uq ą 0. So, it is either |ppV 12q| ď |ppvi˚`1q|{2 or ppV 12ztvi˚`1uq ď

|ppvi˚`1q|{2. Now if ppV 12ztvi˚`1uq ď |ppvi˚`1q|{2, since also ppV1q ď |ppvi˚`1q|{2,

ppVjq ď 0 which contradicts with the assumption. Therefore, |ppV 12q| ď |ppvi˚`1q|{2.

Set V2 “ V 12 and V3 “ V zpV1 Y V2q. It is easy to check that pV1, V2, V3q is a good

partition.

- If V1 “ V
pi˚q
j and ppV 12q ą 0, then since ppVj Y Qj`1q ă 0, there is an index

0 ă t˚ ď t, such that ppV 12 Y pQj`1zQ
pt˚q
j`1qq ą 0 and ppV 12 Y pQj`1zQ

pt˚´1q
j`1 qq ď 0.
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Hence, either ppV 12 Y pQj`1zQ
pt˚q
j`1qq ď |ppqt˚q|{2 or |ppV 12 Y pQj`1zQ

pt˚´1q
j`1 qq| ď

|ppqt˚q|{2, accordingly set V2 “ V 12 Y pQj`1zQ
pt˚q
j`1q or V2 “ V 12 Y pQj`1zQ

pt˚´1q
j`1 q.

Set V3 “ V zpV1 Y V2q. It is easy to see that pV1, V2, V3q is a good partition.

- If V1 “ V
pi˚`1q
j , then since ppV1q ď 0, we have ppV 12q ą 0. The rest is exactly like

the previous case when V1 “ V
pi˚q
j and ppV 12q ą 0.

(b) Suppose that for every 1 ď i ă y, ppV
piq
j q ą 0 and for every x ă i ă s, ppVjzV

piq
j q ą

0. Set V 11 “ V
py´1q
j and V 12 “ VjzV

1
1 . Based on the assumption ppV 11q, ppV

1
2q ą 0.

Since ppVj`1q ď 0, there are indices 0 ď i˚ ď j˚ ă t such that ppV 11 Y Q
pi˚q
j`1q ą 0,

ppV 11 YQ
pi˚`1q
j`1 q ď 0 and ppV 12 Y pQj`1zQ

pj˚`1q
j`1 qq ą 0, ppV 12 Y pQj`1zQ

pj˚q
j`1 qq ď 0. The

rest of the proof is similar to case (i) when ppV0q ď 0.

�

7.4 Balancing Both Objectives

In this section, we formally define and study the Doubly Balanced Connected graph Partitioning

(DBCP) problem.

Definition 7.2. Given a graph G “ pV,Eq with a weight (supply/demand) function p : V Ñ Z

satisfying ppV q “
ř

jPV ppjq “ 0 and constants cp ě 0, cs ě 1. The DBCP problem is the

problem of partitioning V into pV1, V2q such that

1. V1 X V2 “ H and V1 Y V2 “ V ,

2. GrV1s and GrV2s are connected,

3. |ppV1q|, |ppV2q| ď cp and maxt |V1|
|V2|

, |V2|
|V1|
u ď cs, where ppViq “

ř

jPVi
ppjq.

Remark 7.2. Our techniques apply also to the case that ppV q ‰ 0. In this case, the requirement

3 on ppV1q and ppV2q is |ppV1q ´ ppV q{2|, |ppV2q ´ ppV q{2| ď cp, i.e., the excess supply/demand

is split approximately evenly between the two parts.
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Figure 7.1: Series-parallel graphs with 2s ` 1 paths of length 4t ` 2 used in Observations 7.1

and 7.2.

We will concentrate on 2-connected and 3-connected graphs and show that we can construct

efficiently good partitions. For most of the section we will focus on the case that ppiq “ ˘1,@i P

V . This case contains all the essential ideas. All the techniques generalize to the case of arbitrary

p, and we will state the corresponding theorems.

We observed in Section 2 that if the graph is 2-connected and ppiq “ ˘1,@i P V then there

is always a connected partition that is perfect with respect to the weight objective, ppV1q “

ppV2q “ 0, i.e., (3) is satisfied with cp “ 0. We know also from [80, 99] that there is always a

connected partition that is perfect with respect to the size objective, |V1| “ |V2|, i.e., condition

3 is satisfied with cs “ 1. The following observations show that combining the two objectives

makes the problem more challenging. If we insist on cp “ 0, then cs cannot be bounded in

general, (it will be Ωp|V |q), and if we insist on cs “ 1, then cp cannot be bounded. The series-

parallel graphs of Figure 7.1 provide simple counterexamples.

Observation 7.1. If cp “ 0, then for any cs ă |V |{2 ´ 1, there exist a 2-connected graph G

such that the DBCP problem does not have a solution even when @i, ppiq “ ˘1.

Proof. In the graph depicted in Figure 7.1, set t “ 0. �

Observation 7.2. If cs “ 1, then for any cp ă |V |{6, there exist a 2-connected graph G such

that the DBCP problem does not have a solution even when @i, ppiq “ ˘1.

Proof. In the graph depicted in Figure 7.1, set s “ 1. �
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Thus, cp has to be at least 1 to have any hope for a bounded cs. We show in this section

that cp “ 1 suffices for all 2-connected graphs. We first treat 3-connected graphs.

7.4.1 3-Connected Graphs

Let G “ pV,Eq be a 3-connected graph. Assume for the most of this section that @i, ppiq “ ˘1

and ppV q “ 0 (we will state the results for general p at the end). We show that G has a

partition that is essentially perfect with respect to both objectives, i.e., with cp “ 0 and cs “ 1.

We say “essentially”, because ppV1q “ ppV2q “ 0 and |V1| “ |V2| imply that |V1| “ |V2| are

even, and hence V must be a multiple of 4. If this is the case, then indeed we can find such a

perfect partition. If |V | ” 2pmod 4q (|V | has to be even since ppV q “ 0), then we can find an

‘almost perfect’ partition, one in which |ppV1q| “ |ppV2q| “ 1 and |V1| “ |V2| (or one in which

ppV1q “ ppV2q “ 0 and |V1| “ |V2| ` 2).

We first treat the case that G contains a triangle (i.e., cycle of length 3). In the following

Lemma, we use the embedding for k-connected graphs introduced in [95] and as described in

Subsection 7.2.6, to show that if G is 3-connected with a triangle and all weights are ˘1, then

the DBCP problem has a perfect solution.

Lemma 7.1. If G is 3-connected with a triangle, @i, ppiq “ ˘1, and |V | ” 0pmod 4q, then there

exists a solution to the DBCP problem with ppV1q “ ppV2q “ 0 and |V1| “ |V2|. If |V | ” 2pmod 4q,

then there is a solution with ppV1q “ ppV2q “ 0 and |V1| “ |V2| ` 2. Moreover, this partition can

be found in polynomial time.

Proof. Assume that |V | ” 0pmod 4q; the proof for the case |V | ” 2pmod 4q is similar. In [95] as

described in Subsection 7.2.6, it is proved that if G is a k-connected graph, then for every X Ă V

with |X| “ k, G has a convex X-embedding in general position. Moreover, this embedding can

be found by solving a set of linear equations of size |V |. Now, assume v, u, w P V form a triangle

in G. Set X “ tv, u, wu. Using the theorem, G has a convex X-embedding f : V Ñ R2 in general

position. Consider a circle C around the triangle fpuq, fpvq, fpwq in R2 as shown in an example

in Fig. 7.2. Also consider a directed line L tangent to the circle C at point A. If we project the

nodes of G onto the line L, since the embedding is convex and also tu, vu, tu,wu, tw, vu P E, the
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order of the nodes’ projection gives an st-numbering between the first and the last node (notice

that the first and last nodes are always from the set X). For instance in Fig. 7.2, the order of

projections give an st-numbering between the nodes u and v in G. Hence, if we set V1 to be the

|V |{2 nodes whose projections come first and V2 are the |V |{2 nodes whose projections come

last, then GrV1s and GrV2s are both connected and |V1| “ |V2| “ |V |{2. The only thing that

may not match is ppV1q and ppV2q. Notice that for each directed line tangent to the circle C,
we can similarly get a partition such that |V1| “ |V2| “ |V |{2. So all we need is a point D on

the circle C such that if we partition based on the directed line tangent to C at point D, then

ppV1q “ ppV2q “ 0. To find such a point, we move L from being tangent at point A to point B

(AB is a diameter of the circle C) and consider the resulting partition. Notice that if at point A,

ppV1q ą 0, then at point B since V1 and V2 completely switch places compared to the partition

at point A, ppV1q ă 0. Hence, as we move L from being tangent at point A to point B and

keep it tangent to the circle, in the resulting partitions, ppV1q goes from some positive value to a

non-positive value. Notice that the partition pV1, V2q changes only if L passes a point D on the

circle such that at D, L is perpendicular to a line that connects fpiq to fpjq for some i, j P V .

Now, since the embedding is in general position, there are exactly two points on every line that

connects two points fpiq and fpjq, so V1 changes at most by one node leaving V1 and one node

entering V1 at each step as we move L. Hence, ppV1q changes by either ˘2 or 0 value at each

change. Now, since |V | ” 0pmod 4q, ppV1q has an even value in all the resulting partitions.

Therefore, as we move L from being tangent at point A to point B, there must be a point D

such that in the resulting partition ppV1q “ ppV2q “ 0.

Note that the order of the projected points and V1 may change only when a line that passes

through 2 nodes of graph G is perpendicular to L. We can sort first the slopes of all the

lines connecting two nodes of G (or alternatively we can use a priority queue) and then rotate

the line L from the initial position A until we find the point D that yields a partition with

ppV1q “ ppV2q “ 0 in Op|V |2 log |V |q time. �

When G is a triangle-free 3-connected graph, however, the proof in Lemma 7.1 cannot be

directly used anymore. The reason is if for example tu, vu R E and we project the nodes of G onto
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Figure 7.2: Proof of Lemma 7.1.

the line L, this time the order of the nodes projection does not give an st-numbering between

the first and the last node if for example u and w are the first and last node, since some of the

middle nodes may only be connected to v. To prove a similar result for triangle-free 3-connected

case, we first provide the following two Lemmas. The main purpose of the following two Lemmas

are to compensate for the triangle-freeness of G in the proof of Lemma 7.1. The idea is to show

that in every 3-connected graph, there is a triple tu,w, vu P V , such that tu,wu, tw, vu P E and

in every partition that we get by the approach used in the proof of Lemma 7.1, if u and v are

in Vi, so is a path between u and v.

Lemma 7.2. If G is 3-connected, then there exists a set tu, v, wu P V and a partition of V into

pV 11 , V
1

2q such that:

1. V 11 X V
1

2 “ H and V 11 Y V
1

2 “ V ,

2. GrV 11s and GrV 12s are connected,

3. tu,wu, tv, wu P E,

4. w P V 11, u, v P V 12, and u, v are not cutpoints of GrV 12s,

5. |V 12 | ď |V |{2.

Moreover, such a partition and tu, v, wu can be found in Op|E|q time.
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Figure 7.3: Proof of Lemma 7.3 and Theorem 7.5.

Proof. Using the algorithm presented in [46], we can find a non-separating cycle C0 in G such

that every node in C0 has a neighbor in GzC0 in Op|E|q time. Now, we consider two cases:

(i) If |C0| ď |V |{2 ` 1, then select any three consecutive nodes pu,w, vq of C0 and set V 12 “

C0ztwu and V 11 “ V zV 12 .

(ii) If |C0| ą |V |{2 ` 1, since every node in C0 has a neighbor in GzC0, there exists a node

w P V zC0 such that |Npwq X C0| ě 2. Select two nodes u, v P Npwq X C0. There exists a

path P in C0 from u to v such that |P | ă |V |{2` 1. Set V 12 “ P and V 11 “ V zV 12 . �

Lemma 7.3. Given a partition pV 11 , V
1

2q of a 3-connected graph G with following properties:

1. V 11 X V
1

2 “ H and V 11 Y V
1

2 “ V ,

2. GrV 11s and GrV 12s are connected,

3. w P V 11, u, v P V 12, and u, v are not cutpoints of GrV 12s,

G has a convex X-embedding in general position with mapping f : V Ñ R2 such that:

1. X “ tu,w, vu, fpuq “ p0, 0q, fpvq “ p1, 0q, and fpwq “ p0, 1q,

2. Every node i in V 11 is mapped to a point pf1piq, f2piqq with f2piq ě 1{2,
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3. Every node i in V 12 is mapped to a point pf1piq, f2piqq with f1piq ě f2piq and f1piq`2f2piq ď

1.

Moreover, such an embedding can be found in in polynomial time.

Proof. Set X “ tv, u, wu. Using [95], G has a convex X-embedding in R2 in general position

with mapping f : V Ñ R2 such that fpuq “ p0, 0q, fpvq “ p1, 0q, and fpwq “ p0, 1q. In the X-

embedding of the nodes, we have a freedom to set the elasticity coefficient vector ~c to anything

that we want (except a measure zero set of vectors). So for any edge ti, ju P GrV 11s YGrV
1

2s, set

cij “ g; and for any ti, ju P ErV 11 , V
1

2s, set cij “ 1. Assume L1 is the line y “ 0.5, L2 is the line

x` 2y “ 1, and L3 is the line x “ y.

First, we show that there exist a g for which all the nodes in V 11 will be embedded above

the line L1. To show this, from [95], we know the embedding is such that it minimizes the total

potential Ppf,~cq “
ř

ti,juPE cij}fpiq ´ fpjq}
2. Notice that we can independently minimize P on

x-axis values and y-axis values as below:

min
f

P “ min
f1

Px `min
f2

Py

“ min
f1

ÿ

ti,juPE

cijpf1piq ´ f1pjqq
2 `min

f2

ÿ

ti,juPE

cijpf2piq ´ f2pjqq
2

Now, notice that if we place all the nodes in V 11 at point (0,1) and all the nodes in V 12 on the

line uv, then Py ď |E|. Hence, if f2 minimizes Py, then Pypf2, cq ď |E|. Set g ě 4|V |2|E|. We

show that if f2 minimizes Py, then for all edges ti, ju P GrV 11sYGrV
1

2s, pf2piq´f2pjqq
2 ď 1{p4|V |2q.

By contradiction, assume there is an edge ti, ju P GrV 11s Y GrV 12s such that pf2piq ´ f2pjqq
2 ą

1{p4|V |2q. Then, cijpf2piq ´ f2pjqq
2 “ gpf2piq ´ f2pjqq

2 ą |E|. Hence, Pypf2, cq ą |E| which

contradicts with the fact the f2 minimizes Py. Therefore, if g ě 4|V |2|E|, then for all ti, ju P

GrV 11sYGrV
1

2s, |f2piq´ f2pjq| ď 1{p2|V |q. Now, since GrV 11s is connected, all the nodes in V 11 are

connected to w with a path of length (in number of hops) less than |V | ´ 1. Hence, using the

triangle inequality, for all i P V 11 :

|f2pwq ´ f2piq| ď p|V | ´ 1q{p2|V |q ă 1{2 ñ |1´ f2piq| ă 1{2,

which means that all the nodes in V 11 are above L1.
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With the very same argument, if g ě t2|V |2|E|, then for all i P V 12 , f2piq ă 1{t.

Now, we want to prove that there is a g such that all the nodes in V 12 will be embedded

below the lines L2 and L3. Define n1piq :“ |Npiq X V 11 | and n2piq :“ |Npiq X V 12 |. From [95],

we know the embedding is such that for all i P V ztu, v, wu, fpiq “ 1{ci
ř

jPNpiq cijfpjq, where

cj “
ř

jPNpiq cijfpjq. Since GrV 12s is connected and u is not a cutpoint of GrV 12s, for every

i P V 12ztu, vu there is a path i “ v1, v2, . . . , vr “ v in V 12 not containing node u. Using this

ordering:

$

’

&

’

%

f1pvjq ě
1

n2pvjqg`n1pvjq
gf1pvj`1q ě p1{|V |qf1pvj`1q, @j P t1, . . . , r ´ 1u

f1pvrq “ f1pvq “ 1

ñ @i P V 12ztu, vu : f1piq ě p1{|V |q
r ě p1{|V |q|V |.

On the other hand, from the previous part, if we set g ě |V |2|V |`2|E|, then for all i P V 12 ,

f2piq ď p1{|V |q
|V |. Hence, for all i P V 12 , f2piq ď f1piq, which means that all the nodes in V 12 will

be placed below the line L3.

With the very same idea, we show that there exist a g for which all the nodes in V 12 will be

placed below the line L2. Since GrV 12s is connected and v is not a cutpoint of GrV 12s, for every

i P V 12ztu, vu there is a path u “ u1, u2, . . . , ut “ i in V 12 not containing node v. Notice that for

all i P V ztu, v, wu, 1 ´ f1piq “ 1{ci
ř

jPNpiq cijp1 ´ f1pjqq. Hence, since @j P V : f1pjq ď 1, we

have,

$

’

&

’

%

1´ f1pujq ě
1

n2pujqg`n1pujq
gp1´ f1pui´1qq ě p1{|V |qp1´ f1pui´1qq, @j P t2, . . . , tu

1´ f1puq “ 1´ f1pu1q “ 1

ñ @i P V 12ztu, vu : 1´ f1piq ě p1{|V |q
t ě p1{|V |q|V |.

From the previous part, if we set g ě 4|V |2|V |`2|E|, then for all i P V 12 , f2piq ď 1{2p1{|V |q|V |.

Hence, for i P V 12 , f1piq ` 2f2piq ď 1, which means that all the nodes in V 12 will be placed below

the line L3. Therefore, if we set g ě 4|V |2|V |`2|E|, then we will get an embedding as depicted

in Fig. 7.3. Note that a polynomial number of bits suffices for g.
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Notice that if ~c is a “good” vector, then so is ~c ` ~ε in which ~ε is a vector with very small

Euclidean norm. Hence, we can always find a “good” vector ~c which results in a X-embedding

in general position. �

Using Lemmas 7.2 and 7.3, we are now able to prove that for any 3-connected graph G such

that all the weights are ˘1, the DBCP problem has a solution for cp “ 0 and cs “ 1. The idea

of the proof is similar to the proof of Lemma 7.1, however, we need to use Lemma 7.2 to find a

desirable partition pV 11 , V
1

2q and then use this partition to find an embedding with properties as

described in Lemma 7.3. By using this embedding, we can show that in every partition that we

obtain by the approach in the proof of Lemma 7.1, if u and v are in Vi, so is a path between u

and v. This implies then that GrV1s and GrV2s are connected. So we can use similar arguments

as in the proof of Lemma 7.1 to prove the following theorem.

Theorem 7.5. If G is 3-connected, @i, ppiq “ ˘1, and |V | ” 0pmod 4q, then there exists a

solution to the DBCP problem with ppV1q “ ppV2q “ 0 and |V1| “ |V2|. If |V | ” 2pmod 4q, then

there is a solution with ppV1q “ ppV2q “ 0 and |V1| “ |V2| ` 2. Moreover, this partition can be

found in polynomial time.

Proof. Assume that |V | ” 0pmod 4q; the proof for the case |V | ” 2pmod 4q is similar. Using

Lemma 7.2, we can find tu, v, wu P V and a partition pV 11 , V
1

2q of V with properties described

in the Lemma. Set X “ tu, v, wu. Using Lemma 7.3, we can find a convex X-embedding of G

in general position with properties described in the Lemma as depicted in Fig. 7.3. The rest

of the proof is very similar to the proof of Lemma 7.1. We consider again a circle C around

fpuq, fpvq, fpwq in R2 as shown in Fig. 7.3. Also consider a directed line L tangent to the circle

C at point A. If we project the nodes of G onto the line L, this time the order of the nodes

projection gives an st-numbering between the first and the last node only if u and v are the first

and last node. However, if we set V1 to be the |V |{2 nodes whose projections come first and V2

are the |V |{2 nodes whose projections come last, then GrV1s and GrV2s are both connected even

when u and v are not the first and last nodes. The reason lies on the special embedding that we

considered here. Assume for example w and v are the first and the last projected nodes, and V1
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and V2 are set of the |V |{2 nodes which projections come first and last, respectively. Two cases

might happen:

(i) If u,w P V1 and v P V2, then since tu,wu P E, both GrV1s and GrV2s are connected because

of the properties of the embedding.

(ii) If w P V1 and u, v P V2, since |V 12 | ď |V |{2 and |V2| “ |V |{2, then either V2 “ V 12 or

V2 X V 11 ‰ H. If V2 “ V 12 , and hence V1 “ V 11 then there is nothing to prove. So assume

there is a node z P V2 X V 11 . From the properties of the embedding, the triangle tz, u, vu

contains all the nodes of V 12 . Since tz, u, vu P V2, and V2 contains all the nodes that are

on a same side of a halfplane, we should also have V 12 Ă V2. Now, from the properties

of the embedding, it is easy to see that every node in V2 has a path either to u or v.

Since V 12 Ă V2, there is also a path between u and v. Thus, GrV2s is connected. From the

properties of the embedding, GrV1s is connected as before.

The rest of the proof is exactly the same as the proof of Lemma 7.1. We move L from being

tangent at point A to point B (AB is a diameter of the circle C) and consider the resulting

partition. Notice that if at point A, ppV1q ą 0, then at point B since V1 and V2 completely

switch places compared to the partition at point A, ppV1q ă 0. Hence, as we move L from being

tangent at point A to point B and keep it tangent to the circle, in the resulted partitions, ppV1q

goes from some positive value to a negative value. Notice that the partition pV1, V2q changes

only if L passes a point D on the circle such that at D, L is perpendicular to a line that connects

fpiq to fpjq for i, j P V . Now, since the embedding is in general position, there are exactly two

points on every line that connects two points fpiq and fpjq, so V1 changes at most by one node

leaving V1 and one node entering V1. Hence, ppV1q changes by either ˘2 or 0 value at each

change. Now, since |V | ” 0pmod 4q, ppV1q has an even value in all the resulting partitions.

Therefore, as we move L from being tangent at point A to point B, there should be a point D

such that in the resulted partition ppV1q “ ppV2q “ 0.

�

It is easy to check for a 3-connected graph G, by using the same approach as in the proof

of Lemma 7.1 and Theorem 7.5, that even when the weights are arbitrary (not necessarily ˘1)
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and also ppV q ‰ 0, we can still find a connected partition pV1, V2q for G such that |ppV1q ´

ppV q{2|, |ppV1q ´ ppV q{2| ď maxiPV |ppiq| and |V1| “ |V2|.

Corollary 7.1. If G is 3-connected, then the DBCP problem (with arbitrary p, and not neces-

sarily satisfying ppV q “ 0) has a solution for cp “ maxiPV |ppiq| and cs “ 1. Moreover, this

solution can be found in polynomial time.

7.4.2 2-Connected Graphs

We first define a pseudo-path between two nodes in a graph as below. The definition is inspired

by the definition of the st-numbering.

Definition 7.3. A pseudo-path between nodes u and v in G “ pV,Eq, is a sequence of nodes

v1, . . . , vt such that if v0 “ u and vt`1 “ v, then for any 1 ď i ď t, vi has neighbors vj and vk

such that j ă i ă k. Note that the pseudo-path does not include the ending points u and v.

Using the pseudo-path notion, in the following lemma we show that if G is 2-connected and

has a separation pair such that none of the resulting components are too large, then the DBCP

problem always has a solution for some cp “ cs “ Op1q. The idea used in the proof of this

lemma is one of the building blocks of the proof for the general 2-connected graph case.

Lemma 7.4. Given a 2-connected graph G, if @i : ppiq “ ˘1 and G has a separation pair

tu, vu Ă V such that for every connected component Hi “ pVHi , EHiq of GrV ztu, vus, |VHi | ă

t2|V |{3u, then the DBCP problem has a solution for cp “ 1, cs “ 2, and it can be found in

Op|E|q time.

Proof. There is a separation pair tu, vu P V such that if H1, . . . ,Hk are the connected com-

ponents of Gztu, vu, for every i, |VHi | ă t2|V |{3u. Since G is 2-connected, H1, . . . ,Hk can be

represented by pseudo-paths P1, . . . , Pk between u and v. Assume P1, . . . , Pk are in increasing

order based on their lengths. We can partition the pseudo-paths into two subsets S1 and S2

such that S1 X S2 “ H, S1 Y S2 “ tP1, . . . , Pku and
ř

PjPSi
|Pj | ě r|V |{3s ´ 1 for i “ 1, 2. The

proof is very simple. Add greedily pseudo-paths in order to S1 until
ř

PjPS1
|Pj | becomes at least

r|V |{3s´1. Let S1 “ tP1, . . . , Piu, and S2 “ tPi`1, . . . , Pku. Since |Pk| ă t2|V |{3u, we have i ă k
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and S2 ‰ H. We have to show that
ř

PjPS2
|Pj | ě r|V |{3s´1. If |Pk| ě r|V |{3s´1, then the claim

really holds. If |Pk| ă r|V |{3s´1, then |Pi| ď |Pk| ă r|V |{3s´1, and |P1|`¨ ¨ ¨`|Pi´1| ă r|V |{3s´1

implies that |Pi`1| ` ¨ ¨ ¨ ` |Pk| ě r|V |{3s´ 1.

Now, if we put all the pseudo-paths in S1 back to back, they will form a longer pseudo-path

Q1 between u and v. Similarly, we can form another pseudo-path Q2 from the pseudo-paths

in S2 (Fig. 7.4a). Without loss of generality we can assume |Q1| ě |Q2|. From u, including u

itself, we count r|V |{3s of the nodes in Q1 towards v and put them in a set V 1. Without loss

of generality, we can assume ppV 1q ě 0. If ppV 1q “ 0, then pV 1, V zV 1q is a good partition and

we are done. Hence, assume ppV 1q ą 0. We keep V 1 fixed and make a new set V 2 by adding

nodes from Q1 to V 1 one by one before we get to v. If ppV 2q hits 0 as we add nodes one by

one, we stop and let V1 “ V 2 and V2 “ V zV 2, then pV1, V2q is a good partition and we are done

(Fig. 7.4b).

So, assume V 2 “ Q1 Y tuu and ppV 2q ą 0. Since |Q2 Y tvu| ě r|V |{3s, |V 2| ď t2|V |{3u. If

|V 2| ă r2|V |{3s, we add nodes from Q2 Y tvu one by one toward u until either ppV 2q “ 0 or

|V 2| “ r2|V |{3s. If we hit 0 first, or at the same time, i.e., ppV 2q “ 0 and |V 2| ď r2|V |{3s),

define V1 “ V 2ztuu; then pV1, V zV1q is a good partition (Fig. 7.4c). So assume |V 2| “ r2|V |{3s

and ppV 2q ą 0. Define V 3 “ V zV 2. Since ppV 2q ą 0 and |V 2| “ r2|V |{3s, then ppV 3q ă 0 and

|V 3| “ t|V |{3u. Also notice that V 3 Ď Q2. We consider two cases. Either |ppV 1q| ě |ppV 3q| or

|ppV 1q| ă |ppV 3q|.

If |ppV 1q| ě |ppV 3q| we start from u and pick nodes one by one from Q1 in order until we get

a subset V 11 ‰ H of V 1 such that ppV 11q “ |ppV
3q| (i.e., ppV 11 Y V

3q “ 0). Define V1 “ V 11 Y V
3.

Then ppV1q “ 0, |V1| ě |V 3| ` 1 ě r|V |{3s and |V1| ď 2t|V |{3u (note that |V1| is even since

ppV1q “ 0 and |V1| ď |V 1 Y V 3| “ t|V |{3u ` r|V |{3s). Hence, pV1, V zV1q is a good partition

(Fig. 7.4d).

If |ppV 1q| ă |ppV 3q|, the argument is similar. We can build a new set V1 by adding nodes

one by one from V 3 to V 1 until ppV1q “ 0; then |V1| ď t2|V |{3u. Hence, pV1, V zV1q is a good

partition (Fig. 7.4e). �
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Figure 7.4: Proof of Lemma 7.4.

Corollary 7.2. If G is a 2-connected series-parallel graph and @i : ppiq “ ˘1, then the DBCP

problem has a solution for cp “ 1, cs “ 2, and the solution can be found in Op|E|q time.

Proof. Every series-parallel graph G has a separation pair tu, vu such that every connected

component of GrV ztu, vus has less than t2|V |{3u nodes, and furthermore, such a separation pair

can be found in linear time. To see this, consider the derivation tree T of the construction
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of G. The root of T corresponds to G, the leaves correspond to the edges, and every internal

node i corresponds to a subgraph Gi “ pVi, Eiq that is the series or parallel composition of the

subgraphs corresponding to its children. Starting at the root of T , walk down the tree following

always the edge to the child corresponding to a subgraph with the maximum number of nodes

until the number of nodes becomes ď r2|V |{3s. Thus, we arrive at a node i of the tree such that

|Vi| ą r2|V |{3s and |Vj | ď r2|V |{3s for all children j of i. Let ui, vi be the terminals of Gi. Note

that ui, vi separate all the nodes of Gi from all the nodes that are not in Gi. Since |Vi| ą r2|V |{3s,

we have |V zVi| ă |V |{3. If Gi is the parallel composition of the graphs corresponding to the

children of i, then the separation pair tui, viu has the desired property, i.e. all the components

of GrV ztu, vus have less than t2|V |{3u nodes.

Suppose Gi is the series composition of the graphs Gj , Gk corresponding to the children j, k

of i, and let w be the common terminal of Gj , Gk; thus, Gi has terminals ui, w, and Gk has

terminals w, vi. Assume wlog that |Vj | ě |Vk|. Then r|V |{3s ă |Vj | ď r2|V |{3s. The pair tui, wu

of terminals of Gj separates all the nodes of Vjztui, wu from all the nodes of V zVj , and both

these sets have less than t2|V |{3u nodes. Thus, tui, wu has the required property. �

The graph in Figure 7.1 with s “ 1 shows that these parameters are the best possible for

series parallel graphs: if cp “ Op1q then cs must be at least 2.

To generalize Lemma 7.4 to all 2-connected graphs, we need to define the contractible

subgraph and the contraction of a given graph as below.

Definition 7.4. We say an induced subgraph H of a 2-connected graph G is contractible, if

there is a separating pair tu, vu Ă V such that H “ pVH , EHq is a connected component of

GrV ztu, vus. Moreover, if we replace H by a weighted edge e1 with weight wpe1q “ |VH | between

the nodes u and v in G to obtain a smaller graph G1, we say G is contracted to G1.

Remark 7.3. Notice that every contractible subgraph of a 2-connected graph G can also be

represented by a pseudo-path between its associated separating pair. We use this property in the

proof of Theorem 7.6.

Using the notion of the graph contraction, in the following lemma, we show that to partition

a 2-connected graph, we can reduce it to one of two cases: either G can be considered as a graph
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Figure 7.5: Lemma 7.5.

with a set of short pseudo-paths between two nodes, or it can be contracted into a 3-connected

graph as illustrated in Fig. 7.5.

Lemma 7.5. In every 2-connected graph G “ pV,Eq, one of the following cases holds, and we

can determine which in Op|E|q time:

1. There is a separation pair tu, vu Ă V such that if H1, . . . ,Hk are the connected components

of GrV ztu, vus, for all i, |VHi | ă t2|V |{3u.

2. After a set of contractions, G can be transformed into a 3-connected graph G˚ “ pV ˚, E˚q

with weighted edges representing contracted subgraphs such that for every e˚ P E˚, wpe˚q ď

r|V |{3s´ 2.

Proof. If there is no separation pairs in G, then G is 3-connected and there is nothing left to

prove. So assume tu, vu Ă V is a separation pair and H1, . . . ,Hk are the connected components

of GrV ztu, vus. If @i, |VHi | ă t2|V |{3u, we are done. So let’s assume there is a connected
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component Hj such that |VHj | ě t2|V |{3u. Then all the other components Hi, i ‰ j, can be

contracted and represented by an edge of weight at most r|V |{3s´ 2 between u and v. Now, we

repeat the process by considering the weight of the edges in the size of each connected component

(a weighted edge can be contracted again as part of a new connected component and its weight

will be added to the total number of nodes in that connected component). An example for each

case is shown in Fig. 7.5 for q “ 3. We can find either a suitable separation pair as in case 1 or

a suitable contracted graph G˚ as in case 2 in linear time using the Hopcroft-Tarjan algorithm

for finding the 3-connected components [84]. �

Definition 7.5. In a graph G˚ with weighted edges representing contracted subgraphs, define

the weight for a subset of nodes U˚ Ă V ˚ as wpU˚q “ wpG˚rU˚sq :“ |U˚| `
ř

ePG˚rU˚swpeq.

The following lemma strengthens and extends Lemma 7.2 to weighted graphs.

Lemma 7.6. If G˚ “ pV ˚, E˚q is a 3-connected graph obtained after a set of contractions on

G such that for every e˚ P E˚, wpe˚q ď r|V |{3s´ 2, then there exists a set tu, v, wu P V ˚ and a

partition of V ˚ into pV ˚1 , V
˚

2 q such that:

1. V ˚1 X V
˚

2 “ H and V ˚1 Y V
˚

2 “ V ˚,

2. G˚rV ˚1 s and G˚rV ˚2 s are connected,

3. tu,wu, tv, wu P E˚,

4. w P V ˚1 , u, v P V ˚2 , and u, v are not cutpoints of G˚rV ˚2 s,

5. wpV ˚2 q ď t|V |{3u` 1.

Moreover, such a partition and tu, v, wu can be found in Op|E|q time.

Proof. If G˚ has a triangle tu, v, wu then since G˚ is 3-connected, V ˚2 “ tu, vu and V ˚1 “ V ˚zV ˚2

is a good partition. So assume G˚ is a triangle-free graph and therefore |V ˚| ą 3. Using the

algorithm presented in [46], we can find a non-separating ear decomposition G˚ “ P ˚0 YP
˚
1 ¨ ¨ ¨Y

P ˚k . A property of their construction that we will use is that if |P ˚i | ą 3, then each internal node

of P ˚i has degree two in G˚i .
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Consider a (triangle-free) counterexample graph G˚ and its non-separating ear decomposi-

tion. We will show a series of properties for the graph and its decomposition, leading eventually

to a contradiction.

Claim 1. For any 0 ď i ă k, if G˚i has two adjacent degree-2 nodes, then wpG˚i q ď t2|V |{3u. In

particular, wpP ˚0 q ď t2|V |{3u, and if |P ˚i | ą 3 then wpG˚i q ď t2|V |{3u.

Proof. Suppose that wpG˚i q ě t2|V |{3u ` 1 and that G˚i has two adjacent degree-2 nodes w, v.

Since G˚ is 3-connected, w and v are adjacent respectively to some nodes u, z of G˚i . Note that

u ‰ z because G˚ does not have a triangle. If u is not a cutpoint of G˚i , set V ˚1 “ G˚i ztvu and

V ˚2 “ V ˚zV ˚1 . From the properties of the non-separating ear decomposition, it is easy to see that

pV ˚1 , V
˚

2 q is a good partition: GrV ˚1 s is connected, since G˚i is biconnected, GrV ˚2 s is connected

since G˚i is connected, u, v are not cutpoints of GrV ˚2 s, and |V ˚2 | ď |V | ´ t2|V |{3u “ r|V |{3s.

Otherwise, if u is a cutpoint of G˚i , let H˚ be the connected component of G˚i ztuu that contains

node z. Set V ˚2 “ H˚ Y tu, vu and V ˚1 “ V ˚zV ˚1 . It is easy to see again that this is a good

partition. Notice that since G˚ztu, vu is connected, it follows that G˚rV ˚1 s is connected.

The nodes of P ˚0 have degree 2 in G˚0 , hence the claim holds for P ˚0 , and more generally for

any i such that |P ˚i | ą 3, since the internal nodes of P ˚i have degree 2 in G˚i . ˝

We consider now the first ear P ˚1 and the corresponding graph G˚1 .

Claim 2. G˚1 consists of three parallel disjoint paths of length at least 3 between two nodes, and

wpG˚1q ď t2|V |{3u.

Proof. Suppose first that |P ˚1 | “ 3, and let P ˚1 “ u,w, v. At least one of the two u ´ v paths

of the cycle P ˚0 has weight at most wpP ˚0 q{2` 1. Let V ˚2 be this path and V ˚1 “ V ˚zV ˚2 . Since

wpP ˚0 q ď t2|V |{3u, it follows that wpV ˚2 q ď t|V |{3u`1. Clearly GrV ˚1 s and GrV ˚2 s are connected,

and all the desired properties are satisfied, so this is a good partition.

Therefore, |P ˚1 | ą 3. All the internal nodes of P ˚1 have degree 2. By Claim 1, wpG˚1q ď

t2|V |{3u, and G˚1 consists of three disjoint paths between two nodes x, y, the endpoints of the

ear P ˚1 . If one of the paths is an edge px, yq, then let Q be the lighter of the other two paths.

Set w “ x, u “ y, let v be the node of Q adjacent to x, V ˚2 “ Qztxu, and V ˚1 “ V ˚zV ˚2 ; it is
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easy to see that this is a good partition. If one of the paths has length 2, then let Q again be

the lighter of the other two paths. Setting u “ x, v “ y, w the internal node of Q, V ˚2 “ Q,

V ˚1 “ V ˚zV ˚2 gives a good partition. Note that wpQq ď pwpG˚1q` 1q{2 ď pt2|V |{3u` 1q{2, hence

wpQq ď r|V |{3s.

We conclude that G˚1 satisfies the claim. ˝

Thus G˚1 consists of three paths of length at least 3 between two nodes x, y, and wpG˚1q ď

t2|V |{3u. We consider now the next ear P ˚2 .

Claim 3. |P ˚2 | ą 3 and wpG˚2q ď t2|V |{3u.

Proof. Suppose that |P ˚2 | “ 3 and let P ˚2 “ u,w, v. Let R1, R2 be two disjoint paths in G˚1

connecting u and v, and assume without loss of generality that wpR2q ď wpR1q. Set V ˚2 “ R2

and V ˚1 “ V ˚zV ˚2 . Note that every degree-2 node of G˚1 ´ R2 has an edge to G˚1 , and if x or

y is not in R2 then it is adjacent to at least one degree-2 node of G˚1 ´ R2. Hence GrV ˚2 s is

connected. Also, wpR2q ď wpG˚1q{2 ď |V |{3.

We conclude that |P ˚2 | ą 3, and hence by Claim 1, wpG˚2q ď t2|V |{3u. ˝

We can finish now the proof of the lemma. G˚1 consists of three paths of length at least 3

between two nodes x, y. Since |P ˚2 | ą 3, all internal nodes of P ˚2 have degree 2 in G˚2 . The

endpoints of the path P ˚2 are either internal nodes of different paths of G˚1 (in which case G˚2 is

homeomorphic to K4, the complete graph on 4 nodes), or they both lie on one of the three paths

of G˚1 (either or both endpoints may coincide with the degree-3 nodes x, y of G˚1). The graph

G˚2 is a planar graph in either case. Consider a planar embedding of G˚2 . It has four faces. The

sum of the weights of the four faces is 2wpG˚2q ` 4 (every edge is counted twice and every node

is counted as many times as its degree). Therefore at least one of the faces has weight at most

wpG˚2q{2 ` 1 ď p|V |{3q ` 1. Let C be the bounding cycle of such a face. If the cycle C has a

chord (the chord of course must be embedded outside the face), then let pw, uq be a chord such

that one of the paths of C connecting w to u is chordless, let R be this path,and let v be its

node adjacent to w. Set V ˚2 “ Rztwu and V ˚1 “ V ˚zV ˚2 . Then wpV ˚2 q ď t|V |{3u, and it is easy

to check also that GrV ˚1 s is connected. If C is chordless, then let u,w, v be three consecutive
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nodes of C. Set V ˚2 “ Cztwu and V ˚1 “ V ˚zV ˚2 . Again, it is easy to check that the partition

satisfies the required properties of the lemma.

This concludes the proof of the lemma. �

Using Lemma 7.5, then Lemma 7.4, and the idea of the proof for Theorem 7.5, we can prove

that when G is 2-connected and all ppiq “ ˘1, the DBCP problem has a solution for cp “ 1 and

cs “ 2. We find a suitable convex embedding of the 3-connected graph G˚ using Lemma 7.6 and

Lemma 7.3, and then embed the nodes of the contracted pseudo-paths appropriately along the

segments corresponding to the weighted edges. Some care is needed to carry out the argument

as in the proof for Theorem 7.5, since as the line tangent to the circle rotates, the order of the

projections of many nodes may change at once, namely the nodes on an edge perpendicular to

the rotating line.

Theorem 7.6. If G is 2-connected, @i, ppiq “ ˘1, then the DBCP problem has a solution for

cp “ 1 and cs “ 2. Moreover, this solution can be found in polynomial time.

Proof. Using Lemma 7.5, we consider two cases:

(i) There is a separation pair tu, vu P V such that if H1, . . . ,Hk are the connected components

of Gztu, vu, for all i, |VHi | ă t2|V |{3u. In this case Lemma 7.4 proves the theorem.

(ii) After a set of contractions, G can be transformed into a 3-connected graph G˚ “ pV ˚, E˚q

with weighted edges such that for any edge e˚ P E˚, wpe˚q ď r|V |{3s´ 2. In this case the

proof is similar to the proof of Theorem 7.5. Notice that if G˚ contains a triangle then the

proof is much simpler as in the proof of Lemma 7.1 but here to avoid repetition, we use

the approach in the proof of Theorem 7.5 and prove the theorem once for all cases of G˚.

Using Lemma 7.6, we can find tu, v, wu P V ˚ and a partition pV ˚1 , V
˚

2 q of V ˚ with properties

described in the lemma. Set X “ tu, v, wu. Using Lemma 7.3, G˚ has a convex X-

embedding in general position, f˚ : V ˚ Ñ R2, as described in the lemma and depicted in

Fig. 7.3. Now, from this embedding, we get a convex X-embedding f : V Ñ R2 for G

as follows. For any i P V X V ˚, fpiq “ f˚piq. For any edge ti, ju P E˚ such that ti, ju

represents an induced subgraph of G, we represent it by a pseudo-path P of G between
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i and j and place the nodes of P in order on random places on the line segment that

connects fpiq to fpjq. If the edge ti, ju P E˚ is between a node in V ˚1 and a node in V ˚2

and represents a pseudo-path P in G , we place the nodes in P in order on random places

on the segment that connects fpiq to fpjq but above the line L1. Hence, by this process,

we get a convex X-embedding for G which is in general position (almost surely) except

for the nodes that are part of a pseudo-path. From Lemma 7.3, the embedding has the

following property. Consider any line on the plane, and the subset of nodes whose points

lie on the same side of the line. If the subset has size at least t|V |{3u` 1 then it induces a

connected subgraph of G.

The rest of the proof is similar to the proof of Theorem 7.5. We consider again a circle C
around fpuq, fpvq, fpwq in R2 as shown in Fig. 7.3. Also consider a directed line L tangent

to the circle C at point A and project the nodes of G onto the line L (we consider a line

such that the projections are distinct). We label nodes based on their projection order

on the line L from left to right from 1pLq to |V |pLq. For each t “ 1, . . . , |V |, let V pLqptq “

t1pLq, . . . , tpLqu denote the set of the first t nodes in this ordering. Since the embedding f

has the properties described in Lemma 7.6 and 7.3, for all t|V |{3u` 1 ď t ď r2|V |{3s´ 1,

if we set V1 “ V pLqptq and V2 “ V zV1, then GrV1s and GrV2s are both connected. Define

V 11 “ V pLqpt|V |{3uq and V 12 “ V zV pLqpr2|V |{3sq, i.e., V 11 contains the first t|V |{3u nodes and

V 12 the last t|V |{3u nodes in the ordering. If ppV 11qppV
1

2q ě 0, then there must exist an index

j with t|V |{3u ď j ď r2|V |{3s such that ppV pLqpjqq “
řj
i“1 ppi

pLqq “ 0. Consequently,

there is an index t such that t|V |{3u ` 1 ď t ď r2|V |{3s ´ 1 and |ppV pLqptqq| ď 1: if

j “ t|V |{3u then let t “ j ` 1, if j “ r2|V |{3s then t “ j ´ 1, and otherwise let t “ j.

Hence, V1 “ V pLqptq “ t1pLq, . . . , tpLqu and V2 “ V zV1 is a good partition. Therefore, if

ppV 11qppV
1

2q ě 0 then we can obtain a good partition. We will show that there is a line

such that ppV 11qppV
1

2q ě 0.

Assume without loss of generality that in the initial position of the line, ppV 11q ą 0 and

ppV 12q ă 0. As we move L from being tangent at point A to point B where AB is a diameter

of the circle C, and consider the resulting partition at point B, since V 11 and V 12 completely
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switch places compared to the partition at point A, at point B we have ppV 11q ă 0 and

ppV 12q ą 0. Hence, as we move L from being tangent at point A to point B and keep

it tangent to the circle, in the resulting partitions, ppV 11q goes at some point from some

positive value to a nonpositive value. Notice that the ordering of the projections on the

line changes only if L passes a point D on the circle such that at D, L is perpendicular to

a line that connects fpiq to fpjq for i, j P V ˚; then the order of i and j is switched, and if

pi, jq is an edge of G˚ then also the ordering of the nodes in the corresponding pseudopath

is reversed. Note that all of these affected nodes are consecutive in the ordering. If ppV 11q

changes then V 11 must contain at least one of the affected nodes, and similarly for ppV 12q.

So assume ppV 11q ą 0 in a projection on a line Lb slightly before a perpendicular point

and ppV 11q ď 0 in a resulting projection on a line La slightly after a perpendicular point.

Define V 11b :“ t1pLbq, . . . , t|V |{3upLbqu, V 12b :“ tp|V | ´ t|V |{3u ` 1qpLbq, . . . , |V |pLbqu, V 11a :“

t1pLaq, . . . , t|V |{3upLaqu, and V 12a :“ tp|V |´ t|V |{3u`1qpLaq, . . . , |V |pLaqu. So ppV 11bq ą 0 and

ppV 11aq ď 0.

If ppV 11bqppV
1

2bq ě 0, as we argued previously, we can find a good partition pV1, V2q such

that V 11b Ď V1 and V 12b Ď V2, and we are done. So assume ppV 11bq ą 0 and ppV 12bq ă 0. Since

for any e˚ P E˚, wpe˚q ď r|V |{3s´2, the ordering of the nodes based on the projections on

lines Lb and La is different for at most r|V |{3s consecutive nodes (the ordering of at most

r|V |{3s consecutive nodes reverses as we move from Lb to La). Since V 11b ‰ V 11a (recall

ppV 11bq ą 0 and ppV 11aq ď 0), the set of reversed nodes includes one of the first t|V |{3u

nodes in the ordering, hence it cannot extend to include also one of the last t|V |{3u nodes;

therefore ppV 12aq “ ppV 12bq ă 0. Thus, ppV 11aqppV
1

2aq ě 0 and hence, as we argued before,

there is a good partition pV1, V2q such that V 11a Ď V1 and V 12a Ď V2.

Regarding the computation of a good partition, after we compute the contracted graph

G˚ and its convex embedding, the rest of the computation can be easily carried out in

Op|V |2 log |V |q time.

�
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Similar to Corollary 7.1, the approach used in the proof of Theorem 7.6, can also be used for

the case when the weights are arbitrary (not necessarily ˘1) and ppV q ‰ 0. It is easy to verify

that in this case, if G is 2-connected, the DBCP problem has a connected partition pV1, V2q such

that |ppV1q ´ ppV q{2|, |ppV2q ´ ppV q{2| ď maxjPV |ppjq| and |V1|, |V2| ě r|V |{3s.

Corollary 7.3. If G is 2-connected, then the DBCP problem (with general p and not necessarily

satisfying ppV q “ 0) has a solution for cp “ maxjPV |ppjq| and cs “ 2. Moreover, this solution

can be found in polynomial time.

7.5 Graphs with Two Types of Nodes

Assume G is a connected graph with nodes colored either red (R Ď V ) or blue (B Ď V ). Let

|V | “ n, |R| “ nr, and |B| “ nb. If G is 3-connected, set ppiq “ 1 if i P R and ppiq “ ´1 if

i P B. Corollary 7.1 implies then that there is always a connected partition pV1, V2q of V that

splits both the blue and the red nodes evenly (assuming nr and nb are both even), i.e., such that

|V1| “ |V2|, |R X V1| “ |R X V2|, and |B X V1| “ |B X V2|. (If nr and/or nb are not even, then

one side will contain one more red or blue node.)

Corollary 7.4. Given a 3-connected graph G with nodes colored either red (R Ď V ) or blue

(B Ď V ). There is always a partition pV1, V2q of V such that GrV1s and GrV2s are connected,

|V1| “ |V2|, |RX V1| “ |RX V2|, and |B X V1| “ |B X V2| (assuming |R| and |B| are both even).

Such a partition can be computed in polynomial time.

Proof. Suppose without loss of generality that nr ě nb and let nr´nb “ 2t and nr`nb “ n “ 2m.

Set ppiq “ 1 for i P R and ppiq “ ´1 for i P B. Then ppV q “ 2t. From the equations, we have

nr “ m` t and nb “ m´ t.

From Corollary 7.1 we can find a partition pV1, V2q such that |V1| “ |V2| and |ppV1q ´

ppV q{2|, |ppV1q ´ ppV q{2| ď 1. Let r1 “ |RX V1| and b1 “ |B X V1|. We have r1 ` b1 “ n{2 “ m

and t ´ 1 ď r1 ´ b1 ď t ` 1. Therefore, pm ` tq{2 ´ p1{2q ď r1 ď pm ` tq{2 ` p1{2q. Since

r1 is an integer and nr “ m ` t is even, it follows that r1 “ pm ` tq{2 “ nr{2. Hence,

b1 “ pm´ tq{2 “ nb{2. Therefore, V2 also contains nr{2 red nodes and nb{2 blue nodes. �
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If G is only 2-connected, we may not always get a perfect partition. Assume wlog that nr ď

nb. If for every v P R and u P B, we set ppvq “ 1 and ppuq “ ´nr{nb, Corollary 7.3 implies that

there is always a connected partition pV1, V2q of V such that both |p|RXV1|´nr{nb|BXV1|q| ď 1

and |p|RX V2| ´ nr{nb|BX V2|q| ď 1, and also maxt |V1|
|V2|

, |V2|
|V1|
u ď 2. Thus, the ratio of red to blue

nodes in each side Vi differs from the ratio nr{nb in the whole graph by Op1{nq. Hence if the

numbers of red and blue nodes are ωp1q, then the two types are presented in both sides of the

partition in approximately the same proportion as in the whole graph.

Corollary 7.5. Given a 2-connected graph G with nodes colored either red (R Ď V ) or blue

(B Ď V ), and assume wlog |R| ď |B|. We can always find in polynomial time a partition pV1, V2q

of V such that GrV1s and GrV2s are connected, |V1|, |V2| ě r|V |{3s, and the ratio of red to blue

nodes in each side Vi differs from the ratio |R|{|B| in the whole graph by Op1{nq.
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7.6 Conclusion

In this chapter, we studied power grid Islanding problem. We modeled it as the problem of

partitioning a graph into two connected subgraphs that satisfy simultaneouly two objectives:

(1) they balance the supply and demand within each side of the partition (or more generally,

for the case of ppV q ‰ 0, they split approximately equally the excess supply/demand between

the two sides), and (2) the two sides are large and have roughly comparable size (they are both

Ωp|V |q). We showed that for 2-connected graphs it is always possible to achieve both objectives

at the same time, and for 3-connected graphs there is a partition that is essentially perfectly

balanced in both objectives. Furthermore, these partitions can be computed in polynomial time.

This is a paradigmatic bi-objective balancing problem. We observed how it can be easily used

to find a connected partition of a graph with two types of nodes that is balanced with respect

to the sizes of both types. Overall, we believe that the novel techniques used in this chapter can

be applied to partitioning heterogeneous networks in various contexts.

There are several interesting further directions that suggest themselves. First, extend the

theory and algorithms to find doubly balanced connected partitions to more than two parts.

Second, even considering only the supply/demand objective, does the analogue of the results

of Lováz and Gyori [80, 99] for the connected k-way partitioning of k-connected graphs with

respect to size (which corresponds to ppiq “ 1) extend to the supply/demand case (ppiq “ ˘1)

for k ą 3? And is there a polynomial algorithm that constructs such a partition? Finally, extend

the results of Section 7.5 to graphs with more than two types of nodes, that is, can we partition

(under suitable conditions) a graph with several types of nodes to two (or more) large connected

subgraphs that preserve approximately the diversity (the proportions of the types) of the whole

population?
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Chapter 8

Generating Synthetic Power Grids

Addressing most of the challenges facing the power grids requires real grid topologies with real

geographical coordinates. For example, to study the vulnerabilities of the grid to natural disas-

ters one needs to match the grid map with the paths of hurricanes or water flood maps. Similarly,

incorporating renewable energy resources in the grid requires the approximate locations of the

grid lines and buses to be matched with the wind maps. However, in order to avoid exposing

vulnerabilities, topologies of the power transmission networks and particularly the locations of

the substations and the lines are usually not publicly available or are hard to obtain.

There are only very limited test cases and real-world power grid data sets that are publicly

and freely available. These include the IEEE test cases [1], the National Grid UK [2], the Polish

grid [4], and an approximate model of the European interconnected system [162]. To the best

of our knowledge, among these, National Grid UK is the only publicly available dataset with

geographical locations. Even if the data was available, it would be unwise to publish vulnerability

results which are based on real topologies, due to the enormous cost of grid enhancements. On

the other hand, it was recently shown that simple random graph models cannot be used to

generate grids with appropriate structural and spatial characteristics [52]. Therefore, there is a

growing interest in generating synthetic power grids [11,33,34,75].

Motivated by this need, we thoroughly study the structural properties of real power grids

and introduce the Network Imitating Method Based on LEarning (NIMBLE) for generating
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Figure 8.1: The North American Electric Reliability Corporation (NERC) regional entities and

the National Electricity Transmission Grid of Mexico (NETGM). Different reliability corporati-

ons/councils are marked with different colors.

synthetic networks with similar structural and spatial properties. We focus on the transmission

networks of the North American and Mexican power grids (see Fig. 8.1) using data that we

obtained from the Platts Geographic Information System (GIS) [3] (Similar techniques could

be applied to industry-grade data sets, if they become publicly available). In particular, we

consider the Western Interconnection (WI), one of the two major interconnections in North

America, which includes the Western Electricity Coordinating Council in the United States

(WECC) and Canada (WECCC).

We evaluate the networks’ structural properties under five metrics: average path length (L),

clustering coefficient (C), degree distribution of the nodes, number of line intersections (X ),

and the length distribution of the lines. For each node i with degree di, at most dipdi ´ 1q{2

lines can exist between its neighbors. The clustering coefficient is the fraction of these allowable

lines that actually exist, averaging over all the nodes. The average path length is defined as the

number of lines in the shortest path between two nodes, averaged over all pairs of vertices. The
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first three metrics are very common [15, 17, 23, 42, 52, 53, 153]. The importance of the number

of line intersections in generating synthetic power grids was first discussed by Birchfield, et

al. [34]. However, to the best of our knowledge, the length distribution of the lines has not been

thoroughly studied before in power grids. The line lengths are particularly important in power

grids, since the physical properties of a line (e.g., admittance and type) are directly correlated

with its length [76], and hence, directly impact the grid’s structural properties.

To compare the robustness of the WI and the generated network to failures, we simulate

cascading failures initiated by double line failures as well as circular area failures (as failures

caused by natural disasters), and compute the yield (the ratio between the demand supplied at

the end of a cascade and the original demand), number of failed lines, and number of connected

components at the end of the cascade in these networks. Cascading failures in networks and

power grids and their robustness have been widely studied [21, 29, 38, 42, 53, 57, 60, 61, 82, 105,

156,159]. In this chapter, we use the cascade model due to line overloads in power grids with a

deterministic outage rule as provided in Chapter 3. We show that the generated networks have

similar structural and spatial properties as well the same level of robustness to failures to the

WI.

8.1 Related work

The structural properties of various power grids (e.g., in North America, some European coun-

tries, and Iran) were studied before [53, 56, 104, 118, 124, 153]. Most of these studies considered

one or two properties (e.g., average degree, degree distribution, average path length, and cluste-

ring coefficient) and computed it in a given power grid. In some cases a certain class of graphs

was suggested as a good representative of a power grid network, based on one or two structural

properties [15,17,23,42,52,53,153]. For example, Watts and Strogatz [153] suggested the small-

world graph as a good representative, based on the shortest path lengths between nodes and

the clustering coefficient of the nodes. Barabási and Albert [23] showed that scale-free graphs

are better representatives based on the degree distribution. However, by comparing the WI
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with these models, Cotilla-Sanchez, et al. [52] showed that none of them can represent the WI

properly.

More detailed models that are specifically tailored to the power grid characteristics were

proposed by Wang, et al. [152] and also by Schultz, et al. [122] but they did not consider the

spatial distribution of the nodes and the length distribution of the lines. The spatial distribution

of the nodes is correlated with the length of the lines, and as mentioned above, it is important

to consider line lengths when designing a method for synthetic power grid generation.

While there are several models for generating spatial networks [24, 101, 157], most of them

were not designed to generate networks with properties similar to power grid networks’. In very

recent novel papers [34,75], a synthetic network based on the locations of the cities and the power

plants in Texas was generated. Despite using the geographical locations, no comparisons to the

real grid in Texas (neither topological nor performance wise) were provided by the authors. The

generated networks, however, was shown to have similar topological (e.g., degree distribution)

properties to the WI. In a follow up work [33], more engineering properties (e.g., transformer

and generator parameters) of power grids were studied in detail.

The novel methods in [34, 75] consider more engineering details than our work but do not

provide a general framework to generate multiple synthetic power grids. Our work is the first

to consider the spatial distribution of the nodes (buses) in power grids and to provide a ge-

neral framework for generating multiple synthetic networks with realistic structural properties.

Moreover, this is the first time that the power flows and vulnerability against cascading failures

are considered in evaluating a synthetic power grid. In our future work, we plan to incorporate

more engineering details [33] to improve the quality of our generated power grids to the level of

industrial grade grids.

8.2 Preliminaries

8.2.1 Data

We obtained the topological network of the WI from the Platts GIS [3] and conducted longitude-

latitude to planar px, yq coordinate transformation, using the great-circle distance method. We
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Figure 8.2: The average residential power usage versus the number of customers in the US. We

observed that average residential power usage (obtained from EIA website [6]) is directly related

to the population (the slope of the regression line is 9.51). We used this relationship to estimate

the demand at each city based on its population.

extracted the coordinates of the buses/substations from the endpoint coordinates of the lines.

We then used the geographical coordinates of the substations and the lines to construct the

graph with nodes and edges that represent substations and lines, respectively. We used the map

of reliability coorporations/councils boundaries to divide the graph into regional entities (See

Fig. 8.1).

The GIS does not provide the reactance values of the lines. The reactance of a line depends

on its geometrical properties and there is a linear relation between the line’s length and reac-

tance: the longer the line is, the larger its reactance. Thus, we assumed that all lines have the

same physical properties (other than length) and used the length to determine the reactance.

Moreover, since the power flow solution is scale invariant of the reactance values, we simply use

the length of each line as its reactance. We consider the same for the lines in the generated

networks.

To estimate the demands and supplies, we used the cities’ populations and the power plants’

capacities, as well as their locations. The locations and populations of the cities in the U.S. and

Canada are publicly available. We obtained the information about the locations of the power
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Figure 8.3: The degree distributions of the nodes and length distributions of the lines in the WI

and three generated networks. (a) The degree distributions of the nodes in log-log scale. In this

figure, the slope of the fitted linear regression line to the distributions’ tail is ζ “ ´3.49 for the

WI and ζ « ´4.7 for all the generated networks. The Kolmogrov-Smirnov statistic between the

degree distributions in the WI and the generated networks is DKS « 0.05. (b) The log length

distributions of the lines (in km). In this figure, DKL « 0.1 between the length distributions of

the lines in the WI and the generated networks.

plants and their capacities from U.S. Energy Information Administration (EIA) website [6]. We

observed that the average residential power usage (obtained from EIA website [6]) is directly

related to the population (see Fig. 8.2). By modeling this relationship using linear regression, we

estimated the power demand at each city based on its population. Once we computed the total

demand, we assigned the power generation level to each power plant according to its capacity

to supply the demand.

In the WI, we assigned each city (along with its demand) or power plant (along with its

supply) to its closest node.
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Figure 8.4: NIMBLE’s steps for generating a synthetic grid similar to the WI. (a) In the first

step, it picks the locations of the cities and power plants as a subset of the nodes (buses) in the

generated network. (b) In the second step, by estimating the spatial density of the nodes in

the WI using GMM, it adds more nodes to the generated network to make the total number of

nodes equal to the one in the WI. (c) In the third step, it finds an spanning tree of the nodes by

connecting each node to its closest node with a higher index to ensure the connectivity of the

network. (d) In the last step, it adds more lines to the network to increase the robustness of the

generated network and adjust its properties (e.g., total number of lines and degree distribution)

to resemble those of the WI. It does it by repeatedly selecting a low degree node in a dense area

and connecting it to a high degree node which is also nearby.

8.2.2 Degree and line length distributions comparison

To compare the degree distributions of the nodes in the WI and the generated networks, we use

the Kolmogrov-Smirnov (DKS) statistic [115]. If P pxq and Qpxq are two Cumulative Distribution

Functions (CDFs), the KS statistic between these two is DKS “ maxx |P pxq ´Qpxq|.

To measure the similarity between the length distributions of the lines in a given network

and a generated network, we use the Kullback-Leibler (DKL) divergence. Specifically, the KL-

divergence of distribution q from p, denoted by DKLpp}qq, is a measure of the information lost

when q is used to approximate p: DKLpp}qq “
ş8

´8
ppxq ln ppxq

qpxqdx.
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8.2.3 Cascading failures model

We follow the cascade model due to line overloads in power grids with a deterministic outage

rule as described in Chapter 3: namely, a line e “ tu, vu fails when the magnitude |fe| of

the flow on that line exceeds its capacity ce. The line flow capacities are estimated as ce “

p1 ` αqmaxt|fe|, fu, where f is the median of the initial magnitude of line flows and α is the

lines’ factor of safety. For comparison purposes, we select the median of the initial magnitude

of line flows in the WI as the minimum capacity for the lines in the generated networks as well.

We use yield (the ratio between the demand supplied at the end of a cascade and the original

demand), number of failed lines, and number of connected components at the end of the cascade

to evaluate its severity.

8.2.4 Computation

For analyzing the power grid topological properties, we used the igraph library in R [10]. This

library provides a collection of network analysis tools.

To estimate the KL-divergence between distributions, we used the FNN library in R which

utilizes the method introduced by Boltz, et al. [35] for estimating the KL-divergence between

two distributions using their samples.

For fitting a Gaussian Mixture Model (GMM) (see Section 8.3), we used the mclust library

in R [72]. This library uses the Expectation Maximization (EM) algorithm to fit a GMM and

provides the Bayesian Information Criterion (BIC) for the selected number of clusters.

8.3 NIMBLE

The structural properties of the WI are shown in Fig. 8.3 and Table 8.1. The main observations

are: (i) the degree distributions of power grids are very similar to those of scale-free networks,

but grids have less degree 1 and 2 nodes and do not have very high degree nodes (e.g., Fig. 8.3a),

(ii) it is inefficient and unsafe for the power grids to include very long lines (e.g., Fig. 8.3b), and
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Table 8.1: Comparison between the structural properties of the WI and the generated networks.

Three instances of GenNet are shown to illustrate that the metric values are similar in various

generated networks. All networks have 14,430 nodes and 18,884 lines.

Networks L C ζ DKS X DKL

WI 17.44 0.048 -3.49 0 7,358 0

GenNet (1) 16.28 0.048 -4.72 0.051 12,108 0.10

GenNet (2) 16.02 0.045 -4.65 0.043 12,132 0.10

GenNet (3) 16.28 0.050 -4.66 0.052 11,145 0.10
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Figure 8.5: The relationship between the degree of a node and its average ρ with k “ 10, for

the nodes in the WI (the red line is the linear regression fit to the data points).

(iii) the average path length and the clustering coefficient demonstrate the small-world property

of power grids [153].

Based on these characteristics, we introduce the Network Imitating Method Based on LEar-

ning (NIMBLE) for generating synthetic networks similar to the real power grids. The NIMBLE

steps are summarized in Fig. 8.4.

In the first step, the NIMBLE picks the locations of the cities and power plants as a subset of

the nodes (buses) in the generated network. However, since the cities and the power plants are

usually the endpoints of the network, more nodes need to be added to the generated network

to make the total number of nodes equal to the number of nodes in a given grid (here the
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(a) WI (b) GenNet (1) (c) Gen Net (2) (d) GenNet (3)

Figure 8.6: The Western Interconnection (WI) power grid and the three generated networks

with 14,430 buses (nodes) and 18,884 lines.

WI). Notice that if the locations of the cities and power plants are not available and only the

topological properties of the given network need to be imitated, step 1 of the method can be

skipped (see the arXiv report [134], for a more general algorithm for this case).

The node (buses/substations) positions are correlated with the population and geographical

properties. Thus, the nodes can be clustered into groups based on their geographical proximity

using mixture models and in particular the Gaussian Mixture Models (GMM). Hence, in the

second step, NIMBLE uses a GMM for clustering the positions and uses the Bayesian Information

Criterion (BIC) to find the best number of clusters (c). It obtains the mean and covariance

matrix (µj ,Σj) of the points in clusters j “ 1, . . . , c along with the categorical probability of the

clusters π “ pπ1, . . . , πcq. Then, it uses these parameters to generate more nodes with similar

spatial distribution as the nodes in a given network to make the total number of nodes equal in

the given and generated networks. For the WI, we select c “ 55 based on the BIC.

To connect the nodes, the NIMBLE takes two steps inspired by the historical evolution

of power grids. The two main design consideration of the grid are (i) connectivity and (ii)

robustness.

In order for the power grid to operate, the substations (nodes) should be connected. To

satisfy the connectivity of the generated network, in the third step, the NIMBLE connects each

node i to its closest (Euclidean distance) node j such that i ă j in order to form a spanning
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tree of the nodes. This is inspired by the way the power grids are evolved. Each new bus or

substation is connected to the closest bus and substation that already exist in the grid. Since

the cities and the power plants are usually the end points in the power grid, in the NIMBLE,

these nodes have the lowest index. At the end of this step, the network gets connected. Notice

that the resulting tree differs from the minimum spanning of the nodes since the obtained tree

depends on the order of the nodes (for more details see the arXiv report [134]).

In the last step, the NIMBLE repeatedly adds lines to the generated network to increase its

robustness and adjust its properties (e.g., total number of lines, L, and C) to resemble those of

a given network. This step is based on three observations: (i) the degree distributions of power

grids are very similar to those of scale-free networks, but grids have less degree 1 and 2 nodes

and do not have very high degree nodes (e.g., Fig. 8.3a), (ii) it is inefficient and unsafe for the

power grids to include very long lines (e.g., Fig. 8.3b), and (iii) nodes in denser areas are more

likely to have higher degrees (see Fig. 8.5). To compute the density around node i, we define ρi

as the average Euclidean distance of node i from its k nearest nodes. We select k “ 10 in this

work.

Hence, the NIMBLE repeats the following steps until the number of lines is equal to the

number of lines in the given network: (1) select a low degree node in a dense area (observations

(i) and (iii)), and (2) connect it to a high degree node which is also nearby (observations (i) and

(ii)). To select a low degree node in a dense area, the NIMBLE samples a node i from all the

degree 1 and 2 nodes with probability 9ρ´ηi , where η is a tunable parameter. To connect the

sampled node to a high degree but nearby node, the NIMBLE connects node i to node j sampled

from all other nodes with probability 9}~zi ´ ~zj}
´β
2 dγj , where vector ~zi is the px, yq coordinate

of the node i, and β, γ are tunable parameters. This implies that node i preferentially connects

to a high-degree node, unless the high-degree node is too far in which case it is desirable to

connect to a low-degree but nearby node (as in the preferential attachment model [23], however

distance was not considered there). For the generated networks in this chapter, we empirically

select η “ 0.5, β “ ´2.5, and γ “ 1.5.
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Figure 8.7: Power flows in the WI and the generated networks. (a) The CDF of the flows on

the lines. (b) The CDF of the top 1,000 flows on the lines. (c) The geographical locations of

the lines carrying the top 100 flows.

8.4 Topological evaluation of the generated networks

We demonstrate the performance of the NIMBLE in generating synthetic grids similar to the

WI power grid. Since our method is probabilistic, we generate three networks for evaluation

purposes to show the consistency of the generated networks’ properties. We refer to the gene-

rated networks as: GenNet (1), GenNet (2), and GenNet (3). The generated networks visually

resemble the WI very well (see Fig. 8.6).

Fig. 8.3 compares the degree distributions of the nodes and length distributions of the lines

in the WI and the generated networks. As can be seen in Fig. 8.3a, the tail of the degree

distribution in the WI follows a power-law distribution. However, following the work by Clauset,

et al. [50] and since these networks are finite, there is not enough statistical evidence to support

the power-law hypothesis. Therefore, we only use the slope (ζ) of the fitted linear regression

line to the tail distribution for comparison purposes. Table 8.1 provides a summary of the

topological properties of the WI and the generated networks. The provided results demonstrate
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Table 8.2: Statistics of the flows (MW). The backup lines are the lines that do not initially carry

any significant flow.

Networks Mean Median SD Max Backup lines

WI 282.37 98.54 488.79 13,111.68 3,558

GenNet (1) 168.93 33.32 320.93 4,777.07 3,419

GenNet (2) 153.78 29.53 295.83 6,171.67 3,464

GenNet (3) 172.27 34.71 321.12 8,867.31 3,289

that the generated networks resemble the topological properties of the WI very well. However,

the number of line intersections pX q is about 50% more in the generated networks.

8.5 Robustness evaluation of the generated networks

We use the DC power flow equations and compare the flow distribution as well as the robustness

against cascading failures in the WI and the generated networks. The power demands and

supplies are estimated based on the population of the cities and power plants’ capacities as

described in Subsection 8.2.1. The flow statistics are very similar in the generated networks and

the WI (see Table 8.2). Despite the close similarity in the flow CDFs between the WI and the

generated networks, the locations of the lines that carry the top 100 flows are uncorrelated in

all the four networks (see Fig. 8.7). This demonstrates that NIMBLE generates networks that

not only have very similar flow characteristics to the real network, but also do not reveal the

locations of the potentially vulnerable lines in the real network.

To evaluate the robustness of the generated networks compared to the WI, we study cascading

failures in these networks. As an example, the evolution of the cascade in the WI and the

generated networks is depicted in Fig. 8.8. We consider cascades initiated by double line failures

(see Fig. 8.9) and removal of all the nodes and lines in a circular area (see Figs. 8.10 and 8.11

and also Figs. 8.12 and 8.13).



CHAPTER 8. GENERATING SYNTHETIC POWER GRIDS 174

Step 1

Step 15

(a) WI

Step 1

Step 15

(b) GenNet (1)

Step 1

Step 15

(c) GenNet (2)

Step 1

Step 15

(d) GenNet (3)

Figure 8.8: The first 15 steps of the cascades in the WI and the three generated networks. In

all the networks α “ 0.2 and the cascade is initiated by a failure in the line with the highest

flow, indicated with a magenta colored point. (a) Evolution of the cascade in the WI, which

continues over 25 steps, ending with the yield = .338, number of failed lines = 3,041, and

number of connected components = 1,558. (b) Evolution of the cascade in the GenNet (1),

which continues over 15 steps, ending with the yield = .357, number of failed lines = 2,621,

and number of connected components = 1,366. (c) Evolution of the cascade in the GenNet (2),

which continues over 15 steps, ending with the yield = .257, number of failed lines = 3,573, and

number of connected components = 1,946. (d) Evolution of the cascade in the GenNet (3),

which continues over 15 steps, ending with the yield = .277, number of failed lines = 3,434, and

number of connected components = 1,889.

In Fig. 8.9, we observe that the generated networks and the WI have similar level of robus-

tness against failures in the lines that carry the highest flows (notice that as we mentioned in

Fig. 8.7 these lines are in very different locations in the four networks). Figs. 8.10 and 8.11

also suggest that if a big area in the networks fails, the WI and the generated networks on

average behave very similarly. Figs. 8.12 and 8.13 show the heatmaps of the yield for cascades

initiated by area failures in the WI and the generated networks. As can be seen, despite having

a very similar level of robustness, the generated networks do not reveal the vulnerabilities of

the WI since the vulnerable areas in the generated networks and the WI are not in one to one

correspondence.
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Figure 8.9: The severity of the cascades initiated by all possible double line failures selected

from the lines that carry the top 25 largest flows in the networks as a function of the lines’

factor of safety (α). (b) The total number of failed lines at the end of the cascade. (c) Number

of connected components at the end of the cascade. As the cascade proceeds, the networks may

get partitioned into several parts.
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Figure 8.10: The average severity of the cascades initiated by failures in 10,000 uniformly dis-

tributed regions of radius 20 km as a function of lines’ factor of safety (α). All the nodes and

lines are removed from the initial failed area. (a) Yield. (b) The total number of failed lines at

the end of the cascade. (c) Number of connected components at the end of the cascade.
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Figure 8.11: The average severity of the cascades initiated by failures in 1,000 uniformly distri-

buted regions of radius 100 km as a function of lines’ factor of safety (α). All the nodes and lines

are removed from the initial failed area. The locations of failed areas are exactly the same in

all the four networks. (a) Yield. (b) The total number of failed lines at the end of the cascade.

(c) Number of connected components at the end of the cascade.
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Figure 8.12: Yield of the cascades initiated by failures in 10000 regions of radius 20 km uniformly

distributed when α “ 0.6. The color of each point represents the yield of the cascade initiated

by the failure in the area centered at that point. The size of the failed area in the map scale is

shown by a magenta circle.
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Figure 8.13: Yield of the cascades initiated by failures in 1000 regions of radius 100 km uniformly

distributed when α “ 0.6. The color of each point represents the yield of the cascade initiated

by the failure in the area centered at that point. The size of the failed area in the map scale is

shown by a magenta circle.
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8.6 Conclusion

We studied the structural and spatial properties of the WI and developed the NIMBLE for

generating synthetic power grid networks. We showed that the generated networks have similar

structural properties as well as the same level of robustness against failures to the WI. Since the

generated grids are embedded on approximately the same coordinates as the real grid, they can

provide realistic test networks to the researchers.

There are several engineering aspects of power grid networks such as line nominal voltages,

voltage and frequency stabilities, and transformer characteristics that were not considered in this

work. In a recent paper [33], statistical properties of some of the related engineering parameters

were studied in details. Incorporate these findings in our model can improve the quality of

the generated networks to the level of industrial grade data sets. Moreover, we believe that

if industrial grade data sets become available to the broad research community, the methods

developed in this chapter can be used in order to develop synthetic grids based on them.

We also believe that our approach can be extended for generating various other types of

spatially distributed networks (e.g., water and gas pipe networks).
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Chapter 9

Future Directions

In this thesis, we have explored some of the critical challenges facing power grids and introduced

new and unconventional approaches to address these challenges. Most of our results have a the-

oretical core with applications to power grids. Some algorithms we developed have applications

beyond these networks. Exploring these applications and extending some of the results in this

thesis can be of interest to researchers in power engineering as well as various other technical

fields. We summarize some of the future research ideas and directions below.

Power Grid Monitoring and Cyber Security: Optimal and robust grid monitoring and

state estimation is essential for its reliable operation and control. Almost all the aftermath

reports of recent major blackouts indicated the “lack of exact grid state awareness” as a key

factor in the inability of the control center to maintain the stability of the grid. Moreover, recent

cyber attacks on the Ukrainian grid have revealed the importance of robust grid monitoring in

the event of a cyber attack. Despite a significant amount of work that has been done to address

these issues, they require more research for development of effective state estimation methods

under critical scenarios. Some of the high level research plans in this direction are: (i) extend

the results in Chapters 5 and 6 to address challenges in optimal measurement units placement,

measurement consistency verification and false data detection, and state estimation under the

AC power flow model, (ii) develop probabilistic state estimation methods using Bayesian data

analysis techniques where the exact state of the grid is hard to estimate, and (iii) develop
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situational awareness tools based on machine learning and data analysis algorithms capable of

spatio-temporal monitoring of frequency dynamics within control areas of transmission grids for

both normal and emergency operations.

Power Grid Contingency Analysis and Control: Recent blackouts have exposed the in-

sufficiency of current protection measures and control mechanisms against failures and attacks.

Studying power grid vulnerabilities and development of sophisticated control mechanisms to

maintain its stability should be an essential part of the future research in this direction. In

particular, one can: (i) build on the work in Chapter 4 and employ both graph theory and ma-

chine learning techniques to provide efficient and tractable methods for high order contingency

analysis in power grids, (ii) extend the work in Chapter 7 for partitioning the grid into several

islands as well as adapt our work to applications beyond power grid networks such as protein-

protein interaction networks, social networks, and sensor networks, (iii) study new challenges

introduced by the energy market to power grids operation both from economical and security

points of view, (iv) study the vulnerabilities and control challenges introduced by the growth of

renewable energy resources and facilitate their deployment in power grids to reduce fossil fuels

consumption, and (v) study interdependencies between failures and cascades in power grids and

other networks (e.g., telecommunications, gas, water, and transportation network), as well as

cascades in other networked cyber-physical systems whose complexities requires interdisciplinary

collaborations.

Smart Grid: The Department of Energy (DOE) envisions that by 2030, the grid will have

evolved into an intelligent energy system, a smart grid [106]. This development will provide a set

of challenges that are completely new to the way power grids have been traditionally operating.

One of the most important promises of the smart grid–which can significantly change the picture

of the grid as we know it–is the ability of consumers to sell excess electric power (produced by

local wind turbines or solar cells) back to the grid. This ability introduces several security,

control, and pricing challenges. Moreover, sales growth of Electric Vehicles can soon change the

dynamics of the demand and supply in power grid operation. While increasing the total number

of Electric Vehicles will result in a huge load on the grid, if the charging and discharging of these

vehicles is done smartly by efficient algorithms, batteries within these vehicles can help to reduce
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the operation cost of the grid in load peak times and also facilitate incorporating of renewable

energy resources. Developing such algorithms requires more interdisciplinary research.



BIBLIOGRAPHY 183

Bibliography

[1] IEEE benchmark systems. Available at http://www.ee.washington.edu/research/

pstca/.

[2] National Grid UK. Available at http://www2.nationalgrid.com/uk/services/

land-and-development/planning-authority/shape-files/.

[3] Platts GIS Data. http://www.platts.com/Products/gisdata.

[4] Polish grid. Available at http://www.pserc.cornell.edu/matpower/.

[5] Power systems test case archive. Available at: http://www.ee.washington.edu/

research/pstca/.

[6] U.S. Energy Information Administration. Available at http://www.eia.gov/.

[7] U.S.-Canada Power System Outage Task Force. Report on the August 14, 2003 blackout

in the United States and Canada: Causes and recommendations. https://reports.

energy.gov, 2004.

[8] Report of the enquiry committee on grid disturbance in Northern region on 30th July

2012 and in Northern, Eastern and North-Eastern region on 31st July 2012, Aug. 2012.

http://www.powermin.nic.in/pdf/GRID_ENQ_REP_16_8_12.pdf.

[9] The Federal Energy Regulatory Commission (FERC) and the North American Electric Re-

liability Corporation (NERC). Arizona-Southern California Outages on September 8, 2011,

http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/
http://www2.nationalgrid.com/uk/services/land-and-development/planning-authority/shape-files/
http://www2.nationalgrid.com/uk/services/land-and-development/planning-authority/shape-files/
http://www.platts.com/Products/gisdata
http://www.pserc.cornell.edu/matpower/
http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/
http://www.eia.gov/
https://reports.energy.gov
https://reports.energy.gov
http://www.powermin.nic.in/pdf/GRID_ENQ_REP_16_8_12.pdf


BIBLIOGRAPHY 184

2012. http://www.ferc.gov/legal/staff-reports/04-27-2012-ferc-nerc-report.

pdf.

[10] R: A Language and Environment for Statistical Computing, 2014. Available at https:

//www.R-project.org.

[11] Avanced Research Projects Agency Energy (ARPA-E). Generating Realistic Information

for the Development of Distribution and Transmission Algorithms (GRID DATA), 2015.

Available at http://arpa-e.energy.gov/?q=arpa-e-programs/grid-data.

[12] Project Group Turkey. Report on Blackout in Turkey on 31st March 2015, Sept. 2015.

Avilable at: https://www.entsoe.eu/Documents/SOC%20documents/Regional_Groups_

Continental_Europe/20150921_Black_Out_Report_v10_w.pdf.

[13] Analysis of the cyber attack on the Ukrainian power grid, Mar. 2016. http://www.nerc.

com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf.

[14] A. Albert. Regression and the Moore-Penrose pseudoinverse, volume 3. Academic Press,

1972.

[15] R. Albert, I. Albert, and G. L. Nakarado. Structural vulnerability of the North American

power grid. Phys. Rev. E, 69(2):025103, 2004.

[16] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks.

Nature, 406(6794):378–382, 2000.
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