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A Two-stage Architecture for Stock Price Forecasting by 

Integrating Self-Organizing Map and Support Vector 

Regression 

Abstracts 

Stock price prediction has attracted much attention from both practitioners and 

researchers. However, most studies in this area ignored the non-stationary nature of 

stock price series. That is, stock price series do not exhibit identical statistical 

properties at each point of time. As a result, the relationships between stock price 

series and their predictors are quite dynamic. It is challenging for any single artificial 

technique to effectively address this problematic characteristics in stock price series. 

One potential solution is to hybridize different artificial techniques. Towards this end, 

this study employs a two-stage architecture for better stock price prediction. 

Specifically, the self-organizing map (SOM) is first used to decompose the whole 

input space into regions where data points with similar statistical distributions are 

grouped together, so as to contain and capture the non-stationary property of financial 

series. After decomposing heterogeneous data points into several homogenous regions, 

support vector regression (SVR) is applied to forecast financial indices. The proposed 

technique is empirically tested using stock price series from seven major financial 

markets. The results show that the performance of stock price prediction can be 
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significantly enhanced by using the two-stage architecture in comparison with a single 

SVR model.  

 

Keywords: Stock price prediction, support vector machine, self-organizing map 
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1. Introduction 

Stock price prediction is an important financial subject that has attracted 

researchers’ attention for many years. In the past, conventional statistical methods 

were employed to forecast stock price. However, stock price series are generally quite 

noisy and complex. To address this, numerous artificial techniques, such as artificial 

neural networks (ANN) or genetic algorithms are proposed to improve the prediction 

results (see Table 1). Recently, researchers are using support vector regressions (SVRs) 

in this area (see Table 1). SVR was developed by Vapnik and his colleagues (Vapnik, 

1995). Most comparison results show that prediction performance of SVR is better 

than that of ANN (Huang et al., 2005; Kim, 2003; Tay and Cao, 2001a). Reasons that 

are often cited to explain this superiority include the face that SVRs implement the 

structural risk minimization principle, while ANNs use the empirical risk 

minimization principle. The former seeks to minimize the misclassification error or 

deviation from correct solution of the training data; whereas the latter seeks to 

minimize the upper bound of generalization error. Solution of SVR may be global 

optimum while neural network techniques may offer only local optimal solutions. 

Besides, in choosing parameters, SVRs are less complex than ANNs. 

------------------------ 

Table 1 

------------------------ 

Although researchers have shown that SVRs can be a very useful for stock price 
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forecasting, most studies ignore that stock price series are non-stationary. That is, 

stock price series do not exhibit identical statistical properties at each point of time 

and face dynamic changes in the relationship between independent and dependent 

variables. Such structural changes, which are often caused by political events, 

economic conditions, traders’ expectations and other environmental factors, are an 

important characteristic of equities’ price series. This variability makes it difficult for 

any single artificial technique to capture the non-stationary property of the data. Most 

artificial algorithms require a constant relationship between independent and 

dependent variables, i.e., the data presented to artificial algorithms is generated 

according to a constant function. One potential solution is to hybridize several 

artificial techniques. For example, Tay and Cao (2001b) suggest a two-stage 

architecture by integrating a self-organizing map (SOM) and SVR to better capture 

the dynamic input-output relationships inherent in the financial data. This architecture 

was originally proposed by Jacobs et al. (1991), who were inspired by the 

divide-and-conquer principle that is often used to attack complex problems, i.e., 

dividing a complex problem into several smaller and simpler problems so that the 

original problem can be easily solved. In the two-stage architecture, the SOM serves 

as the “divide” function to decompose the whole financial data into regions where 

data points with similar statistical distribution are grouped together. After 
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decomposing heterogeneous data into different homogenous regions, SVRs can better 

forecast the financial indices. Although this architecture is interesting and promising, 

Tay and Cao (2001b) tested the effectiveness of the architecture only on futures and 

bonds. Whether the architecture can be employed for stock price prediction remains to 

be answered. 

This study aims to test the effectiveness of the architecture for stock price 

prediction by comparing the predictive performance of the two-stage architecture with 

a single SVM technique. Seven stock market indices were used for this study. This 

paper consists of five sections. Section 2 introduces the basic concept of SVR, SOM 

and the two-stage architecture. Section 3 describes research design and experiments. 

Section 4 presents the conclusions. 

2. Methodology 

2.1. Support vector machine 

Support vector machine (SVM) is originated as an implementation of Vapnik’s 

(1995) structural risk minimization (SRM) principle, which reduces empirical risk, 

based on bounds of generalization error. The fundamental concept in SVM is to 

transform the data into a higher dimensional space and to find the optimal hyperplane 

in the space that can maximize the margin between classes. The simplest SVM only 

deals with a two-class problem, in which the data is separated by a hyperplane defined 

by a number of support vectors. Support vectors are a subset of the training data used 
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to define the boundary between two classes. As a result, support vectors contain all of 

the information needed to define the classifier. This property makes SVM highly 

insensitive to the dimensionality of the feature space. 

2.2. Support vector regression 

Support vector regression is closely related to SVM classifiers in terms of theory 

and implementation. Vapnik (1995) introduced the ε–insensitive zone in the error 

loss function. From a theoretical point of view, this zone represents the degree of 

precision at which the bounds on generalization ability apply. Training vectors that lie 

within this zone are deemed correct, whereas those outside this zone are deemed 

incorrect and contribute to the error loss function. These incorrect vectors become the 

support vectors (see Fig. 1). Vectors lying on and outside the dotted lines are support 

vectors, whereas those within theε–insensitive zone are not important in terms of the 

regression function. The regression surface then can be determined only by support 

vectors. 

------------------------ 

Figure 1 

------------------------ 

Fundamentally, SVR is linear regression in the feature space. Although it is 

simple and not very useful in real-world situations, it forms a building block for 

understanding complex SVRs. Detailed discussions of SVMs and SVRs have been 

given by Burges (1998), Cristianini and Shawe-Taylor (2000), and Smola and 



 7 

Scholkopf (1998). 

Given set of training data   1 1( , ),..., ,l lx y x y X R  , where X denotes the 

space of input patterns. The goal of SVR is to find a function ( )f x  that deviates not 

more than   from the targets iy  for all the training data, and at the same time, is as 

flat as possible. Let linear function f(x) takes the form: 

 

 ( ) with ,Tf x w x b w X b R     (1) 

Flatness in (1) means smaller w . The problem can then be formulated as: 
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However, not all problems are linearly separable. To cope with this issue, 

non-negative slack variables, *,i i  , are introduced to deal with the otherwise 

infeasible constraints of optimization problem (2). The new formation is then stated 

as: 
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The constant C determines the trade-off of error margin between the flatness of 

f(x) and the amount of deviation in excess of   that is tolerated. To enable the SVR 

to predict a nonlinear situation, SVR maps the input data into a feature space. The 
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mapping of X into the feature space F is denoted by 

 
: ,
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The decision function can be computed by the inner products of 

T(x) (x )i  without explicitly mapping x into a higher dimension, which saves 

considerable computation efforts. T(x) (x )i   is then called kernel function 

).()(),( zxzxK T   

2.3. Self-organizing map 

SOM was first introduced by Kohonen (1995) and has attracted substantial 

research interest in a wide range of applications. For example, SOM has been shown 

to be quite effective in organizing large amounts of text data (Kohonen et al., 2000; 

Yang et al., 2003). In essence, SOM is an unsupervised learning method that clusters 

objects having multi-dimensional attributes into a lower-dimensional space. The 

objective of SOM is to maximize the degree of similarity of patterns within a cluster, 

minimize the similarity of patterns belonging to different clusters, and then present 

the results in a lower-dimensional space. 

The SOM network is a fully-connected network, containing two layers of 

nodes – an input layer and an output layer. The output layer is usually in the shape of 

a two-dimensional grid, acting as a distribution layer. The number of nodes in the 

input layer is equal to the number of features associated with the input. Each output 

node has the same number of features as the input nodes. The input layer, as well as 
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each output node, can be represented as a vector that contains the number of features 

of the input. The topology of the Kohonen SOM network is shown in Figure 2. 

------------------------ 

Figure 2 

------------------------ 

The SOM technique is based on the associative neural properties of the brain in 

that regions of neurons are operating in a centralized and localized manner to achieve 

tasks (Smith and Gupta, 2000). To replicate the whole process of human brain in 

SOM, the learning process of SOM is as follows: when an input pattern is presented 

to SOM, the winning node, defined as one whose weights are most similar to the input 

vector, receives the most learning by strengthening its weights. Weights of the 

surrounding neurons are also strengthened a little so that this area is more likely to 

fire up when a similar input pattern is presented next time. The localized manner in 

SOM is implemented by adjusting two parameters: the neighborhood size and the 

learning rate. Let us denote R(t) as the neighborhood size and ( )t  as the learning 

rate for weight update. The amount of learning of each neuron is determined by 

 ( )( )

d

R tt e



 (4) 

When we let these two parameters – R(t) and ( )t  - reduce over time, we 

observe that Eq. (4) will slowly decrease and the weight-updating process will 

gradually stabilize. Eq. (4) also shows that the amount of learning is the highest at the 

winning neuron, and decreases as the distance between a neuron and the winning 
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neuron increases . This process of weight-updating will be performed for a specified 

number of iterations. The detailed steps of the algorithm are presented in Figure 3. 

------------------------ 

Figure 3 

------------------------ 

2.4. A two-stage architecture 

A time series is a sequence of data points recorded sequentially in time. Time 

series forecasting is to predict future values based on past values and other variables. 

One problem in financial time series forecasting is that time series are non-stationary. 

The non-stationary property implies that the statistical distributions of a time series 

can change over time. This change may be caused by economic recession or growth, 

or political or environmental events. The non-stationary property will lead to a 

gradual change in the relationship between independent and dependent variables, i.e., 

the time series may have different predictor functions in different time periods. 

However, most learning algorithms require a constant relationship between 

independent and dependent variables (Cao and Gu, 2002). As a result, it is challenging 

to predict such structural changes of financial time series. 

To address this issue, this study employs a two-stage architecture to better 

predict financial indices (see Fig. 4). In the first stage, the SOM is used to decompose 

the whole input space into regions where data points with similar statistical 

distributions are grouped together, so as to capture the non-stationary property of 
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financial series. After decomposing heterogeneous data points into different 

homogenous regions, SVMs can then better forecast the financial indices. As 

demonstrated by Tay and Cao (2001b), this two-stage architecture can capture the 

dynamic input-output relationship inherent in futures and bonds prediction. However, 

whether the architecture can be used for stock price prediction remains to be 

answered. 

------------------------ 

Figure 4 

------------------------ 

3. Results 

3.1. Data sets 

We examined seven major stock market indices in this study, including the 

Nikkei 225 (NK), the All Ordinaries (AU), the Hang Seng (HS), the Straits Times 

(ST), the Taiwan Weighted (TW), the KOSPI (KO), and Dow Jones (DJ). Data were 

collected mostly from Yahoo Finance. Daily closing prices were used. The whole data 

set covers the period from July 1, 1997 to May 31, 2002. We believe that the time 

periods cover many important economic events, which are sufficient for testing the 

issue of non-stationary properties inherent in financial data. 

 

3.2. Data processing 

Original closing price was transformed into four-lagged relative difference in 

percentage of price (RDP), including RDP-5, RDP-10, RDP-15 and RDP-20 and one 
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transformed closing index (EMA15). EMA15 was obtained by subtracting a 

fifteen-day exponential moving average from the closing indices. Input variables 

include RDP-5, RDP-10, RDP-15, RDP-20, and EMA15. According to Tay and Cao 

(2001a), this transformation can make the distribution of the data more symmetrical, 

thus improving the predictive power of artificial methods. The output variable RDP+5 

is obtained by first smoothing the closing index with a three-day exponential moving 

average, because the application of a smoothing transformation to the dependent 

variable generally enhances the prediction performance of artificial methods. The 

calculations for all variables can be found in Table 2.  

------------------------ 

Table 2 

------------------------ 

RDP values that lie beyond ±2 standard deviations were first identified as 

outliers and then replaced with the closet marginal values. About 80% of the data was 

used for training, and 20% for testing. Data were scaled into the range of [-0.9, 0.9] to 

normalize each feature component so that larger input attributes do not overwhelm 

smaller inputs. 

3.3. Performance criteria 

The prediction performance is evaluated using the following statistical methods: 

normalized mean squared error (NMSE), mean absolute error (MAE), directional 

symmetry (DS) and weighted directional symmetry (WDS). The definitions of these 
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criteria can be found in Table 3. NMSE and MAE are the measures of the deviation 

between actual values and predicted values. The smaller the values of NMSE and 

MAE, the closer are the predicted time series values in relation to the actual values. 

Although predicting the actual levels of price changes is desirable, in many cases, the 

direction of the change is equally important. DS provides the correctness of the 

predicted direction of RDP+5 in terms of percentage; and the large values of DS 

suggest a better predictor. WDS measures the magnitude of the prediction error as 

well as the direction. It penalizes errors related to incorrectly predicted directions and 

rewards those associated with correctly predicted directions. The smaller the value of 

WDS, the better is the forecasting performance in terms of both magnitude and 

direction. 

------------------------ 

Table 3 

------------------------ 

3.4. SOM implementation 

The determination of the size of SOM is not an easy task, because the statistical 

properties of the data are not always available. To avoid the trial-and-error process of 

determining the size of the SOM map, researchers have proposed several methods for 

auto-determination (Dittenbach et al., 2002; Fritzke, 1995). Those networks can 

automatically determine the map size that is suitable for the specific data distribution 

at hand. Therefore, this study employs the Growing Hierarchical Self-Organizing Map 
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(GHSOM), developed by Dittenbach et al. (2002). GHSOM is a SOM technique 

which automatically grows the map size both in a hierarchical and horizontal way. 

Thus, besides basic parameters (e.g., learning rate and neighborhood range), GHSOM 

needs extra parameters, including the initial map size, the horizontal growing 

parameter, and the hierarchical growing parameter. We set the initial map size at 2x2 

units and let the GHSOM determine the best map size. Horizontal and hierarchical 

growing parameters can suggest GHSOM when to stop growing horizontally and/or 

hierarchically. We set horizontal growing parameter at 0.05 and hierarchical growing 

parameter at 1. Some partitions of GHSOM may involve very few data. One 

characteristic of the SOM is that similar types of input data are mirrored to a large 

extent by their geographical vicinity within the representation space. Thus, when 

some partitions have very few data (n < 30), we merge the data into their 

neighborhood partitions. 

3.5. SVM implementation 

The typical kernel functions are the polynomial kernel ( , ) ( 1)dk x y x y    and 

the Gaussian kernel  2 2( , ) exp ( ) /k x y x y    , where d is the degree of the 

polynomial kernel and 2  is the bandwidth of the Gaussian kernel. In our 

experiment, we chose the Gaussian kernel as our kernel function because it tends to 

achieve better performance. Tay and Cao (2001a) showed that SVRs are insensitive to 
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 , as long as it is a reasonable value. Thus, we choose 0.001 for  . In determining 

the kernel bandwidth 2  and the margin C, ten-fold cross validation technique was 

used to choose parameters that yield the best results. Subsequently, this set of 

parameters was applied to the test data set. The parameters tried in the ten-fold cross 

validation process were 2 {2,1,0.5,0.1,0.01,0.001,0.0001}   and 

{1000,750,500,100,50,2}C . A SVM implementation called LIBSVM was used in 

this work. We used the LIBSVM because it uses the state-of-the-art optimization 

method
1
. 

3.6. Results 

The results of the two-stage architecture and the single SVM model are shown in 

Table 4. In terms of NMSE, MAE and WDS, we observe that the two-stage 

architecture achieves smaller values than the single SVM model does, on the test data 

set. This suggests that the two-stage architecture can have smaller deviations between 

predicted and actual values than the single SVM model. The values of DS are larger 

in the two-staged architecture than in the single SVM model. This suggests that in 

terms of correctness of the predicted direction of RDP+5, the two-stage architecture 

offers better prediction. The results are consistent in all seven data sets. A paired t-test 

is also performed to check whether there is significant difference in the four 

performance criterion between the two methods. The calculated t-value for NMSE, 

                                                 
1
 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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MAE, DS, and WDS are 2.28 (p<0.1), 2.73 (p<0.05), 3.10 (p<0.05), and 2.81 

(p<0.05), respectively. This shows that the two-stage architecture outperforms the 

single SVM model. The findings are compatible with the conclusions by Tay and Cao 

(2001b). 

------------------------ 

Table 4 

------------------------ 

4. Conclusion 

The study shows that the performance of stock price prediction can be 

significantly enhanced by using the two-stage architecture in comparison with a single 

SVM model. The results may be attributable to the fact that financial time series are 

non-stationary and, therefore, the two-stage architecture can better capture the 

characteristics by decomposing the whole financial series into smaller homogenous 

regions. After decomposing the data, SVRs can better predict financial indices. The 

results suggest that the two-stage architecture provides a promising alternative for 

financial time series forecasting. Future research can further testing the idea of the 

two-stage architecture on other non-stationary data to evaluate the generalizability of 

the architecture. 

 

Acknowledgement  

This research is supported by National Science Council in Taiwan with project 

ID 95-2416-H-216-007. 

 



 17 

Reference 

Burges C.J.C., (1998) A tutorial on support vector machines for pattern recognition, 

Data Mining and Knowledge Discovery, 2 (2), 1-47. 

Cao L., Gu Q. (2002) Dynamic support vector machines for non-stationary time series 

forecasting, Intelligent Data Analysis, 6, 67-83. 

Cristianini N., Shawe-Taylor J. (2000) An introduction to support vector machines 

and other kernel-based learning methods, Cambridge: U.K. 

Dittenbach M., Rauber A., Merkl D. (2002) Uncovering hierarchical structure in data 

using the growing hierarchical self-organizing map, Neurocomputing, 48, 

199-216. 

Fritzke B. (1995) Growing grid - a self-organizing network with constant 

neighborhood range and adaptation strength, Neural Processing Letters, 2 (5), 

9-13. 

Huang W., Nokamori Y., Wang S-Y. (2005) Forecasting stock market movement 

direction with support vector machine, Computers & Operations Research, 32, 

2513-2522. 

Jacobs R.A., Jordan M.A., Nowlan S.J., Hinton G.E. (1991) Adaptive mixtures of 

local experts, Neural Computation, 3, 79-87. 

Kim K-j. (2003) Financial time series forecasting using support vector machines, 

Neurocomputing, 55, 307-319. 

Kohonen T. (1995) Self-Organizing Maps, Springer-Verlag: Berlin. 

Kohonen T., Kaski S., Lagus K., Salojvi J., Paatero V., Sarela A. (2000) Self 

Organization of a Massive Document Collection, IEEE Transactions on Neural 

Networks, 11(3), 574-585. 

Pai P-F., Lin C-S. (2005) A hybrid ARIMA and support vector machines model in 

stock price forecasting, Omega, 33, 497-505. 

Smith K.A., Gupta J.N.D. (2000) Neural networks in business: techniques and 

applications for the operations research, Computers & Operations Research, 27, 

1023-1044. 

Smola A.J., Scholkopf B. (1998) A tutorial on support vector regression. NeuroCOLT 

Technical Report TR Royal Holloway College: London, UK. 

Tay F.E.H., Cao L.J. (2001a) Application of support vector machines in financial time 

series forecasting, Omega, 29, 309-317. 

Tay F.E.H., Cao L.J. (2001b) Improved financial time series forecasting by combining 

Support Vector Machines with self-organizing feature map, Intelligent Data 

Analysis, 5, 339-354. 

Vapnik V.N. (1995) The Nature of Statistical Learning Theory, Springer-Verlag: New 

York. 



 18 

Wittkemper H-G, Steiner M. (1996) Using neural networks to forecast the systematic 

risk of stocks, European Journal of Operational Research, 90, 577-588. 

Yang C.C., Chen H., Hong K. (2003) Visualization of large category map for Internet 

browsing, Decision support systems, 35, 89-102. 

 

  

 




