9 research outputs found

    A Two-stage Architecture for Stock Price Forecasting by Integrating Self-Organizing Map and Support Vector Regression

    Get PDF
    Stock price prediction has attracted much attention from both practitioners and researchers. However, most studies in this area ignored the non-stationary nature of stock price series. That is, stock price series do not exhibit identical statistical properties at each point of time. As a result, the relationships between stock price series and their predictors are quite dynamic. It is challenging for any single artificial technique to effectively address this problematic characteristics in stock price series. One potential solution is to hybridize different artificial techniques. Towards this end, this study employs a two-stage architecture for better stock price prediction. Specifically, the self-organizing map (SOM) is first used to decompose the whole input space into regions where data points with similar statistical distributions are grouped together, so as to contain and capture the non-stationary property of financial series. After decomposing heterogeneous data points into several homogenous regions, support vector regression (SVR) is applied to forecast financial indices. The proposed technique is empirically tested using stock price series from seven major financial markets. The results show that the performance of stock price prediction can be significantly enhanced by using the two-stage architecture in comparison with a single SVR model

    Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map

    Get PDF
    This paper outlines the development of a multi-satellite precipitation estimation methodology that draws on techniques from machine learning and morphology to produce high-resolution, short-duration rainfall estimates in an automated fashion. First, cloud systems are identified from geostationary infrared imagery using morphology based watershed segmentation algorithm. Second, a novel pattern recognition technique, growing hierarchical self-organizing map (GHSOM), is used to classify clouds into a number of clusters with hierarchical architecture. Finally, each cloud cluster is associated with co-registered passive microwave rainfall observations through a cumulative histogram matching approach. The network was initially trained using remotely sensed geostationary infrared satellite imagery and hourly ground-radar data in lieu of a dense constellation of polar-orbiting spacecraft such as the proposed global precipitation measurement (GPM) mission. Ground-radar and gauge rainfall measurements were used to evaluate this technique for both warm (June 2004) and cold seasons (December 2004-February 2005) at various temporal (daily and monthly) and spatial (0.04 and 0.25) scales. Significant improvements of estimation accuracy are found classifying the clouds into hierarchical sub-layers rather than a single layer. Furthermore, 2-year (2003-2004) satellite rainfall estimates generated by the current algorithm were compared with gauge-corrected Stage IV radar rainfall at various time scales over continental United States. This study demonstrates the usefulness of the watershed segmentation and the GHSOM in satellite-based rainfall estimations

    A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression

    Get PDF
    Author name used in the publication: JJ Po-An Hsieh2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A New Adaptive Elastic Net Method for Cluster Analysis

    Get PDF
    Clustering is inherently a highly challenging research problem. The elastic net algorithm is designed to solve the traveling salesman problem initially, now is verified to be an efficient tool for data clustering in n-dimensional space. In this paper, by introducing a nearest neighbor learning method and a local search preferred strategy, we proposed a new Self-Organizing NN approach, called the Adaptive Clustering Elastic Net (ACEN) to solve the cluster analysis problems. ACEN consists of the adaptive clustering elastic net phase and a local search preferred phase. The first phase is used to find a cyclic permutation of the points as to minimize the total distances of the adjacent points, and adopts the Euclidean distance as the criteria to assign each point. The local search preferred phase aims to minimize the total dissimilarity within each clusters. Simulations were made on a large number of homogeneous and nonhomogeneous artificial clusters in n dimensions and a set of publicly standard problems available from UCI. Simulation results show that compared with classical partitional clustering methods, ACEN can provide better clustering solutions and do more efficiently

    Information Systems and Health Care IX: Accessing Tacit Knowledge and Linking It to the Peer-Reviewed Literature

    Get PDF
    Clinical decision-making can be improved if healthcare practitioners are able to leverage both the tacit and explicit modalities of healthcare knowledge, yet at present there do not exist knowledge management systems that support any active and direct mapping between these two knowledge modalities. In this paper, we present a healthcare knowledge-mapping framework that maps (a) the tacit knowledge captured in terms of email-based discussions between pediatric pain practitioners through a Pediatric Pain Mailing List (PPML), to (b) explicit knowledge represented in terms of peer-reviewed healthcare literature available at PubMed. We report our knowledge mapping strategy that involves methods to establish discussion threads, organize the discussion threads in terms of topic-specific taxonomy, formulate an optimal search query based on the content of a discussion thread, submit the search query to PubMed and finally to retrieve and present the search results to the user

    GPR Method for the Detection and Characterization of Fractures and Karst Features: Polarimetry, Attribute Extraction, Inverse Modeling and Data Mining Techniques

    Get PDF
    The presence of fractures, joints and karst features within rock strongly influence the hydraulic and mechanical behavior of a rock mass, and there is a strong desire to characterize these features in a noninvasive manner, such as by using ground penetrating radar (GPR). These features can alter the incident waveform and polarization of the GPR signal depending on the aperture, fill and orientation of the features. The GPR methods developed here focus on changes in waveform, polarization or texture that can improve the detection and discrimination of these features within rock bodies. These new methods are utilized to better understand the interaction of an invasive shrub, Juniperus ashei, with subsurface flow conduits at an ecohydrologic experimentation plot situated on the limestone of the Edwards Aquifer, central Texas. First, a coherency algorithm is developed for polarimetric GPR that uses the largest eigenvalue of a scattering matrix in the calculation of coherence. This coherency is sensitive to waveshape and unbiased by the polarization of the GPR antennas, and it shows improvement over scalar coherency in detection of possible conduits in the plot data. Second, a method is described for full-waveform inversion of transmission data to quantitatively determine fracture aperture and electromagnetic properties of the fill, based on a thin-layer model. This inversion method is validated on synthetic data, and the results from field data at the experimentation plot show consistency with the reflection data. Finally, growing hierarchical self-organizing maps (GHSOM) are applied to the GPR data to discover new patterns indicative of subsurface features, without representative examples. The GHSOMs are able to distinguish patterns indicating soil filled cavities within the limestone. Using these methods, locations of soil filled cavities and the dominant flow conduits were indentified. This information helps to reconcile previous hydrologic experiments conducted at the site. Additionally, the GPR and hydrologic experiments suggests that Juniperus ashei significantly impacts infiltration by redirecting flow towards its roots occupying conduits and soil bodies within the rock. This research demonstrates that GPR provides a noninvasive tool that can improve future subsurface experimentation

    Cognitive Foundations for Visual Analytics

    Get PDF
    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions
    corecore