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ABSTRACT 

 

GPR Methods for the Detection and Characterization of Fractures and Karst Features: 

Polarimetry, Attribute Extraction, Inverse Modeling and Data Mining Techniques. 

Douglas Spencer Sassen, B.S., University of Texas; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Mark E. Everett 

 

 The presence of fractures, joints and karst features within rock strongly influence 

the hydraulic and mechanical behavior of a rock mass, and there is a strong desire to 

characterize these features in a noninvasive manner, such as by using ground penetrating 

radar (GPR).  These features can alter the incident waveform and polarization of the 

GPR signal depending on the aperture, fill and orientation of the features.  The GPR 

methods developed here focus on changes in waveform, polarization or texture that can 

improve the detection and discrimination of these features within rock bodies.  These 

new methods are utilized to better understand the interaction of an invasive shrub, 

Juniperus ashei, with subsurface flow conduits at an ecohydrologic experimentation plot 

situated on the limestone of the Edwards Aquifer, central Texas.  

 First, a coherency algorithm is developed for polarimetric GPR that uses the largest 

eigenvalue of a scattering matrix in the calculation of coherence. This coherency is 

sensitive to waveshape and unbiased by the polarization of the GPR antennas, and it 

shows improvement over scalar coherency in detection of possible conduits in the plot 

data.  Second, a method is described for full-waveform inversion of transmission data to 

quantitatively determine fracture aperture and electromagnetic properties of the fill, 

based on a thin-layer model. This inversion method is validated on synthetic data, and 

the results from field data at the experimentation plot show consistency with the 

reflection data.  Finally, growing hierarchical self-organizing maps (GHSOM) are 

applied to the GPR data to discover new patterns indicative of subsurface features, 
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without representative examples. The GHSOMs are able to distinguish patterns 

indicating soil filled cavities within the limestone. 

 Using these methods, locations of soil filled cavities and the dominant flow 

conduits were indentified.  This information helps to reconcile previous hydrologic 

experiments conducted at the site.  Additionally, the GPR and hydrologic experiments 

suggests that Juniperus ashei significantly impacts infiltration by redirecting flow 

towards its roots occupying conduits and soil bodies within the rock.  This research 

demonstrates that GPR provides a noninvasive tool that can improve future subsurface 

experimentation. 
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CHAPTER I 

INTRODUCTION TO THE PROBLEM 

 

INTRODUCTION 

 

The detection of fractures and karst features and identification of their size and 

fill materials are important areas of near-surface geophysical research, with potential 

applications in hydrology and rock mass studies for civil and mining engineering.  The 

presence of fractures and voids within rock can alter the hydraulic and mechanical 

properties of the rock mass significantly, and these bulk properties often differ 

considerably from laboratory measurements on rock samples.  In the relatively new 

multidisciplinary field of ecohydrology the problems of understanding subsurface 

process as they interact with ecological communities are especially complex for 

fractured rock or karst landscapes.  The lack of adequate subsurface characterization has 

led to an underestimation of the influence of subsurface processes on ecosystems 

(Huxman et al., 2005).  There is a need for non-destructive methods, such as ground-

penetrating radar (GPR) to investigate shallow (<10 m) subsurface ecological 

interactions in these challenging environments. 

The acquisition and processing of scalar GPR reflection data has been 

successfully applied by previous workers to the characterization of fractured rock and 

karst environments.  Early GPR studies of fractured rock utilized 2-D scalar data (e.g. 

Stevens et al., 1995).  More recently, Van Gestel and Stoffa (2001) and Seol et al. (2001) 

demonstrated with Alford rotations the use of 2-D multicomponent GPR to determine 

the strike direction of fractures. Tsoflias et al. (2004) demonstrated the use of  
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the polarization properties of GPR to detect vertical fractures.  Tsoflias and Hoch (2006) 

investigated multi-polarization GPR for the characterization of thin vertical fracture 

properties.  Grasmueck et al. (2005) showed the benefits of single-component GPR 

acquired in 3-D with high spatial sampling for imaging fractures.  A 4-D GPR survey, 

i.e. repeated 3-D surveys in time, was used to track saline tracer flow in a sub-horizontal 

fracture (Talley et al., 2005).  Jeannin et al. (2006) used the face of a vertical cliff to 

acquire vertical and horizontal reflection profiles and horizontal transmission profiles to 

delineate fractures for a rock-mass stability study.  Also the efficacy of GPR for the 

detection of karst features has been demonstrated numerous times (e.g. Kruse et al., 

2006; Tallini et al., 2006) There is still significant scope for development of methods 

that enhance the detection of fractures by utilizing the vectorial nature of GPR waves 

and allow for quantitative descriptions of the fracture aperture and fill materials through 

geophysical inversion and data mining techniques. 

The received EM signal depends strongly on the polarization of the transmitting 

and receiving antennas, and on the geometry and electromagnetic properties of any 

target scatterer.  Traditional GPR systems utilize bistatic dipole or bowtie antennas that 

produce nearly linearly polarized EM waves. Subsurface diffracting bodies generally 

change the polarization of these incident waves.  It has been demonstrated, for example, 

that a low impedance cylinder, such as a clay-filled karst pipe, is best imaged with the 

long axis of the antennas oriented parallel to the cylinder, while a high impedance 

cylinder, such as an air-filled karst pipe, is best imaged with antennas oriented 

perpendicular to the axis of the cylinder (Radzevicius and Daniels, 2000). Traditional 

GPR surveys however utilize a single antenna polarization and, as the orientation and 

properties of subsurface targets are generally unknown, there is a great potential for 

interpretation bias.   An example of the relationship between antenna orientation and the 

GPR response of a diffracting body is illustrated in Figure 1.1.   
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Figure 1.1.  A GPR survey showing the effect of the antenna orientation relative to that of a 

buried pipe.  The PVC pipe is partially filled with water, and buried ~1.5 m in a natural, moist 

silty-sand soil. Arrows in upper panel indicate the direction of transect (After Sassen, 2008).  

 

 

To take advantage of the vector nature of EM waves and to minimize imaging 

bias, polarimetric GPR data utilizing multiple EM components should be acquired.    

Previous research that focused on extracting polarization dependent information include 

the works Van Gestel and Stoffa (2001) and Seol et al. (2001), who used Alford 

rotations (Alford, 1986) for GPR to determine the strike of elongate targets such as 

cylinders and fractures.   Also, Tsoflias et al. (2004) used the polarization properties of 

GPR waves to detect vertical fractures in limestone.   Recently, Streich and van der Kruk 

(2007) have developed a GPR imaging technique based on an analytic solution of the 

total field for a dipole over a half space that minimizes the effects of the antenna 

radiation pattern on GPR data.  This imaging method provides the means to extract 

polarization dependent information by removing the bias caused by variations in antenna 

patterns for the different antenna configurations.  These methods provide important 

detection and discrimination insights that are not available with traditional single 

component GPR techniques. 
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Other authors have utilized the distortion of the transmitted electromagnetic 

wavelet caused by subsurface scattering to provide detection and discrimination 

capability.  The GPR wavelet is distorted due to the constructive and destructive 

interference resulting from multiple internal reflections within a fracture, karst feature or 

thin layer (Figure 1.2), as well as pulse distortions caused by wave propagation in 

dispersive earth materials.  

 

 

 
Figure 1.2.  Response of an EM wavelet to a thin-layer-wedge.  Change in GPR waveform from 

reflections off of a thin-layer as a function of the ratio of the thin-layer thickness to the dominant 

wavelength of the wavelet in the thin-layer (after Widess, 1973, and Sassen and Everett, 2009a).  The 

dashed lines show the nondimensionalized thickness (D) of the thin-layer.  The background media is εr = 

12, μr = 1, and σ = 0, the thin layer is εr =20, μr = 1, and σ = 0.01 S/m, and the angle of incidence is 15˚.  

 

 

Kofman et al., (2006) has interpreted reverberation phenomena, resulting from 

constructive interference, to identify air-filled cavities similar to karst pipes.  Gregoire 

and Hollender (2004) utilized the changes in the amplitude spectrum of GPR reflection 

data, caused by constructive and destructive interference, as the basis for an inversion to 

determine the aperture and electromagnetic properties of the fill of a thin layer.  

Bradford and Deeds (2006) proposed amplitude-variation-with-offset (AVO) to 

determine the dielectric properties of thin beds.  Deparis and Garambois (2007) inverted 

both amplitude and phase variation-with offset (APVO) data acquired from a cliff face to 

determine fracture properties.  Lambot et al. (2004) utilized a thin-layer recursion 
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formula to estimate 1-D soil geoelectrical properties from stepped frequency GPR data. 

McClymont et al. (2008) demonstrated the efficacy of coherency attributes, which 

respond to changes in wavelet shape, as an aid in the interpretation of GPR data from a 

fault zone.  These authors have demonstrated the potential advantages of GPR 

techniques and that utilize changes in wavelet shape and amplitude spectra to improve 

upon detection and characterization of subsurface features.   

 While the response of GPR signals to a cylinder or thin-layer are well 

understood, only a few subsurface features have the idealized geometry or material 

properties that allow for deterministic estimation of properties using analytic inversion 

models.  Also, a single measure of polarization or waveform is often insufficient to 

constrain a target’s properties from noisy data.  Complicating the issue further is the lack 

of direct access to subsurface features for calibration of empirical models or supervised 

pattern recognition techniques.  Unsupervised learning techniques fill the niche where 

deterministic methods are inadequate and prior information on the subsurface is 

insufficient for empirical modeling.  Unsupervised learning techniques group features 

exhibiting similar attributes together into clusters while distancing features exhibiting 

very different attributes.  This is markedly different from typical pattern recognition or 

classification methods, in which the objective is to find common attributes of previously 

labeled features and the groupings, or classes, are defined by the label itself. 

One of the most popular unsupervised learning techniques in geophysics is the 

self-organizing map (SOM) (Kohonen, 1990). SOMs have the advantage of expressing 

data of high dimensionality onto a low dimension map, where nodes representing similar 

data are topographically close and the map reflect the probability density function of the 

data (Kohonen, 1990).  In the comparison of several unsupervised learning techniques 

for seismic facies analysis, Marriquin et al. (2009) preferred SOMs for identifying data 

clusters.  Castro de Matos et al. (2007) used SOMs in their process of seismic facies 

analysis. Klose, 2006, used SOMs to analyze patterns from 6 seismic properties to 

interpret tomographic seismic data.    Bauer et al. (2008) used the SOM to find clusters 

from the attributes of P-wave velocity, attenuation and anisotropy in tomographic data.  
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Benavides et al. (2009) used SOMs to identify clusters separating UXOs from fragments 

in time-domain EM data.  Essenreiter et al. (2001) used the SOM to find patterns useful 

for identifying reflection multiples in seismic data.  These authors have shown the 

effectiveness of SOM to geophysical problem.  More recent SOM adaptations of the 

traditional SOM's treat several shortcomings by combining automatic map growth with 

hierarchal growth (Herrero, et al., 2001, and Dittenbach at al., 2002).  This development 

has provided a tool with the advantages and computational efficiency of the SOM with 

the intuitive organization of hierarchical clustering methods. 

I build on the advantages of polarimetric GPR techniques and utilize changes in 

wavelet shape and amplitude spectra to improve upon detection and characterization of 

subsurface fractures and karst features.  I introduce a new coherency algorithm that 

enhances the detection of subsurface discontinuities from GPR data by utilizing changes 

in waveshape. Plus, I introduce a full-waveform nonlinear inversion technique that is 

used to estimate fracture aperture and electromagnetic fill properties from GPR 

transmission profiles.  In addition, I explore the use of the recent growing hierarchical 

SOM to cluster multiple measures of waveform, polarimetry and texture to identify 

patterns that can distinguish subsurface features.  These methods are applied to study the 

ecohydrology of an experimentation plot situated within the Edwards Aquifer region of 

central Texas 

 

BACKGROUND OF THE ECOHYDROLOGY OF THE EDWARDS AQUIFER 

REGION 

 

In the semiarid region of the southwest United States, human settlement over the 

past 150 years has altered the natural environment of grassland and savannah into 

shrubland through the suppression of natural fires and intense grazing (Van Auken, 

2000). The consequent proliferation of Juniperus ashei, a deep rooted evergreen shrub, 

within the central Texas rangeland is hypothesized to reduce recharge into local streams 

and the Edwards aquifer (Wilcox, 2002; Olenick et al., 2004).  Careful management of 



 

 

7 

the Edwards Aquifer of central Texas, USA, is important since it is the primary source of 

water for 1.7 million people including the residents of San Antonio (EAA, 2006).    The 

water of the karst Edwards aquifer is under intense demand, with aquifer discharge 

exceeding annual recharge rates during the 1990’s (Dugas et al., 1998).  The demand 

will become even greater with continued population growth. There is a great deal of 

interest in restoring the natural ecology through brush control with hopes that it will 

increase rangeland productivity, and increase stream flow and aquifer recharge (Olenick, 

et al. 2004).  The state government of Texas subsidizes brush removal from the 

contributing areas that provide recharge to the Edwards Aquifer in hopes of enhancing 

recharge volumes. 

However, some empirical studies on brush invasion and control seem to indicate 

that brush removal is not an effective means of enhancing groundwater volumes in the 

Edwards aquifer region.  One previous field study (Dugas et al., 1998) on the change in 

evapotranspiration and surface runoff following shrub removal within the Edwards 

Aquifer recharge zone indicates only temporary (3 years) gains in water yields.  Wilcox 

et al. (2008) showed that in a similar karst environment brush encroachment actually 

increases groundwater yields. It was suggested that brush enhances infiltration and 

allows a larger portion of water to bypass evapotranspiration.  Additionally, Juniperus 

ashei roots may enhance subsurface flow through the enlargement of joints within 

shallow limestone and by providing preferential pathways (Dasgupta et al., 2006).  The 

effect of Juniperus ashei on subsurface flow through fractures and karst features remains 

uncertain.  

The subsurface hydrology in fractured rock and karst environments is typically 

characterized by the occurrence of discrete flow conduits (Bear et al., 1993). The 3-D 

geometry of fractures and karst features, along with the type and distribution of the fill 

material, substantially impacts plant and animal access to water and soil nutrients.  

Isolated cores, sampled at a few discrete points, are largely inadequate for a complete 

ecohydrologic characterization. Consequently, geophysical techniques such as ground 

penetrating radar (GPR), which provide spatially continuous subsurface information, can 
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enhance fractured rock description.   

The recharge zone for the Edwards aquifer is a ~0.4 Mha region of central Texas 

(Olenick el al., 2004).  The recharge zone is delineated by surface exposures of the 

Cretaceous Edwards formation lying within the Balcones Fault Zone (Figure 1.3).  The 

contributing zone is defined as the surrounding areas that feed surface water and 

groundwater into the recharge zone.   
 

 

 
Figure 1.3. Geologic map of the Edwards Aquifer region and the research site. The Edwards Aquifer 

recharge zones are the areas of surface exposure of the Edwards formation.  The contributing zones are 

demarked by the Glen Rose formation. 

 

 

The main geologic unit of the Edwards Aquifer contributing zone is the 

Cretaceous-aged Glen Rose formation.  The Glen Rose formation alternates between 

regionally continuous layers of marl and limestone reflecting cycles of rising and falling 

sea level throughout the Cretaceous (Mancini and Scott, 2006). The limestone strata 
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contain vertical conduits that enhance lateral subsurface flow while the relatively 

impermeable layers of marl act to baffle vertical flow (Figure 1.4).  

 

 

 
Figure 1.4.  Picture of a section of the Glen Rose formation at the Canyon Lake spillway, Canyon Lake, 

TX.  The Glen Rose has series of continuous layers of clay rich marl (gray) and limestone (tan).  Some 

karst features (small caves) can be seen on the interface between the limestone and marl. 

 

 

The faulting and jointing of the limestone allows acidic groundwater to flow 

through the relatively low permeability rock matrix, dissolving carbonate minerals and 

forming the karst features (Ferrill et al., 2004).    Structurally, the study site is associated 

with the Balcones fault zone whose strike of main faulting is ~NE-SW (Collins, 1995).  

The more pervasive smaller-scale faults and joints (Figure 1.5) generally trend both 

parallel and at an acute angle to the main strike of faulting, with increasing density and 
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interconnectivity in the vicinity of the larger faults (Collins, 1987; 1995).  However, 

under similar mechanical conditions, the pattern of joint density, orientation and aperture 

varies from one rock unit to the next depending on the bulk mineralogy and porosity of 

the unit (Collins 1995). Thus, there is significant uncertainty as to the orientation of 

fractures and faulting within the study site.   

 

 

 
Figure 1.5.  Shown here are joints widened by carbonate dissolution within the Glen Rose formation, 

Canyon Lake spillway, Canyon Lake, TX.  The fracture, joint and fault patterns within a single rock unit 

typically trend parallel to each other. 

 

 

THE EXPERIMENTATION SITE 

 

 To study the effects of brush removal on the hydrologic cycle of the Edwards 

aquifer region, a hydrologic experimentation site was established (Taucer et al. 2006; 
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Dasgupta et al., 2006) within the contributing zone, approximately 45 km north of San 

Antonio (Figure 1.3).   The study area consists of a small, rectangular experiment plot 

(14 m x 7 m) within a stand of Juniperus ashei (Figure 1.6). The site instrumentation 

includes a rainfall simulator, a runoff gauge, rain gauges, soil moisture probes and a 2.5 

m deep trench excavated on the downslope (2% topographic gradient) boundary of the 

site. The purpose of the trench, which exposes the shallow limestone and marl 

stratigraphy, is to quantify and sample lateral subsurface flow. Rainfall simulations were 

conducted on this site both before and after clearing of the Juniperus ashei to evaluate 

the hydrologic effects of brush removal. 

  

 

(a)      (b) 

  
Figure 1.6. The research site showing: (a) the rainfall simulator and surface runoff gauge; (b) the 

downslope trench for quantifying and sampling lateral subsurface flow. 

 

 

The exposed lithology in the observation trench indicates that the top 0.3 m 

consists of weathered limestone and organic soil; below that is 1.5 m of limestone 

containing joints and karst features; these layers are underlain by a low permeability 

layer of marl (Figure 1.6b).  Soil and roots partially fill many of the exposed joints and 

karst features along the trench face.   
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PREVIOUS HYDROLOGIC RESULTS 

 

Hydrological experiments on the study plot were run both before and after 

clearing the brush.  During simulated rainfall most of the lateral subsurface flow is 

observed to exit at the trench face in discrete locations corresponding to the joints and 

karst features that contain roots (Dasgupta et al., 2006). In the pre-cut condition, a 

greater volume of the water applied by the rainfall simulator reached the trench face 

compared to identical simulations performed under the post-cut condition.   Taucer et al. 

(2006) showed that during intense rainfall simulations (0.152 m/hr), nearly all water that 

reached the surface of the plot infiltrated into high-capacity subsurface conduits.  There 

was negligible surface runoff, yet only 57% of the applied water escaped from the 

downslope trench face. Most of that amount emerged from a very limited number of 

discrete joints, conduits, or bedding planes. A significant amount (16%) of the water 

intercepted by the Juniperus ashei brush was channeled by stemflow into the subsurface 

at the base of the brush.  Although no runoff was collected on the downslope portion of 

the plot, ponding was observed in all rainfall simulations.   Even after intense rainfall 

events the organic litter was observed to be dry just a few centimeters below the surface.  

The Juniperus ashei litter exhibits a high degree of hydrophobicity, or water repellency.   

The preponderance of stemflow and the hydrophobicity of the litter suggests that the 

Juniperus ashei may channel flow directly to its roots, promoting preferential flow to the 

subsurface.  This raises questions about how the roots of the Juniperus ashei might 

affect the subsurface preferential flow pathways provided by fractures.  

To better understand the preferential subsurface conduit system, a series of tracer 

tests was conducted by Taucer et al. (2006).   Three non-reactive tracers were applied to 

the surface at different locations within the plot to allow for simultaneous monitoring 

during a rainfall simulation experiment.  Uranine was applied to the distal upslope 

portion of the site; eosine was applied in the middle of the plot around the largest tree 

trunk; and phloxine was applied in close proximity to the trench (Figure 1.7). Water 

samples from the trench face were collected for tracer analysis at 16 discrete locations 
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that had been observed as key groundwater egress points during previous rainfall 

simulations (Figure 1.8).  

 

 

 

Figure 1.7. Map view of the experimental plot. The red box represents the extent of the 3-D GPR survey 

(12.7 x 6.3 m), which is surrounded by metal sheeting to capture runoff.  The gray areas show the 

locations of the three surface-applied dyes.  The dotted lines indicate the location of the in-line and cross-

line GPR sections discussed in Chapter II. The crosshairs indicate the location and relative size of 

Juniperus ashei trunks on the site. The figure is adapted from Taucer et al. (2006).  

 

 

Figure 1.8.  The tracer sampling locations and lithology in the vertical trench face.  The figure is adapted 

from Taucer et al. (2006). 

 

 

None of the distal uranine applied to the upslope portion of the plot was observed to exit 

at the trench face.  In contrast, the A and B sampling regions (Figure 1.8) showed that 

the proximal phloxine and the middle eosine tracers exhibited similar breakthrough 

patterns.  In some locations (A1 and A3) the peak concentration of the mid-range eosine 
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preceded the peak concentration of proximal phloxine, even though the mid-range eosine 

had traveled further.   Within the C and D sampling regions only the proximal phloxine 

showed strong concentrations; the mid-range eosine was detected only at specific 

locations C1 and D4 and moreover in significantly lower concentration.   

 

OBJECTIVES 

 

In this dissertation I have addressed the question of how does one detect and 

characterize fractures, joints and karst features within the shallow subsurface in a 

minimally invasive manner.  I answer this question by exploring existing methodologies 

and by developing new methodologies for analyzing and acquiring ground-penetrating 

radar (GPR) data.  I have also explored the significance of the results on the interactions 

between the ecology and hydrology, or ecohydrology, of the Honey Creek Nature Area 

of central Texas, USA. 

 

DISSERTATION STRUCTURE 

 

Chapter I provides background information on the importance of fracture and 

karst feature detection and discrimination, the current state of the art in GPR 

methodologies for detecting and characterizing these features, and a summary of the 

setting and previous work conducted at the Honey Creek Nature Area experimentation 

plot.  Much of the material in this chapter is repeated in subsequent chapter, because they 

were originally intended as standalone journal articles. 

Chapter II is a republication of, “3D Polarimetric GPR coherency attributes and 

full-waveform inversion of transmission data for characterization of fractured rock” 

(Sassen and Everett, 2009).  In this chapter I introduce a new coherency attribute 

algorithm for use with polarimetric GPR data.  This algorithm enhances the detection of 

subsurface discontinuities.  I also demonstrate its improvement over existing methods 



 

 

15 

with data from the Honey Creek site.  Plus, I introduce a full-waveform nonlinear 

inversion technique that is used to estimate fracture aperture and electromagnetic fill 

properties from GPR transmission profiles.  This method is validated on finite difference 

time-domain synthetic data, and applied to the Honey Creek site. 

Chapter III is an analysis of the ecohydrologic significance of multicomponent 

GPR data and the coherency and inversion results at the site.  The GPR results suggest 

that Juniperus ashei, an invasive shrub, has significantly altered the surface and 

subsurface hydrology and carbon storage within the central Texas region.  This chapter 

will appear in the October, 2009 issue of Near Surface Geophysics, a special issue on 

hydrogeophysics as a paper entitled, “Ecohydrogeophysics at the Edwards Aquifer: 

Insights from Polarimetric Ground Penetrating Radar”.  

Chapter IV is the application of the data mining and knowledge discovery 

(DM/KDD) process to the GPR data from the Honey Creek Natural Area.  I focused on 

the recently developed unsupervised learning technique, growing hierarchical self-

organizing maps (GHSOM), and an adaption of an automatic labeling technique for 

enhancing interpretation of geophysical data.  The GHSOM used in the DM/KDD 

process revealed distinctive patterns indicative of soil filled cavities and joints within the 

limestone under the experimentation plot.  A version of this chapter will also be 

published in a peer-reviewed journal. 

Chapter V is the discussion and conclusion for the dissertation as a whole.  It 

highlights the contributions and caveats of this research. 

Appendix covers an algorithm for the alternating direction implicit finite-

difference time-domain (ADI-FDTD) modeling technique for simulating 

electromagnetic propagation in 3D, specifically for fast modeling of GPR.  The section 

covers the discritization of Maxwell’s equations, boundary conditions, and models of a 

GPR source for the ADI-FDTD method. This section also includes validation of the 

algorithm against analytic solutions and simulation examples.   
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CHAPTER II 

3D POLARIMETRIC GPR COHERENCY ATTRIBUTES AND FULL-WAVEFORM 

INVERSION OF TRANSMISSION DATA FOR CHARACTERIZATION OF 

FRACTURED ROCK*  

 

SUMMARY 

 

 Ground penetrating radar (GPR) can be utilized to detect and describe fractures 

for characterization of fractured rock formations.  A fracture alters the incident 

waveform, or waveshape, of the GPR signal through constructive and destructive 

interference, depending on the aperture, fill and orientation of the fracture.  As the 

electromagnetic waves of GPR are vectorial in nature, features exhibiting strong 

directionality can change the state of polarization of the incident field.  GPR methods 

that focus on changes in waveform or polarization can improve the detection and 

discrimination of fractures within rock bodies.  Coherency is a traditionally seismic 

attribute used for the delineation of discontinuities in wavelet shape.  A coherency 

algorithm is developed for polarimetric GPR that uses the largest eigenvalue of the time-

domain scattering matrix in the calculation of coherence. This coherency algorithm is 

sensitive to waveshape and unbiased by the polarization of the GPR antennas.  The 

polarimetric coherency algorithm shows improvement over scalar coherency in 

removing the effects of polarization on field data collected from a fractured limestone 

plot used for hydrologic experimentation.    Also, a method is described for time-domain 

full-waveform inversion of transmission data to quantitatively determine the fracture  

 

 

____________ 

*Reprinted with permission from: 3D Polarimetric GPR Coherency Attributes and full-
waveform inversion of transmission data for characterization of fractured rock, Sassen 
and Everett, 2009, Geophysics, 74, no. 3, J23-J34, 2009, by The Society of Exploration 
Geophysics. 
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aperture and electromagnetic properties of the fill, based on a thin-layer model. 

Inversion results from field data at the experimentation plot show consistency with the 

location of fractures from the reflection data.  Together, these methods provide improved 

fracture detection capability and quantitative information on fracture aperture, and the 

dielectric permittivity and electrical conductivity of the fill over traditional GPR imaging 

and scalar coherency attributes. 

 

INTRODUCTION 

 

The detection of fractures and identification of their aperture and fill materials is 

an important area of near-surface geophysical research, with potential applications in 

fractured rock hydrology and rock mass studies for civil and mining engineering.  The 

presence of fractures in rock can alter the hydraulic and mechanical properties of the 

rock mass significantly, and these bulk properties often differ considerably from 

laboratory measurements on rock samples.  Consequently, geophysical techniques such 

as ground penetrating radar (GPR), which provide spatially continuous subsurface 

information, can enhance fractured rock description.  GPR increasingly is being used for 

near-surface characterization of fractured rocks because of its high resolution imaging 

capabilities and good penetration (~10 m) in most rock materials.  Early GPR studies of 

fractured rock utilized 2-D scalar data (e.g. Stevens et al., 1995).  More recently, Van 

Gestel and Stoffa (2001) and Seol et al. (2001) demonstrated with Alford rotations the 

use of 2-D multicomponent GPR to determine the strike direction of fractures. Tsoflias et 

al. (2004) demonstrated the use of the polarization properties of GPR to detect vertical 

fractures.   Tsoflias and Hoch (2006) investigated multi-polarization GPR for the 

characterization of thin vertical fracture properties.  Grasmueck et al. (2005) showed the 

benefits of single-component GPR acquired in 3-D with high spatial sampling for 

imaging fractures.  A 4-D GPR survey, i.e. repeated 3-D surveys in time, was used to 

track saline tracer flow in a sub-horizontal fracture (Talley et al., 2005).  Jeannin et al. 

(2006) used the face of a vertical cliff to acquire vertical and horizontal reflection 
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profiles and horizontal transmission profiles to delineate fractures for a rock-mass 

stability study.  There is still significant room for development of methods that enhance 

the detection of fractures by utilizing the vectorial nature of GPR and allow for 

quantitative descriptions of the fracture aperture and fill materials through geophysical 

inversion techniques. 

The GPR response of a given fracture depends on the polarization and bandwidth 

of the GPR antennas, plus the incident angle of the waves on the fracture.  A wavelet 

reflected from a thin layer is distorted by the constructive and destructive interference 

that occurs from multiple internal reflections (Widess, 1973).  Additionally, the amount 

of received EM backscatter depends strongly on the polarization of the transmitting and 

receiving antennas, in addition to the geometry and electrical properties of the scatterer. 

The purpose of this paper is to improve the characterization of fracture geometry 

and fill properties within rock bodies by noninvasive means.  The objectives are to 

delineate fractures with polarimetric coherency images obtained from reflection GPR 

data, and to provide quantitative information on fractures from the inversion of 

transmission data.  When polarimetric coherency is determined, it mitigates the effects 

of polarization on field data and this improves imaging of fractures from reflection data.  

The coherency also provides the necessary prior information on fracture orientation for 

inversion.  An inversion procedure for transmission data will allow fracture aperture to 

be determined as well as the electromagnetic fill properties.   My approach is to develop 

a new coherency attribute and full-waveform inversion algorithms, which I describe 

next. 

 

STEP 1: COHERENCY ATTRIBUTES APPLIED TO FRACTURE IMAGING 

 

Coherency is a traditional seismic attribute used for the delineation of trace—

to—trace discontinuities in seismic waveforms.  A coherency attribute compares a small 

window of a waveform trace with surrounding traces to provide an indicator of 

similarity.  For example, the traces on one side of a lateral boundary between two 
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materials that have different characteristic propagation properties will be dissimilar to 

neighboring traces on the other side of the boundary and hence will be associated with a 

low coherency score.  While such differences may be difficult to see in a migrated 

image, a coherency attribute image often is relatively easy to visualize.  Seismic 

coherency has been useful in delineating faults and paleochannels (e.g. Bahorich and 

Farmer, 1995).  A thorough review of various forms of seismic coherency attributes can 

be found in Chopra and Marfurt (2007).  In GPR, as in seismic reflection imaging, 

changes in subsurface impedance and target geometry affect the shape of the observed 

wavelet.  McClymont et al. (2008) have demonstrated the utility of seismic coherency 

attributes for interpreting GPR data, treating the electromagnetic field as a scalar 

wavefield.  However, EM waves are vectorial in nature with mutually orthogonal 

electric and magnetic fields transverse to the direction of propagation.  Features 

exhibiting strong directionality such as faults, fractures and edges can change the state of 

polarization of an incident field, which introduces bias into scalar-based GPR images. 

To take advantage of the vector nature of EM waves and prevent bias, fully polarimetric 

GPR data and processing techniques should be used.  Thus, methods that combine both 

polarization invariant information and wavelet shape information into a single, easily 

interpretable, attribute are desirable for the imaging of subsurface discontinuities.   To 

this end, the largest eigenvalue of the scattering matrix, acquired from polarimetric GPR 

data, is used here in conjunction with the eigenstructure coherency algorithm of 

Gersztenkorn and Marfurt (1996) to produce a GPR coherency attribute that is unbiased 

by antenna polarization.  The new polarimetric coherency algorithm is applied to 

polarimetric GPR data acquired over fractured limestone.  Analysis of the field results 

shows significant improvement over scalar—based coherency images for providing 

information on the location of possible fractures.   
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STEP 2. INVERSE MODELING FOR FRACTURE CHARACTERIZATION 

  

Traditional migrated GPR images and coherency attributes provide only 

qualitative information on fracture properties. Often, quantitative information on fracture 

properties is also required.  Bradford and Deeds (2006) utilized amplitude-variation-

with-offset (AVO) analysis of GPR to determine the dielectric properties of thin beds.  

Geophysical inverse modeling attempts to associate an observed dataset with an optimal 

model of the relevant subsurface physical properties. Recent research includes full-

waveform inversion of tomographic GPR data (Ernst et al., 2007; Kuroda et al., 2005; 

Jia et al., 2002), and inversion of GPR data from natural waveguides (van der Kruk et 

al., 2007; van der Kruk et al., 2006).  There are few examples of inversion techniques 

developed specifically for thin-layer discontinuities or fractures.  Deparis and Garambois 

(2007) utilized inversion of both amplitude and phase variation-with offset (APVO) 

analysis of GPR reflection hyperbola acquired from a cliff face to determine fracture 

properties.  Lambot et al. (2004) utilized a thin-layer recursion formula to estimate soil 

electrical properties in the inversion of 1-D stepped frequency GPR data.  Gregoire and 

Hollender (2004) used the amplitude spectrum from 2-D time-domain laboratory GPR 

reflection data and a thin-layer forward model to determine the aperture and 

electromagnetic properties of the fill of discontinuities.  That study utilized the spectral 

ratio between a measured reflection wavelet and a reference wavelet. Very good 

agreement was found between laboratory measurements and the inversion results from 

the GPR when the aperture of the discontinuity is greater than one—fourth the dominant 

wavelength of the wavelet.  When the aperture is less than one—fourth the dominant 

wavelength, the inversion was poorly constrained and success depended on prior 

knowledge of either permittivity or aperture.  In the second step of my two-step 

procedure for fractured rock characterization, I utilize a full-waveform time-domain 

inversion model for determining fracture aperture, dielectric permittivity, and electrical 

conductivity from actual GPR transmission data. The fractures are previously identified 

using the first step of my two-step process, namely the polarimetric coherency imaging 
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described earlier. 

 

BASIC THEORY 

 

Reflection and transmission for thin layers 

 

Fractured—rock characterization using GPR depends on many factors including 

the contrast in electromagnetic properties between the host rock and the fracture fill, the 

size and aperture of the fracture, the angle of radar wave incidence, the frequency band 

of the GPR signal, and the polarization of the antennas.  Traditional GPR systems utilize 

bistatic dipole or bowtie antennas that produce nearly linearly polarized EM waves in 

which the electric field is aligned parallel to the long axis of the antenna.  When the 

electric field is parallel to a planar bed (TE polarization), the reflection and transmission 

coefficients are different when compared to the case of the same electric field oriented 

perpendicular to the plane (TM polarization) (Figure 2.1).  The differences between the 

TE and TM coefficients are a direct consequence of the fundamental electromagnetic 

boundary conditions, i.e. continuity of tangential electric and magnetic field vectors, at 

material interfaces. 
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A)        B) 

 
Figure 2.1.  The amplitude (a) and phase (b) of the reflection and transmission coefficients.  Plotted as a 

function of the angle of incidence for TE and TM polarized plane waves, equations 2.1-2.4, in a 

background medium of εr = 12, μr = 1, and σ = 0 incident on a half space with εr =20, μr = 1, and σ = 0.1 

S/m. 

 

 

For a planar feature, of thickness greater than the longest significant wavelength 

of the GPR signal, the far—field reflection (R) and transmission coefficients (T), or 

Fresnel’s equations, for transverse electric (subscript TE) and transverse magnetic 

(subscript TM) polarizations are  
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where ε is the dielectric permittivity, μ is the magnetic permeability, k is the complex 

wavenumber, β is the propagation constant, α is the attenuation constant, ω is the 

angular frequency, and θi is the angle of incidence (Hollander and Tillard, 1998; Irving 

and Knight, 2003). Here, the effective electrical conductivity σeff includes both DC 

electrical conductivity and losses associated with dielectric polarization.  Dielectric 

losses are frequency dependent (Hollender and Tillard, 1998), but over the limited 

bandwidth of typical GPR systems dielectric loss can be treated as a static contribution 

to effective electrical conductivity (Irving and Knight, 2003).    In conducting materials 

and lossy dielectrics, the radar wave velocity depends on frequency.  Also, radar 

attenuation is frequency dependent, with increased attenuation at higher frequencies.  

Therefore, a wideband GPR wavelet propagating within a conductive medium undergoes 

significant dispersion.   

In conductive media, Fresnel’s equations and Snell’s law remain valid; however, 

the physical interpretation of reflected and transmitted waves changes (Stratton, 1941).  

A wave reflected from conductive fracture fill is changed not only in amplitude, but also 

in phase, such that the angles of reflection and refraction become complex.  Further 

details may be found in the classic texts of Stratton (1941) and von Hippel (1954).  Also, 

in the general case in which the host medium is conductive, the angle of incidence on the 

planar fracture is complex.  In this paper, to simplify the treatment, the angles of 

incidence, reflection and refraction are treated as real, which implies that planes of 

constant wave phase and wave amplitude are always parallel with each other. 
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In most near—surface geophysical investigations, open fractures, sedimentary 

beds, and planar fault zones are almost always thinner (a few mm or cm) than the longest 

wavelength of the GPR signal (typically ~1 m). In such cases, one must account for 

constructive and destructive interference caused by internal reflections within the thin 

layer. The reflection and transmission characteristics of thin layers have been studied 

extensively in optics (e.g. Iizuka, 2002). The effective reflection (Reff) and transmission 

(Teff) coefficients for a monochromatic plane wave incident on a thin layer of contrasting 

electromagnetic properties within a host medium are 
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where d is the layer thickness, φ  is the two-way phase delay with respect to the 

transmitted signal, Δ is the one-way phase delay, and θ2 is the angle of refraction. The 

terms Tij and Rij are, respectively, the half-space transmission and reflection coefficients 

for a plane wave propagating in medium i, and incident upon medium j.  The reflection 

and transmission terms in equations 2.8-2.9 can be determined using equations 2.1-2.4.   

Note that the phase delay associated with a thin layer, equation 2.10, depends on the 

layer thickness and the frequency of the input signal, as well as the layer electromagnetic 

properties.  If the phase delay of the internally reflected monochromatic wave is zero 

relative to the primary reflected or transmitted wave, purely constructive interference 

occurs. If the phase delay is non—zero, a certain amount of destructive interference is 

present. This implies that, for a broadband GPR signal, some frequency components are 

reflected or transmitted more or less than others, thereby distorting the reflected wavelet.  

 Changes in the reflected waveform, as a function of fracture aperture, are shown 
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in Figure 2.2.  Notice that the interference caused by the thin layer can significantly 

impact the wavelet shape and amplitude for even a very small change in layer thickness 

relative to the wavelet. The high sensitivity of GPR data to key subsurface features 

illustrates the potential for algorithms that can utilize full—waveform information to 

detect subsurface discontinuities and identify fracture properties.  

 

 

 
Figure 2.2.  Reflected wavelets determined using a captured GPR wavelet and the thin-layer reflection 

model, equation 2.8, as a function of the ratio of the thin-layer thickness to the dominant wavelength of the 

wavelet in the thin-layer (after Widess, 1973).  The dashed lines show the nondimensionalized thickness 

(D) of the thin-layer.  The background media is εr = 12, μr = 1, and σ = 0, the thin layer is εr =20, μr = 1, 

and σ = 0.01 S/m, and the angle of incidence is 15˚, at 15˚ there is little difference between TE and TM 

polarizations  

 

 

The case of arbitrary polarization and polarimetry 

 

The TM and TE reflection and transmission coefficients are end-members of the 

more general case of an arbitrarily polarized wave incident on a planar surface.   In the 

arbitrary case, an incident wave has neither its electric nor magnetic field tangential to 

the interface of contrasting properties. The electromagnetic field changes polarization 

upon reflection and transmission; this phenomenon is sometimes called depolarization 

(Roberts and Daniels, 1996).  An electromagnetic wave of arbitrary polarization can be 
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described by the superposition of two orthogonal electromagnetic waves (Boerner et al., 

1990). 

 Since the strike of a subsurface feature of interest is generally unknown in 

geophysical applications, fully polarimetric GPR should be used to eliminate 

polarization bias. Traditional GPR surveys utilize dipole antennas parallel to the ground 

surface, thus only 2-D polarimetry will be considered here.  To determine the vector 

describing the electric field of arbitrary polarization received at the surface, two 

orthogonally polarized receiving antennas are needed.   Since the backscatter of an 

arbitrary target also depends on the polarization of the transmitting antenna, it is 

desirable to transmit in two orthogonal polarizations.   The vector response is described 

by the time-domain scattering matrix S(t) (Chen et al., 2001) 



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In equation 2.13, matrix element Sij is the intensity of the electric field at time t, 

measured at the receiving antenna of polarization âj, and backscattered from an arbitrary 

target that is illuminated by a transmitting antenna of polarization âi.   The time-domain 

scattering matrix is a real—valued, symmetric matrix.  The scattering matrix may be 

rotated to characterize arbitrary antenna polarization.  The rotation of the S matrix 

sketches out an ellipse, wherein the lengths of the major and minor axes are proportional 

respectively to the first and second eigenvalues λ1
S(t) and λ2

S(t) (Figure 2.3).  While the 

terms of the scattering matrix are clearly dependent upon the (X,Y) coordinate basis of 

the survey geometry, the eigenvalues and eigenvectors are rotational invariants.  The  

first eigenvalue λ1
S(t) represents the maximum target backscatter magnitude for any 

antenna polarization, and hence corresponds to the GPR response under optimal 

polarization of the antennas.   
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Figure 2.3.  Example of a 2-D polarization ellipse.  The first eigenvalue λ1

S corresponds to the maximum 

of the electric field for ideal antenna polarization in which target backscatter is maximized.   

 

 

The four configurations of transmitting and receiving antennas shown in Figure 

2.4 are used to populate the scattering matrix.  According to reciprocity the XY and YX 

configurations are degenerate, so only one of the two cross-polarized configurations is 

needed to determine the off—diagonal terms (Roberts, 1994; Van Gestel and Stoffa, 

2001).  It should be noted that not all GPR systems have the flexibility to interchange the 

transmitting and receiving antennas, in those cases all four components must be 

collected.  In practice, rough topography and above—ground obstacles can make 

difficult the precise alignment of the transmitter and receiver antennas.  This leads to 

distortion of the scattering ellipse.  Also, erroneously high eigenvalues may result when 

the signal to noise ratio is poor and the system noise is uncorrelated between the 

different components. 
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Figure 2.4. The antenna configurations used in the GPR study.  The gray block represents the transmitting 

antenna and the white represents the receiving antenna. 

 

 

Several authors have successfully demonstrated algorithms based on the 

scattering matrix for extracting the orientation of directional subsurface features.  Van 

Gestel and Stoffa (2001) used Alford rotations to determine the strike of features.   Seol 

et al. (2001) used the same approach to determine the orientation of fractures in a quarry.  

Chen et al. (2001) used eigenvalues and eigenvectors of the scattering matrix to find the 

orientation and aspect ratio of UXO-like targets.  In these examples, the background 

environment was relatively simple and the target of interest was easily identifiable in the 

GPR data. 

 

Visualization of polarimetric GPR 

 

 Visualization of fully polarimetric GPR data requires vector field plots.  Such 

field plots can become very difficult to interpret in complicated natural environments.  

Thus, it is desirable to reduce the dimensionality for the purpose of easy interpretation.   

Previously, researchers have created psuedoscalar images from the superposition of two 
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orthogonal co-polarized data sets to allow for traditional seismic processing (Lehmann et 

al., 2000).  However, the psuedoscalar images are only valid for weak scattering obeying 

the conditions of the Born approximation, 

1/ <<bs εε , and 1)1/( <<−bsbks εε , 

where εs is the dielectric permittivity of the scatterer, εb is the permittivity of the 

background, s is the long dimension of the scatterer, and kb is the propagation constant 

for the background medium (Hill, 1988).  For fractured rock in which the fractures are 

filled with wet clay or water, these conditions are not generally fulfilled.  Therefore it is 

very desirable to develop attribute algorithms that reduce the dimensionality of the data 

and tolerate noise, but retain the wealth of information afforded by fully polarimetric 

data.  To achieve this goal, the first eigenvalue λ1
S(t) of the scattering matrix is critical. 

The coherency algorithm of Gersztakorn and Marfurt (1996), known as the 

eigenstructure coherency algorithm, is used in conjunction with λ1
S(t) to produce GPR 

coherency images. 

 

POLARIMETRIC GPR COHERENCY 

 

The algorithm introduced here is a simple extension of the Gersztenkorn and 

Marfurt (1996) eigenstructure coherency algorithm in which segments of seismic or 

scalar GPR traces within a spatiotemporal analysis window are compared. Coherence γ 

is computed using principal component analysis (Chopra and Marfurt, 2007).   Principal 

components are calculated from the data covariance matrix, which describes the 

correlation and variance of the traces within the analysis window.  When traces within 

an analysis window are very similar, the traces are highly correlated and the bulk of the 

variance is described by the largest eigenvalue λ1
C of the covariance matrix. Much of the 

random uncorrelated noise is orthogonal to the optimal eigenvector associated with λ1
C.  

A comparison of λ1
C to the total variance defines the coherence γ; the formula is .  
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The analysis window within which coherence γ is computed is iteratively 

scanned across the entire domain.  In the new algorithm, the first eigenvalue of the 

scattering matrix λ1
S(t) for each time sample is used in place of the trace from a single 

GPR component. This is the key innovation of my algorithm. The spatial covariance 

matrix C is then calculated with  
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where t is the time of center of the temporal time window, and λ1
S  is the sample mean of 

the first eigenvalues from the scattering matrix.  The index i represents the i—th trace 

within the spatial window, j represents the j—th trace, and 2K is the temporal window 

size. The first eigenvalue of the covariance matrix λ1
C is calculated and then used in 

equation 2.14 to calculate the coherency γ of the spatiotemporal window.  Keep in mind 

that the eigenvalues λC of the covariance matrix C are not the same as the eigenvalues 

λS(t) of the scattering matrix S(t).   

The newly developed algorithm is intended to significantly reduce the 

dimensionality of polarimetric GPR data for comparison between data traces while 

retaining the most important aspects of the data.  Random noise can adversely affect the 

calculation of the eigenvalues λS(t), but the use of the eigenstructure coherency method 

helps to mitigate the effects of random noise (Marfurt et al., 1999).   

 

Coherency field results 

 

Data for testing the GPR eigenstructure coherency algorithm were acquired on 

variable topography (small—scale irregularities with relief <0.2 m) atop a fractured, 

karst limestone. The survey area in the Glen Rose formation within the Edwards Plateau, 

central Texas, consists of a hydrological experimental plot (7 m x 14 m) with a 2 m deep 



 

 

31 

observation trench on the downslope side that was earlier used for the purpose of 

delineating preferential flow pathways (Taucer et al., 2006; Sassen and Everett, 2007).  

Site photographs and experimental plot description are found in the cited papers and will 

not be repeated here. The observation trench showed laterally continuous layers with 0.3 

m of organic soil above 1.5 m of fractured limestone, underlain by marl of unknown 

extent.  The target of the GPR study is the fractured limestone layer. Three different 

antenna configurations, XX, YY and YX (Figure 2.4), were used to collect reflection 

data over a 6.3 m x 12.7 m grid covering the surface of the plot (Figure 2.5).   

 

 

  
Figure 2.5.  Illustration of the survey geometry of the 3-D data sets and the location of the horizontal 

transmission profile at the hydrologic experimentation site. 

  

 

The XY response was determined from the YX data using reciprocity.  All three data 

sets were acquired with a Pulse Ekko 100 system with a 400 V pulsed source using 

broadband antennas with a center frequency of 200 MHz and fixed transmitter—receiver 

offset 0.5 m.  The spacing between stations is 0.1 m in the x-direction and 0.15 m in the 

y-direction.  All data were stacked 64 fold and identically processed and migrated using  

phase-shift migration (Gazdag, 1978) with GPR—specific software developed by the 

first author. A migration velocity of v=c/√12 was used based on CMP gathers at the site. 

Following the processing and migration the coherency algorithm was applied.  Migrated 
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time slices at 32 ns for each of the three components are shown in Figure 2.6  to enable 

comparison with the coherency results, Figure 2.7.  The coherency algorithm gave 

encouraging results with a 5-trace spatial window, and an 8-sample time window (3.2 

ns).  

 

 

  
Figure 2.6.  GPR time slices for the XX, YY and XY components at 32 ns.  Each panel is shown with the 

same amplitude range and contrast settings so that the amplitude responses of each component can be 

compared. 
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Figure 2.7.  The polarimetric coherency slice (Polar) of the field data at 32 ns is shown along with the 

scalar coherency slices (XX, YY, and YX) for comparison.  The boxes indicate areas of interest. In each 

panel the coherency ranges between 1 and 0, they are displayed with identical contrast, and darker areas 

represent lower coherency approaching 0. All scales are in meters.  

 

 

The results show that the polarimetric coherency algorithm provides a much higher—

contrast subsurface image, compared to the migrated time slices, and furthermore is not 
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biased by the polarization of the transmit and receive antennas.    Figure 2.7 also shows a 

comparison of coherency slices of individual GPR components (bottom 3 panels) against 

the coherency slice (top panel) using the fully polarimetric data.  In focus area 1, the left 

most box, a discontinuity can be clearly seen in the XX component that is very weak or 

obscured in the YY and YX components. The XX image indicates that this feature is 

best imaged with the antennas aligned parallel to its strike, and may have been missed 

had only YY or XY polarized data been acquired.  This same feature is clearly seen in 

the polarimetric-based coherency image, which is derived from all the components. In 

focus area 2 the polarimetric coherency image appears as a composite of the YY and XX 

configurations. In focus area 3, a segment of a dominant discontinuity is weak in the XX 

configuration and is obscured in the YX configuration, while uninterrupted in the YY 

configuration.   Again, the continuity of this feature could have been missed without the 

proper acquisition polarization.  This same segment is shown with high contrast in the 

polarimetric-based coherency image.  Essentially, the construction of a fully polarimetric 

coherency slice guarantees that a subsurface feature is imaged if it responds to at least 

one of the XX, YY, or cross—polarization configurations. It is not necessary to know in 

advance which of these polarizations is best—suited to imaging the subsurface feature.  

Figure 2.8 contrasts coherency images from the eigenvalues of the scattering matrix, a 

psuedoscalar coherency image created from a superposition of the YY and XX 

components, and a coherency image utilizing the eigenvalues of a diagonal scattering 

matrix populated only by the YY and XX components.  The psuedoscalar image seems 

to be an improvement over individual components, but does not have the clarity and 

contrast of the polarimetric coherency image.   Also, the coherency image that utilizes 

the eigenvalues from the diagonal  scattering matrix (panel 3) provides less detail than 

images from either the polarimetric or pseudoscalar techniques.  When using just the XX 

and YY components, the eigenvalue simply represents which of the two components has 

higher amplitude.  Figure 2.9 shows a 3-D fence diagram of polarimetric coherency to 

illustrate the vertical continuity of the imaged fractures seen in figures 2.7 and 2.8.  The 
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polarimetric coherency attributes help to determine the locations and three—dimensional 

continuity of fractures.  

 

 

  
Figure 2.8.  The same polarimetric coherency slice (Polar) is shown along with the psuedoscalar 

coherency slices (YY+XX) and the coherency based on the eigenvalues of only the XX and YY data (YY 

or XX) for comparison.   
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Figure 2.9. Fence diagram of the coherency data.  Note the vertical continuity of the discontinuities seen in 

the horizontal slice at 32 ns. 

 

 

INVERSION OF TRANSMISSION DATA 
 

 Our two—step method for complete characterization of fractures requires both 

detection, through polarimetric coherence imaging, and a determination of the aperture 

and the nature of the fill materials associated with the detected fracture, through a full—

waveform inversion of horizontal transmission profiles.  The profiles were acquired at 

the Edwards Plateau site by taking advantage of the pre-existing observation trench 

(Figure 2.5). The transmitter antenna was placed against the vertical trench face and the 

receiver antenna was placed on the surface and marched out toward the opposite end of 

the experimental plot.  The data were acquired with the Pulse Ekko 100 system using 

broadband antennas with a 100MHz center frequency and 0.2 m station spacing. The 100 

MHz antennas were used to provide long—range GPR signal penetration. A similar 

acquisition technique has been previously used by Jeannin et al. (2006) to determine the 

location of fractures and to generate velocity tomograms.  Both the transmitter and 
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receiver antennas were aligned parallel with the trench.  The received signal retained 

significant power to a range of 8.0 m.  The horizontal sounding profiles indicate 

reflections from subsurface vertical discontinuities and also reveal discrete steps in the 

first arrival time of the transmitted direct wave (Figure 2.10).   Aside from the presence 

of a significant discontinuity, the changes in arrival time could be caused by changes in 

the thickness and properties of the thin soil layer on the surface.  Radar propagation 

through a fracture generally alters the phase of the wavefield, making accurate picks of 

first arrival time difficult.  To address these ambiguities in interpretation, inversion 

modeling has been performed on the direct ground waveforms to provide a quantitative 

estimate of fracture aperture and fill. 

 

 

  
Figure 2.10. The horizontal transmission profile.  The trench is to the right.  Changes in slope of the direct 

ground wave indicate a change in the lateral velocity. 

 

 

The various frequency components of a transmitted radar wavelet are changed in 

both amplitude and phase when passing through a thin layer.  In the time domain, these 

changes are expressed as a distortion of the shape and amplitude of the transmitted 

wavelet.  With this in mind, the scheme for estimating the fracture properties is to isolate 

a wavelet of the direct ground wave for use as a reference wavelet. The reference wave 
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Eref(t) is then transmitted through a forward model of a fracture, which may be regarded 

as a filter, for comparison with an observed wavelet Eobs(t) acquired from a station 

further along the transmission profile.  The wavelet Eobs(t) presumably has been distorted 

by an actual fracture embedded in the subsurface. The forward model parameters are 

then iteratively updated to best match the filtered reference wavelet with the observed 

distorted wavelet. 

 

Preprocessing 

 
In order to isolate a reference wavelet for inversion, several filtering steps must 

be performed.  To remove air—wave arrivals propagating at the speed of light, an f-k dip 

filter was applied to eliminate signal energy at slopes corresponding to free space 

propagation.  In fact, the f-k filter was designed to cut positive slopes of all angles; this 

has the effect of removing interference from reflections.  The f-k filter was based on a 

Butterworth filter to minimize spurious signal energy corresponding to frequencies in the 

sidebands of the filter response.  Following f—k filtering, the data were cosine tapered 

around the direct arrival to remove extraneous noise.  After the direct arrival was 

isolated in this manner, the amplitudes were corrected for spherical spreading and for the 

radiation pattern of the antennas.  The approximate far-field amplitude pattern of GPR 

dipole radiation, as reviewed by Jiao et al. (2000), was used to account for the antenna 

pattern as a function of the angles of reception and transmission.  This antenna pattern 

assumes no dependence on frequency. 

 

Inverse modeling 

 
The forward modeling algorithm requires first decomposing the reference 

wavelet Eref(t) into monochromatic waves in the Fourier domain Eref(ω). Each frequency 

component (0 Hz – 625 MHz) is then multiplied by the model transmission coefficient 

Teff,  equation 2.9, to simulate propagation through a fracture, according to 
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)cos/exp()()( 1 irefeffT likETE θωω −= .  (2.16) 

The forward modeling also accounts for the propagation through the background 

medium, since l is the horizontal distance along the surface and θi is the angle of 

incidence, while k1 is the propagation constant for the host rock.  The relative dielectric 

permittivity of the background medium is εr=12.0, estimated from the average velocity 

of the horizontal transmission profile and CMP gathers acquired at the experimental plot.  

The electrical conductivity of  limestone in general is highly variable, ranging from 

~0.003 S/m or more for weathered limestone to ~0.0002 S/m or less for intact rock. In 

this paper I use a nominal value of  0.005 S/m (Sharma, 1997)   for all the inversions. 

The magnetic permeability of free space μr=1 was used for all media.  Following the 

model—based adjustment in amplitude and phase for each frequency component, as 

prescribed by equation 2.16, the data are transformed back into the time-domain.  The 

forward-modeled wavelet ET(t) is then compared to a captured wavelet Eobs(t) 

corresponding to a receiver location at some distance (a nominal 0.4 m was used) further 

from the trench (Figure 2.11).  The value of 0.4 m is based on a compromise between 

minimizing the distance from the reference trace while having a propagation path 

through a subsurface fracture.   

 

 

  
Figure 2.11.  Idealized  ray paths in the transmission profile.  The reference signal is not influenced by the 

presence of the joint, while the ray path of the observed wavelet has been altered by the presence of a 

vertical joint. 
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The fracture model parameters, which include fracture aperture, the average dielectric 

within the fracture, and conductivity, are iteratively updated until the modeled wavelet 

best matches the observed wavelet.   

The simple forward modeling scheme described above is based on plane—wave 

source excitation, thus it is strictly valid only in the far field.  However, the 3-D 

reflection images and coherency slices, representative examples of which were shown 

earlier in this paper, indicate that the most significant subsurface discontinuities are 

nearly vertical. Furthermore, the limestone fractures are through—going in the sense that 

they extend from  the underlying marl to the overlying soil interfaces, and they trend 

nearly parallel to the trench face.  Thus, I have built the model on a reasonable 

assumption of TE—mode (electric field parallel to the fracture plane) excitation of a 

vertical discontinuity. The forward model also assumes that the soil layer is uniform in 

the area between the two traces so that there are no major changes in the wavelet from 

trace to trace as a result of soil lateral heterogeneity.  Also, the forward model assumes 

that any changes in the angle of incidence between the transmitter and receiver caused 

by a non—planar fracture surface are not significant.   

The Levenberg-Marquardt nonlinear inversion scheme was used to invert the 

data. A thorough review of the Levenberg-Marquardt (LM) technique is given in Pujol 

(2007).    In order to simplify calculations the partial derivatives for the Jacobian terms 

are calculated numerically using a centered-difference scheme.  The model variables 

were constrained to lie within the ranges (0.0<σ<0.15 S/m), (1.0<εr<81.0), and 

(0.0<d<0.4 m).  The conductivity range spans free space to conductive clays; the 

permittivity range spans free space to water; while the fracture thickness d spans the 

range of apertures likely to be encountered at the field site.  The inversion is strongly 

dependent upon the starting model, so that a systematic variation of the starting model is 

used to find the best fits for each pair of reference and observed wavelets. 

The suitability of a given model is evaluated using the χ2 merit function, 
2
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where σt
2 is the variance of the observed response  at time t. The modeled GPR response 

is Modt while the observed response is Et  As the acquired dataset consists of a 64—fold 

stacked trace, the variance in the data is not directly available and must be estimated.  

The variance σt
2 is estimated based on the observed radar amplitudes at the three 

consecutive times t—∆t,t, and t+∆t.  This procedure for variance estimation effectively 

biases the inversion in favor of slow changes, while relaxing the fit requirements of 

rapidly changing transitions between amplitude peaks. Also, radar amplitude data with 

an absolute value less than 2% of the maximum amplitude are excluded from the χ2 

calculation.  This procedure reduces the effect of background noise on the inversion.  

The LM algorithm successfully terminates after a target value of χ2<1 is reached. 

 

Validation of the inversion model on synthetic data 

 

As the simplified forward model of GPR thin—layer reflection and transmission, 

reviewed in this paper, includes a number of limiting assumptions, the inversion model 

was tested on synthetic data generated by the 2D-FDTD model GPRMax (Giannopoulos, 

2003).  The FDTD model provides an idealized case to test the applicability of the 

inversion.  The FDTD model contains the geometry and approximate physical properties 

of the materials observed from the observation trench (Figure 2.12).  To match the 

sampling of the field data (Figure 2.13), the synthetic data generated using the FDTD 

algorithm were resampled with Shannon’s sampling equation (e.g. Jerri, 1977), 
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where t’ is the required time sample for the field observations, and t is the time index 

used by the FDTD algorithm.  The time—resampled synthetic data were then put 

through the same preprocessing and inversion routines as would be the case for the 

actual field data.   
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Figure 2.12.  The FDTD model geometry and material parameters.  The source is a Ricker wavelet with a 

center frequency of 100 MHz.  The FDTD grid is 0.01 by 0.01 m and all boundaries are absorbing.  The 

electromagnetic properties and aperture of the fracture are summarized in Table 2.1. 

 

  
Figure 2.13.  An example of the synthetic data generated from the geometry and properties shown in 

figure 2.12 with a 0.08 m soil filled fracture.  The synthetic data was recorded at 0.2 m intervals along the 

soil air interface and resampled to 0.8 ns. 

 

 

The inversion results for the synthetic data (summarized in Table 2.1) show that 

the technique is most effective for fracture apertures greater than 5% (>0.04 m) of the 

dominant wavelength within the fill material (~0.8 m).  At a fracture thickness of less 

than 0.04 m, the best-fit inversion result is unreliable, i.e. the dielectric and the 

conductivity of the fill are poorly estimated. Essentially, the transmitted GPR wave does 

not respond to an electromagnetically thin fracture. 
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Table 2.1.  Inversion results for the FDTD data. The FDTD fracture parameters were used in the model 

setup of figure 2.12 and are shown with the best-fit inversion results on the synthetic data.  The model 

labels indicate different types of fracture fill, Air represents air fill, Min represent a remineralized fracture, 

and Soil represent a moist soil fill.  

Model Best Fit Inversion Results FDTD Fracture Parameters 

  Aperture Relative Conductivity χ2 Aperture 

Dielectri

c 

Conductivit

y 

  meters Permittivity S/m   meters relative S/m 

Air 1 0.15 1.00 0.00E+00 0.06 0.16 1.00 0.00E+00 

Min 1 0.15 8.99 5.00E-03 0.02 0.16 10.00 1.00E-02 

Soil 1 0.11 21.66 9.19E-03 0.12 0.16 25.00 1.00E-02 

Air 2 0.10 1.00 0.00E+00 0.05 0.08 1.00 0.00E+00 

Soil 2 0.04 25.57 1.51E-02 0.04 0.08 25.00 1.00E-02 

Air 3 0.05 3.99 8.04E-06 0.13 0.04 1.00 0.00E+00 

Soil 3 0.03 18.74 1.32E-07 0.04 0.04 25.00 1.00E-02 

Air 4 0.05 4.00 7.73E-06 0.09 0.02 1.00 0.00E+00 

Soil 4 0.03 3.97 1.00E-05 0.07 0.02 25.00 1.00E-02 

 

 

Inversion field results 

 

The fracture inversion was next performed for observed trace pairs along the 

entire length of the horizontal profile.  The inversion failed to converge for any of the 

trace pairs located in the first 3 m of the profile.  This failure is likely caused by 

breakdown of the far-field assumption.  At transmitter receiver offsets greater than 8.0 

m, the level of convergence also degraded.  The signal to noise ratio at these distances is 

low. Furthermore, the 3-D time—slice images also suggest that the trench—distal 

subsurface is more complicated in architecture than the trench—proximal subsurface.   

The best convergence of the inversion corresponds to receiver locations near the 

discontinuities labeled A1, A2, S1 and S2 that are seen in both the 3-D images (Figure 

2.14, top) and the reflections in the horizontal transmission profile (Figure 2.14, bottom). 
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An appreciable number of the total trace pairs along the profile converged to the target 

merit value χ2<1 (Table 2.2).  A visual comparison of the observed wavelet and the 

forward—modeled wavelet for the inversions centered at 4.0 m (A1) and 6.4 m are 

shown in Figure 2.15. The two wavelets show close agreement especially at A1.  

 

 
Table 2.2.  Selected inversion results for the field data.  The labels correspond to the interpreted fractures 

in figures 2.14a and 2.14b.  The interpretation labels are: BG, is background heterogeneity, FC, is the 

inversion model failed to converge to a satisfactory level, Soil, is a soil filled fracture, Dry Soil, is a 

fracture filled with dry soil, and Air, is an air filled fracture. 

    Inversion Results for Field Data     

Label Distance Aperture Relative  Electrical  Chi Square Interpretation 

   meters meters Permittivity Conductivity     

  3.8 0.14 8.8 1.90E-02 0.56 BG 

A1 4.0 0.09 1.3 0.00E+00 0.27 Air  

  4.2 0.12 8.5 2.16E-02 0.53 BG 

  4.4 0.23 10.2 3.14E-02 0.34 BG 

  4.6 0.09 9.7 8.94E-03 0.68 BG 

A2 4.8 0.10 4.0 1.00E-04 0.71 Dry Soil 

  5.0 0.11 31.4 2.47E-02 1.48 FC 

  6.0 0.03 12.1 1.23E-01 0.78 BG 

S1 6.2 0.05 24.8 6.76E-05 0.73 Soil  

  6.4 0.16 17.4 2.01E-02 13.93 FC 

  7.6 0.13 8.8 2.85E-02 0.76 BG 

S2 7.8 0.04 34.1 1.61E-03 0.94 Soil  

  8.0 0.15 4.0 8.59E-02 1.53 FC 
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Figure 2.14.  The best inverse models correlate with discontinuities outlined in the coherency image (A) 

and with the fractures interpreted from the YY reflection data (B) amplitudes.  

 

 

The tabulated inversion results indicating low relative dielectric permittivity and 

electrical conductivity suggest that the strong reflection seen in the horizontal profile 

(Figure 2.14, top; feature labeled as A1) is a wide—aperture, air-filled fracture.  The 

inversion results indicating high relative dielectric permittivity and electrical 

conductivity (features labeled S1 and S2) suggest that those fractures are soil—filled. 

The A2 inversion result doesn’t appear to correspond to a recognizable fracture in the 

coherency image.  
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Figure 2.15.  This figure illustrates the close agreement between the observed data (crosses) and the 

inverse model result (diamonds).  Panel A shows the inversion centered at 4.0 m (A1 of Table 2.2) and 

panel B shows the inversion centered at 6.4 m (Table 2.2).  The horizontal dashed lines demark the upper 

and lower limited of the data excluded from the merit function. 
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DISCUSSION 

 

The combination of fully polarimetric GPR coherency and inversion of 

transmission data provides improved fractured—rock analysis compared to traditional 

single—component or pseudoscalar GPR reflection data processing.   The polarimetric 

coherency algorithm is introduced for the purpose of enhancing fracture detection, but 

the algorithm is also suited for any application where traditional coherency algorithms 

may be applied, especially if there is significant directionality to subsurface targets.  This 

approach is also not exclusive to GPR, it may also find use with multicomponent shear 

wave data.  Additionally, the algorithm can easily be extended to 3-D scattering 

matrices, and the eigenstructure coherency algorithm that is adapted here can be 

extended to imaging subsurface dipping features (e.g. Marfurt et al., 1999).   

Improved migration algorithms specifically designed around the patterns of GPR 

antennas should also improve GPR coherency.  In this study, the phase-shift migration 

algorithm of Gazdag (1978) was used to remove the effects of propagation from the raw 

data.  This migration technique does not correct for the radiation pattern of the 

transmitter and receiver over a half-space, which departs significantly from the source 

pattern of a simple acoustic source.  Multicomponent GPR imaging techniques  (e.g. 

Streich and van der Kruk, 2007) are preferred which do account for the radiation pattern 

of the GPR transmitter and receiver.  Incorporating this advanced imaging technique 

would further remove influence of the acquisition basis from the final coherency image.   

Unlike the polarimetric coherency attribute algorithm, inverse modeling of the 

horizontal transmission data provides quantitative information on fracture thickness and 

the electromagnetic properties of the fill.   The electromagnetic properties of the fill can 

be related to material properties, as required, using standard petrophysical relationships. 

A rigorous petrophysical analysis significantly enhances fracture rock characterization 

when used in conjunction with techniques such as coherency and direct sampling.  

However, the results in this paper indicate that a reliable inversion is limited to 

conditions of good signal to noise ratio and a valid far-field assumption.   The far-field 
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assumption is often not satisfied in many GPR surveys.  Also, the geometry of the 

fracture needs to be established prior to defining the forward model.  The forward model 

is based on a plane-wave assumption, and assumes that a natural fracture or joint can be 

modeled as a continuous planar zone of constant thickness with homogeneous fill.  Also, 

it assumed that the host rock and soil layer are homogeneous.  General modeling 

techniques such as the finite-difference time-domain method can introduce additional 

flexibility into the forward model. The caveat to this is a significant increase in 

computation time and the inherent numerical stability issues associated with finite-

difference modeling.  The use of the full analytic radiation pattern of a dipole over a half 

space (Streich and van der Kruk, 2006.) in conjunction with the thin layer model could 

improve upon this work without great computational expense.   The inversion technique 

depends heavily on the choice of starting model.   Other inversion techniques such as the 

nonlinear conjugate gradient method in conjunction with global methods such as grid-

search may improve on finding the global minima with fewer starting models.  Also, 

further constraints on the starting model could be obtained directly from imaging or 

improved attributes.  The validation of the inversion technique on synthetic data showed 

that the limits of reliability are reached when the fracture is approximately 5% of the 

dominant wavelength.  Thus, the use of broadband GPR equipment with a higher center 

frequency than the 100 MHz used in this study would be desirable for the 

characterization of fractures, with the caveat of lower penetration depth. 

 

CONCLUSIONS 

 

The polarimetric coherency algorithm shows significant improvement over 

traditional pseudoscalar imaging or scalar coherency algorithms for the delineation of 

subsurface discontinuities.  The inversion of the horizontal sounding profiles shows 

promise in providing quantitative information on fracture aperture and fill that scientists 

and engineers need to adequately characterize fractured rock formations.  The best 

approach to comprehensive fractured rock characterization remains integration of GPR 
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imaging and inversion with prior geologic knowledge, direct sampling, and other 

geophysical techniques.  It is important to recognize that the polarimetric coherency 

image provides constraints for data inversion, while the inversion gives valuable insight 

into the character of the fractures seen in the coherency image.  Together, the two 

techniques provide significantly more insight into fractured rock character than 

traditional GPR studies or discrete subsurface sampling alone.  My inversion technique 

is limited in the range of application by the simplicity of the thin-layer forward model 

that assumes ideal geometry and homogenous layers. With continued improvement in 

attributes that enhance fracture delineation and more robust modeling methods, GPR 

methods may allow for quantitative insight into fractured rock during hydrologic or 

mechanical tests on field scale rock formations.  The combined polarimetric—

coherency/transmission—inversion method described in this paper could be applied in 

rock quarries, as there often exists the combination of vertical and horizontal outcrop 

faces. 
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CHAPTER III 

ECOHYDROGEOPHYSICS AT THE EDWARDS AQUIFER: INSIGHTS FROM 

POLIMETRIC GROUND-PENETRATING RADAR* 

 

SUMMARY 

 

Three-dimensional multicomponent ground-penetrating radar (GPR) reflection 

data and horizontal GPR transmission profiles were acquired and analyzed to better 

understand the interaction of vegetation with subsurface flow conduits at a hydrologic 

experimentation site.   Previous researchers conducted a set of shallow (< 2.5 m) 

subsurface hydrology experiments during simulated rainfall events within a small plot (7 

x 14 m) on the fractured and karsted limestone of the Edwards Aquifer region near San 

Antonio, Texas, USA, to better understand the influence of Juniperus ashei brush control 

on the local hydrology.  Tracer experiments showed a high degree of variability in tracer 

recovery, advection speed, and concentration depending on the location of the 

application of the tracer.  Both 3-D multicomponent GPR reflection images and 

coherency, and inversion of GPR horizontal transmission profiles were utilized to 

identify the main conduits of flow within the experimentation site in order to explain the 

observations of the experiments.  The 3-D multicomponent GPR and coherency images 

revealed that the most obvious potential conduits run nearly parallel with the observation 

trench.  Inversions of the horizontal transmission profiles indicate that some conduits are 

filled with soil while others have no fill.   This information helps explain the high 

spatiotemporal variability observed in the tracer data.  Additionally, the GPR and 

hydrologic experiments suggests that Juniperus ashei significantly impacts 

 

 

____________ 
*Reprinted with permission from: Ecohydrogeophysics at the Edwards Aquifer: Insights 
from polarimetric ground-penetrating radar Sassen, D.S., M.E. Everett, and C.L. 
Munster, 2009, Near Surface Geophysics, 7, no. 5, 427-438., 2009, by EAGE. 
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infiltration by redirecting flow towards its roots occupying fractures within the rock.  

This study demonstrates that GPR provides a noninvasive tool that can improve future 

subsurface ecohydrologic experimentation. 

 

INTRODUCTION 

 

The consequences of anthropogenic alteration of natural ecosystems are of 

pressing global concern, with implications for both water resources and atmospheric 

carbon levels.  Changes in land use practices and fire control have allowed woody brush 

to expand into grasslands, deserts and disused agricultural land. The encroachment of 

brush and forest has been linked to decreases in water yields (Bosh and Hewlett, 1982).  

Brush encroachment in the United States is thought to lead to a significant sequestration 

of atmospheric carbon (0.122 x 1015 g C/year from 1980-1990) in the form of increased 

biomass (Houghton et al., 1999, Pacala et al., 2001). These studies may be of limited 

applicability to all ecosystems, especially environments in which landscape 

physiography significantly impacts water and carbon fluxes (e.g. Huxman et al., 2005).   

The lack of adequate subsurface characterization has led to an underestimation of 

the influence of subsurface processes on ecosystems.  The complexity of the subsurface 

has important influences on ecohydrology.  For example, Jackson et al. (2002) showed 

that when subsurface variations in soil organic carbon are considered, there is a negative 

relationship between brush invasion and stored carbon in humid environments.  Wilcox 

et al. (2008) showed that increased woody brush cover is correlated to increased, rather 

than reduced, groundwater volumes in an environment that is dominated by subsurface 

karst flow, rather than porous media flow.   There is a need for non-destructive methods 

to investigate shallow (<10 m) subsurface ecological interactions.  In this paper I explore 

the use of ground-penetrating radar (GPR) in a plot scale study of the impact of 

Juniperus ashei, an invasive brush species, on fractured epikarst limestone hydrogeology 

in central Texas, USA. 

In the semiarid region of the southwest United States, human settlement over the 
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past 150 years has altered the natural environment of grassland and savannah into 

shrubland through the suppression of natural fires and intense grazing (Van Auken, 

2000). The consequent proliferation of Juniperus ashei, a deep rooted evergreen shrub, 

within the central Texas rangeland is hypothesized to reduce recharge into local streams 

and the Edwards aquifer (Wilcox, 2002; Olenick et al., 2004).  Careful management of 

the Edwards Aquifer of central Texas, USA, is important since it is the primary source of 

water for 1.7 million people including the residents of San Antonio (EAA, 2006).    The 

water of the karst Edwards aquifer is under intense demand, with aquifer discharge 

exceeding annual recharge rates during the 1990’s (Dugas et al., 1998).  The demand 

will become even greater with continued population growth. There is a great deal of 

interest in restoring the natural ecology through brush control with hopes that it will 

increase rangeland productivity, and increase stream flow and aquifer recharge (Olenick, 

et al. 2004).  The state government of Texas subsidizes brush removal from the 

contributing areas that provide recharge to the Edwards Aquifer in hopes of enhancing 

recharge volumes. 

However, some empirical studies on brush invasion and control seem to indicate 

that brush removal is not an effective means of enhancing groundwater volumes in the 

Edwards aquifer region.  One previous field study (Dugas et al., 1998) on the change in 

evapotranspiration and surface runoff following shrub removal within the Edwards 

Aquifer recharge zone indicates only temporary (3 years) gains in water yields.  Wilcox 

et al. (2008) showed that in a similar karst environment brush encroachment increases 

groundwater yields. It was suggested that brush enhances infiltration and allows a larger 

portion of water to bypass evapotranspiration.    Additionally, Juniperus ashei roots may 

enhance subsurface flow through the enlargement of joints within shallow limestone and 

by providing preferential pathways (Dasgupta et al., 2006).  The effect of Juniperus 

ashei on subsurface fractures and karst features remains uncertain.   

The subsurface hydrology in fractured rock and karst environments is typically 

characterized by the occurrence of discrete flow conduits (Bear et al., 1993). The 3-D 

geometry of fractures and karst features, along with the type and distribution of the fill 
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material, substantially impacts bulk hydraulic properties.  Isolated cores, sampled at a 

few discrete points, are largely inadequate for a complete hydrologic characterization. 

Consequently, the use of geophysical techniques, such as ground penetrating radar 

(GPR), is advantageous since they provide continuous subsurface information.  The 

acquisition and processing of scalar GPR reflection data has been successfully applied to 

the characterization of fractured rock  (e.g. Grasmueck et al., 2005; Jeannin et al., 2006; 

Talley et al., 2005) and karst  (e.g. Kruse et al., 2006; Tallini et al., 2006) environments.  

Most available GPR hardware and software is designed for scalar GPR techniques, 

however there are significant advantages to utilizing the vector nature of the GPR 

electromagnetic (EM) signal. when dealing with targets exhibiting long slender antenna-

like geometry, such as fractures. 

The received EM signal depends strongly on the polarization of the transmitting 

and receiving antennas, and on the geometry and electromagnetic properties of the target 

scatterer.  Traditional GPR systems utilize bistatic dipole or bowtie antennas that 

produce nearly linearly polarized EM waves. Subsurface diffracting bodies generally 

change the polarization of these incident waves.  It has been demonstrated, for example, 

that a low impedance cylinder, such as a clay-filled karst pipe, is best imaged with the 

long axis of the antennas oriented parallel to the cylinder, while a high impedance 

cylinder, such as an air-filled karst pipe, is best imaged with antennas oriented 

perpendicular to the axis of the cylinder (Radzevicius and Daniels, 2000). Traditional 

GPR surveys however utilize a single antenna polarization and, as the orientation and 

properties of subsurface targets are generally unknown, there is a great potential for 

interpretation bias.   An example of the relationship between antenna orientation and the 

GPR response of a diffracting body is illustrated in Figure 3.1.   
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Figure 3.1:  A GPR survey over a pipe in soil showing the effect of the orientation of 200 MHz 

antennas relative to that of a buried pipe. The PVC pipe is partially filled with water, and buried 

~1.5 m in a natural, moist silty-sand soil. (After Sassen, 2008).  

 

 

To take advantage of the vector nature of EM waves and to minimize imaging 

bias, polarimetric GPR data utilizing multiple EM components should be acquired.    

Previous research that focused on extracting polarization dependent information include 

the works Van Gestel and Stoffa (2001) and Seol et al. (2001), whom demonstrated 

using Alford rotations (Alford, 1986) for GPR.  Alford rotations are a method by which 

2-D polarimetric GPR data can determine the strike of elongate targets such as cylinders 

and fractures.   Also, Tsoflias et al. (2004) used the polarization properties of GPR 

waves to detect vertical fractures in limestone.   Recently, Streich and van der Kruk 

(2007) have developed a GPR imaging technique based on an analytic solution of the 

total field for a dipole over a have space that minimizes the effects of the antenna pattern 

on GPR data.  This imaging method may provide the means to extract polarization 

dependent information more accurately by removing bias caused by variations in 

antenna patterns for the different antenna configurations used in acquiring polarimetric 

data.  These  processing and attribute extraction methods provide important detection 
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and discrimination insights that are not available with traditional single component GPR 

techniques. 

Other authors have utilized the distortion of the transmitted electromagnetic 

wavelet caused by subsurface scatterering to enhance their detection and discrimination.  

The wavelet is distorted due to the constructive and destructive interference resulting 

from multiple internal reflections within a fracture or karst feature, as well as distortions 

caused by the dispersive nature of earth materials.  Kofman et al., (2006) has interpreted 

reverberation phenomena, resulting from constructive interference, to identify air-filled 

cavities similar to karst pipes.  Gregoire and Hollender (2004) utilized the changes in the 

amplitude spectrum of GPR reflection data, caused by constructive and destructive 

interference, as the basis for an inversion to determine the aperture and electromagnetic 

properties of the fill of a thin layer.  Bradford and Deeds (2006) proposed amplitude-

variation-with-offset (AVO) to determine the dielectric properties of thin beds.  Deparis 

and Garambois (2007) inverted both amplitude and phase variation-with offset (APVO) 

data acquired from a cliff face to determine fracture properties.  Lambot et al. (2004) 

utilized a thin-layer recursion formula to estimate 1-D soil geoelectrical properties from 

stepped frequency GPR data. McClymont et al. (2008) demonstrated the efficacy of 

coherency attributes, which respond to changes in wavelet shape, as an aid in the 

interpretation of GPR data from a fault zone.  I build on the concept of using 

polarimetric GPR techniques and utilize wavelet distortion to improve upon the 

detection and discrimination of subsurface fractures and karst features. 

Our procedure at the Edwards experimental plot is to acquire 3-D 

multicomponent ground-penetrating radar (GPR) data and to produce migrated images 

for each component. I then construct polarimetric coherency attributes using my new 

algorithm (Sassen and Everett, 2009) to better characterize subsurface flow conduits by 

looking for changes in wavelet shape. Additionally, I exploit the existing observation 

trench at the site to transmit GPR signals from its vertical face toward a receiver that is 

moved along the surface. This is done to create transmission profiles.  The transmission 

profiles are inverted to determine the aperture and fill material of potential preferential 
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flow pathways at the experimentation site by utilizing a forward model of thin layer 

transmission. By utilizing advanced GPR techniques I minimize the potential for bias 

caused by antenna polarization, and I enhance the detection of subtle features.  

Moreover, I augment the imaging techniques with the interpretation of fracture 

properties based on a nonlinear waveform inversion.  

 Our immediate objective, using advanced GPR techniques at the site, is to 

identify potentially dominant subsurface conduits and to determine the geometry and fill 

properties of those conduits. Analysis of the GPR data is performed in order to reconcile 

the spatiotemporal variability in water flow and tracer concentrations observed at the 

site. A larger purpose is to use the GPR data to inform an investigation of the influence 

of Juniperus ashei on the subsurface conduits.  The non—invasive nature of GPR data 

acquisition preserves the site hydrology to allow for future experimentation.   

 

Edwards Aquifer and the ecohydrology test site 

 

The recharge zone for the Edwards aquifer is a ~0.4 Mha region of central Texas 

(Olenick el al., 2004).  The recharge zone is delineated by surface exposures of the 

Cretaceous Edwards formation lying within the Balcones Fault Zone (Figure 3.2).  The 

contributing zone is defined as the surrounding areas that feed surface water and 

groundwater into the recharge zone.   
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Figure 3.2. Geologic map of the Edwards Aquifer region with the location of the research site shown. 

 

 

The main geologic unit of the Edwards Aquifer contributing zone, upon which the 

experimentation site is located, is the Cretaceous-aged Glen Rose formation.  The Glen 

Rose formation alternates between regionally continuous layers of marl and limestone 

reflecting cycles of rising and falling sea level throughout the Cretaceous (Mancini and 

Scott, 2006). The limestone strata contain vertical conduits that enhance lateral 

subsurface flow while the relatively impermeable layers of marl act to baffle vertical 

flow. The faulting and jointing of the limestone allows acidic groundwater to flow 

through the relatively low permeability rock matrix, dissolving carbonate minerals and 

forming the karst features (Ferrill et al., 2004).    Structurally, the study site is associated 

with the Balcones fault zone whose strike of main faulting is ~NE-SW (Collins, 1995).  

The more pervasive smaller-scale faults and joints generally trend both parallel and at an 

acute angle to the main strike of faulting, with increasing density and interconnectivity 

in the vicinity of the larger faults (Collins, 1987; 1995).  However, under similar 

mechanical conditions, the pattern of joint density, orientation and aperture varies from 

one rock unit to the next (Collins 1995). Thus, there is significant uncertainty as to the 

orientation of fractures and faulting within the study site.   
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 To study the effects of brush removal on the hydrologic cycle of the Edwards 

aquifer region, a hydrologic experimentation site was established (Taucer et al. 2006; 

Dasgupta et al., 2006) within the contributing zone, approximately 45 km north of San 

Antonio (Figure 3.2).   The study area consists of a small, rectangular experiment plot 

(14 m x 7 m) within a stand of Juniperus ashei (Figure 3.3). The site instrumentation 

includes a rainfall simulator, a runoff gauge, rain gauges, soil moisture probes and a 2.5 

m deep trench excavated on the downslope (2% topographic gradient) boundary of the 

site. The purpose of the trench, which exposes the shallow limestone and marl 

stratigraphy, is to quantify and sample lateral subsurface flow. Rainfall simulations were 

conducted on this site both before and after clearing of the Juniperus ashei to evaluate 

the hydrologic effects of brush removal.  

 

 

(a)      (b) 

  
Figure 3.3. The post-cut research site showing: (a) the rainfall simulator and surface runoff gauge; (b) the 

downslope trench for quantifying and sampling lateral subsurface flow. 

 

 

The exposed lithology in the observation trench indicates that the top 0.3 m 

consists of weathered limestone and organic soil; below that is 1.5 m of limestone 

containing joints and karst features; these layers are underlain by a low permeability 
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layer of marl (Figure 3.3b ).  Soil and roots partially fill many of the exposed joints and 

karst features along the trench face.   

 

Previous results  

 

Hydrological experiments on the study plot were run both before and after 

clearing the brush.  During simulated rainfall most of the lateral subsurface flow is 

observed to exit at the trench face in discrete locations corresponding to the joints and 

karst features that contain roots (Dasgupta et al., 2006). In the pre-cut condition, a 

greater volume of the water applied by the rainfall simulator reached the trench face 

compared to identical simulations performed under the post-cut condition.   Taucer et al. 

(2006) showed that during intense rainfall simulations (0.152 m/hr), nearly all water that 

reached the surface of the plot infiltrated into high-capacity subsurface conduits.  There 

was negligible surface runoff, yet only 57% of the applied water escaped from the 

downslope trench face. Most of that amount emerged from a very limited number of 

discrete joints, conduits, or bedding planes. A significant amount (16%) of the water 

intercepted by the Juniperus ashei brush was channeled by stemflow into the subsurface 

at the base of the brush.  Although no runoff was collected on the downslope portion of 

the plot, ponding was observed in all rainfall simulations.   Even after intense rainfall 

events the organic litter was observed to be dry just a few centimeters below the surface.  

The Juniperus ashei litter exhibits a high degree of hydrophobicity, or water repellency.   

The preponderance of stemflow and the hydrophobicity of the litter suggests that the 

Juniperus ashei may channel flow directly to its roots, promoting preferential flow to the 

subsurface.  This raises questions about how the roots of the Juniperus ashei might 

affect the subsurface preferential flow pathways provided by fractures.  

To better understand the preferential subsurface conduit system, a series of tracer 

tests was conducted by Taucer et al. (2006).   Three non-reactive tracers were applied to 

the surface at different locations within the plot to allow for simultaneous monitoring 

during a rainfall simulation experiment.  Uranine was applied  to the distal upslope 
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portion of the site; eosine was applied in the middle of the plot around the largest tree 

trunk; and phloxine was applied in close proximity to the trench (Figure 3.4). Water 

samples from the trench face were collected for tracer analysis at 16 discrete locations 

that had been observed as key groundwater egress points during previous rainfall 

simulations (Figure 3.5).  

 

 

 

Figure 3.4. Plan view of the experimental plot. The gray box represents the extent of the 3-D GPR survey 

(12.7 x 6.3 m), which is surrounded by metal sheeting to capture runoff.  The gray areas show the 

locations of the three surface-applied dyes.  The dotted lines indicate the location of the in-line and cross-

line GPR sections shown in Figure 3.8. The crosshairs indicate the location and relative size of Juniperus 

ashei trunks on the site. The figure is adapted from Taucer et al. (2006).  

 

 

 

Figure 3.5.  The tracer sampling locations and lithology in the vertical trench face  at the downslope 

boundary of the experimental plot.  The figure is adapted from Taucer et al. (2006). 
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None of the distal uranine applied to the upslope portion of the plot was observed to exit 

at the trench face.  In contrast, the A and B sampling regions (Figure 3.5) showed that 

the proximal phloxine and the middle eosine tracers exhibited similar breakthrough 

patterns.  In some locations (A1 and A3) the peak concentration of the mid-range eosine 

preceded the peak concentration of proximal phloxine, even though the mid-range eosine 

had traveled further.   Within the C and D sampling regions only the proximal phloxine 

showed strong concentrations; the mid-range eosine was detected only at specific 

locations C1 and D4 and moreover in significantly lower concentration.   

 

METHODS 

 

The methods are briefly summarized here. A more detailed explanation of the 

methods and their evaluation on the data within this paper can be found in Sassen and 

Everett, 2009. 

 

Multicomponent GPR images and polarimetric coherency 

 

The 3-D multicomponent GPR data were acquired using multiple antenna 

configurations (Figure 3.6) following clearing of brush from the plot.   In the first 

configuration, both the transmitter and receiver antennas are parallel to each other (co-

polarized) and oriented in the in-line (±x) direction of the survey (XX component).  The 

second antenna configuration is also co-polarized, but the antennas are oriented in the 

cross-line direction (±y) of the survey (YY component).  The third configuration utilizes 

a transmitter antenna in the cross-line direction and a receiver antenna in the in-line 

direction (YX component).   
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Figure 3.6. The antenna configurations used in the GPR study.  The gray block represents the transmitting 

antenna, the white represents the receiving antenna. 

 

 

All three data sets were acquired with a Sensors and Software Pulse Ekko 100 system 

using 200 MHz antennas.  A fixed transmitter and receiver offset of 0.5 m was used, and 

each radar trace was stacked 64 times.  The spacing between stations is 0.1 m in the in-

line direction and 0.15 m in the cross-line direction.  All data were identically processed 

and migrated, as described below, using GPR-specific software developed by the 

authors.  Static shifts of the data, determined using cross-correlation lags, were used to 

adjust the travel time axis. Shifting the time axis on a radar trace proved necessary due to 

changes in propagation speed in the upper soil layer caused by the changing moisture 

conditions that occurred during the several weeks of GPR data acquisition.  The data 

were then lowpass Butterworth filtered to remove high—frequency noise and 

compensated for spherical spreading and attenuation.  Finally, the data were migrated 

using a 3-D phase-shift migration algorithm (Gazdag, 1978).  The velocity model used 

for the migration assumed a homogeneous half-space with a speed of 0.08 m/ns, as 

determined from CMP gathers at the site.  Since it was anticipated that fractures and 

other karst features of interest would distort the source GPR wavelet, the coherency of 

the data was calculated. I utilized the polarimetric coherency attribute algorithm 

developed in Sassen and Everett (2009), which combines data from each polarization to 

create a single unbiased coherency image.  My polarimetric coherency algorithm inserts 

the largest eigenvalue of the time domain scattering matrix into the eigenstructure 

coherency algorithm of Gersztenkorn and Marfurt (1996).  Using the largest eigenvalue 

of the scattering matrix ensures that an “optimal antenna polarization” is simulated.   A 

localized region characterized by distorted radar wavelets, relative to clean signals 
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observed in neighboring radar traces, produces a low coherency score. In this way, a 

coherency map is built which highlights discontinuities such as fractures and karst 

features. 

 

Acquisition and inversion of transmission profiles 

 

 In addition to the 3D multicomponent data, transmission profiles were also 

acquired. The transmitting antenna was placed against the vertical trench face and the 

receiver antenna was moved along the surface toward the upslope boundary of the 

simulation plot at 0.2 m intervals (Figure 3.7).  Both the transmitter and receiver 

antennas were polarized parallel with the trench.   

 

 

 
Figure 3.7.  An idealized diagram of some of the possible ray paths of a GPR signal for a horizontal 

transmission profile in the presence of a nearly vertical discontinuity.  The transmitting antenna (source) is 

placed on the face of the trench and the receiving antenna is moved along the surface. 

 

 

The transmission data acquired at the site were used in a radar waveform  inversion to 

determine the geometry and fill properties of some of the more significant fractures seen 

in the 3-D images.   

The inversion scheme utilizes a forward model, equation (3.1),consisting of a 

reference wavelet Eref convolved with a theoretical expression Teff  describing 

electromagnetic plane wave transmission through a thin layer  (e.g. Iizuka, 2002).  
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)θd)(lik((ωET=(ωE i1refeffT /cosexp)) −− . (3.1) 

The modeling also accounts for propagation through the background medium, since l is 

the horizontal distance along the surface, d is the aperture of the fracture, and θi is the 

angle of incidence, while k1 is the complex propagation constant for the host rock, which 

depends on electrical conductivity σ and dielectric permittivity ε.  The convolved 

reference wavelet ET(ω)is compared with an observed wavelet from a radar signal that 

has propagated through the fracture (Figure 3.8).   The reference wavelet is extracted 

from an observed radar signal that has not propagated through the fracture. 

 

 

 
Figure 3.8.  In this idealized case the ray path of the reference signal is not influenced by the presence of 

the vertical joint of width d, while the ray path of the observed wavelet has been altered by the presence of 

the joint. 

 

 

Before the inversion, the radar signals are corrected for both geometric spreading 

and the far-field radiation pattern of the GPR antennas (Jiao et al., 2000).  Next, the 

reference and observed signals, both associated with the direct wave, are isolated from 

reflections and other indirect signals through f-K filtering.  The reference wavelet is then 

transformed into the frequency domain using a discrete Fourier transform. Each 

frequency component of the transformed reference wavelet Eref(ω)  is then applied to the 

forward model (equation 3.1).  The convolved signal is then transformed back into the 

time-domain where it is then compared to the observed wavelet using a least-squares 

merit function for inversion. 
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The Levenburg-Marquadt inversion method (Pujol, 2007) iteratively updates the 

model parameters, which include fracture aperture and the electrical conductivity and 

dielectric permittivity of the fill material. The model is iterated until the merit function, 

χ2, has converged to a minimum value.   Here, χ2 is defined as  

∑ − 2

2
2 1
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tt

σ
)E(Mod

N
=χ    (3.2) 

where σt
2 is the variance of the observed response at time t.  The modeled time-domain 

GPR response is Modt while the observed response is Et.   After the inversion, the 

inferred electrical conductivity and dielectric permittivity of the fracture fill is 

interpreted geologically using well-known petrophysical relationships (e.g. Sharma, 

1997). This inversion method was repeated for pairs of reference and observed wavelets 

from traces spaced 0.4 m apart along the entire horizontal transmission profile.  In this 

way, the inversion of transmission profiles was used to interpret potential hydraulic 

conduits at the study site. 

 

RESULTS 

 

Multicomponent GPR images and polarimetric coherency 

 

Radar horizons interpreted from the migrated GPR data (Figure 3.9) correlate 

well with the observed lithological horizons that are exposed in the trench face (Figure 

3.4).  The two co-polarized configurations (XX and YY configurations) both produce 

strong responses for nearly horizontal strata, since such targets do not significantly 

depolarize the incident field.  The lowermost limestone-marl reflection appears at 40-45 

ns two-way-travel-time.  With the velocity estimate of 0.08 m/ns obtained from the CMP 

gathers, the estimated depth to the lowest reflector is  ~1.6-1.8 m, which correlates well 

with the observed depth in the trench.  Below the limestone-marl interface, the GPR 

provided no useable data. The electrical conductivity of the marl is high which causes 

large attenuation of electromagnetic waves.  The reflection at 35 ns, or 1.4 m depth, is 
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interpreted to be the clay-filled bedding plane separating the upper and lower limestone 

layer (Figure 3.5).  The strong laterally continuous horizontal reflections at the top of the 

radar sections, termed ground clutter, are direct arrivals that partially obscure the later 

arrival from the soil-limestone interface.   

Small breaks in the continuity of the nearly horizontal reflectors are interpreted 

as nearly vertical joints that have been widened by carbonate dissolution.   A significant 

break in the lateral reflections is seen toward the left side of the cross-sections, which is 

on the upslope side of the plot.  The lateral break is interpreted as due to a sinkhole that 

potentially provides a pathway through the low permeability marl.  In the data from the 

YX configuration (cross-polarized), the area of the interpreted sinkhole shows relatively 

strong returns that indicate, as expected, strong depolarization of the incident waves 

(Figure 3.9).   

 

 

 

Figure 3.9.  In-line and cross-line GPR sections (Figure 3.4) of the GPR data for all three polarizations.  

The vertical arrows mark the point where the in-line and cross-line sections intersect each other.  Label (B) 

is the marl-limestone reflector for each antenna configuration.  Label (A) represents a large break in the 

limestone-marl reflector in the XX and YY configurations. The strong returns seen at this location in the 

YX configuration are interpreted are de-polarizations caused by a sinkhole. 
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The conical shape of the putative sinkhole is clearly seen in a cut-away data cube of the 

YX image (Figure 3.10).  The horizontal reflectors that are dominant in the co-polarized 

configurations are much more subtle in the YX configuration.  This is expected since 

horizontal reflectors do not depolarize the incident signal.   Also, dipping features that 

were not apparent in the co-polarized sections can be seen throughout the section (Figure 

3.10).   

 

 

 
Figure 3.10.  A 3-D data cube is cut away to reveal the conical geometry of the interpreted sinkhole. 

 

 

Time-slices constructed from data acquired with the various antenna 

polarizations show that the main lateral discontinuities strike nearly parallel to the trench 

(Figure 3.11). Further insights can be gained from the cut—away view of the data cube 

shown in Figure 3.12.  The discontinuities are interpreted to be fractures widened by 

carbonate dissolution, and they trend roughly parallel to the regional strike of the 

Balcones Fault zone, i.e. northeast-southwest. Discontinuities are also seen trending 
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perpendicular to the trench in the XX and YY polarization time-slices. They are 

probably caused by jointing that provides key interconnectivity between the more 

significant features trending nearly parallel to the trench.    Additional ambiguous 

discontinuities can be seen, especially in the cross-polarized configuration, that trend 

both parallel with the main breaks and at approximately 50o to the strike of the more 

obvious discontinuities. Time slices for the YX configuration tend to become more 

chaotic towards the upslope end of the plot where the significant break in the horizontal 

reflectors is observed. There are several faint circular anomalies, or rings, located on the 

right side of the time slices in Figure 3.11.  These are likely caused by coherent cultural 

noise since they correspond to the location of metal stakes that were used to support the 

rainfall simulation towers. 

 

 

 

Figure 3.11.  (left) Time slices at 32 ns, or 1.3 m depth, for all three polarizations of the GPR antennas; 

(right) the interpreted fracture locations overlaying grayscale time slices, the arrows indicate the location 

of the circular anomalies caused by the metal stakes. 
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Figure 3.12.  A 3-D rendering that relates the discontinuity in the reflections seen in the cross-section 

views to the discontinuities seen in the time-slice views. 

 

 

 Polarimetric coherency images aid significantly in the interpretation of 

subsurface discontinuities.  They provide a means of evaluating, in a manner that is 

independent of source polarization, the amount of wavelet distortion caused by a 

subsurface discontinuity.  Figure 3.13 shows a polarimetric coherency slice at 1.3 m 

depth overlaid by the position of the Juniperus ashei stumps.  The location of the stumps 

correlates with zones of low coherency score.  Accordingly, some of these stumps are 

probably aligned with significant discontinuities that are interpreted as fractures widened 

by carbonate dissolution.  This alignment is significant in that it suggests that Juniper 

ashei preferentially grows in preexisting fractures. The roots provide access for water to 

infiltrate the preferential flow pathways. 
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Figure 3.13.  Time slice of polarimetric coherency at 32 ns (1.3 m depth), dark areas are areas of low 

coherency, indicating laterally discontinuous geological structure. The  crosshair symbols represent 

positions of Juniperus ashei stumps. 

 

 

Inversion of horizontal transmission profiles 

 

While multicomponent GPR images and polarimetric coherency maps reveal the 

locations of potential subsurface conduits, they do not provide information about the size 

and fill of the discontinuities.  The transmission profiles I acquired contain radar 

reflections from vertical discontinuities and lateral changes in the velocity of the direct 

ground wave. Such radargram features occur at locations that coincide with the main 

lateral discontinuities interpreted from the time slices (Figure 3.14).   Aside from the 

presence of a significant discontinuity, the velocity changes seen in the transmission 

profiles could also be caused by changes in the thickness and properties of the thin 

surface soil layer.  To address this ambiguity, inverse modeling is performed on the 

direct-wave signals. 
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Figure 3.14. The horizontal sounding profile.  The trench is to the left.  Changes in slope of the direct 

ground wave indicate a change in the lateral velocity. 

 

 

The inversion was applied to all pairs of reference and observed traces (Figure 

3.8) along the entire length of the profile.  The inversion failed to minimize the misfit 

error, or converge, to an acceptable level for any trace pairs in the first 3.0 m of the 

profile. This could be due to a breakdown in the plane—wave assumption of the forward 

model (Sassen and Everett, 2009).  Also, the inversion scheme failed to converge for the 

pairs of reference and observed traces beyond 8.0 m. The transmitted signal to noise 

ratio at this distance is low and the 3-D images also suggest that this part of the 

subsurface is more complicated in geological structure.   The best level of convergence 

for the inverse model (Table 3.1) corresponds to the locations of discontinuities seen in 

the time slices and reflections seen in the transmission profile (Figure 3.15).   
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Figure 3.15.  The best inverse models correlate with reflections seen in an enhanced horizontal 

transmission profile (A) and with the joints interpreted from a polarimetric coherency depth slice and 

cross-section view (B).  The transmission profile shown in figure 3.14 was f-K filtered to remove 

shallowly dipping events and then muted at times preceding the arrival of the direct wave to enhance the 

appearance of the reflected arrivals.  The intersections of the cross-section and the depth slice of the 

coherency are shown by dashed lines. 
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Table 3.1.  Selected inversion results.  The labels correspond to the interpreted fractures in figures 3.11a 

and 3.11b.  The interpretation labels are: BG, is background heterogeneity, FC, is the inversion model 

failed to converge to a satisfactory level, Soil, is a soil filled fracture, Dry Soil, is a fracture filled with dry 

soil, and Air, is an air filled fracture. 

    Inversion Results for Field Data     

Label Distance Aperture Relative  Electrical  Misfit Interpretation 

    meters Dielectric Conductivity  χ2   

  3.8 0.14 8.8 1.90E-02 0.56 BG 

A1 4.0 0.09 1.3 0.00E+00 0.27 Air  

  4.2 0.12 8.5 2.16E-02 0.53 BG 

  4.4 0.23 10.2 3.14E-02 0.34 BG 

  4.6 0.09 9.7 8.94E-03 0.68 BG 

A2 4.8 0.10 4.0 1.00E-04 0.71 Dry Soil 

  5.0 0.11 31.4 2.47E-02 1.48 FC 

  6.0 0.03 12.1 1.23E-01 0.78 BG 

S1 6.2 0.05 24.8 6.76E-05 0.73 Soil  

  6.4 0.16 17.4 2.01E-02 13.93 FC 

  7.6 0.13 8.8 2.85E-02 0.76 BG 

S2 7.8 0.04 34.1 1.61E-03 0.94 Soil  

  8.0 0.15 4.0 8.59E-02 1.53 FC 

 

 

  In general, an inversion result characterized by high dielectric permittivity and 

high electrical conductivity is suggestive of soil fill, whereas an inversion result of very 

low dielectric permittivity and very low electrical conductivity suggests an air-filled 

fracture.  The inversion results of my GPR transmission profile data indicate that the 

strong reflection seen in the profile (Figure 3.15, A1) is a wide-aperture joint filled with 

air. The A2 inversion result doesn’t correspond to a parallel fracture as the model 

assumes, but to an interpreted fracture nearly perpendicular to the transmitted wave.  The 

inversion results for S1 and S2 suggest that those fractures are soil-filled.   
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DISCUSSION 

  

 The GPR results provided the following observations: the main trend of jointing is 

nearly parallel to the observation trench; the surface location of brush trunks correlates 

to fractured zones within the limestone; there is a possible sinkhole on the upslope side 

of the plot; the inversion shows that some fractures are soil-filled while others are air-

filled.  Combining the GPR results and unsaturated flow theory, a conceptual model of 

the subsurface hydrology of the plot can be formed to explain the tracer and flow 

experiments.  Additionally, the observations suggest new hypotheses for the role of 

Juniperus ashei in groundwater recharge and carbon sequestration in this semiarid karst 

environment.  Finally, I can suggest potential further uses of GPR for ecohydrology.   

 

Conceptual model of the subsurface hydrology 

 

Flow rates within the unsaturated zone are determined by the gradient of matric 

potentials, or capillary suction, along with the familiar gravitational flow controlled by 

the hydraulic conductivity of the medium.   The unsaturated hydraulic conductivity 

increases with increasing saturation and pore size.  Conversely, the matric potential 

decreases with the mean pore radius and the saturation.  In dry conditions, the high 

matric pressures of the fine matrix of the rock and soil govern the flow within fractured 

rock systems.  However, as saturation increases, the matric pressure decreases, and 

gravitational forcing through open conduits largely determines the flow. 

At the experiment site, it is likely that subsurface flow during the intense rainfall 

experiments was focused within preferential pathways such as open fractures and karst 

features. Conduit flow bypasses the slower matrix flow that is driven by capillary 

suction.  This is supported by the observed strong correlation between the applied water 

volume and the initiation of conduit flow out of the trench face (Dasgupta et al., 2006).  

Lateral flow observed at the trench should become important as saturated conduits 

within the limestone encounter barriers, such as the marl interface, to vertical flow.  The 
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excavation of the trench allowed the conduits that intercepted the trench to drain freely, 

thereby generating a significant difference in hydraulic head between the perched flow 

pathways and the bottom of the trench.   The hydraulic gradient created by the opening 

of the trench combined with the natural gradient of the plot drives most of the rainfall 

toward the trench.  This may have caused additional lateral subsurface flow to enter the 

trench face, along with any tracers.  However, the GPR data reveal that the main 

discontinuities trend parallel to the trench face. The inversion results from the horizontal 

transmission profile suggest that some of these conduits are soil-filled while other 

conduits are open.  The open conduits enhance flow parallel to the trench, while the soil-

filled conduits provide a barrier to flow towards the trench.  In either case, the net flow is 

somewhat oblique to the direction of the trench. This interpretation is supported by the 

observation that the eosine tracer applied to the middle of the site appears mostly on the 

left (north) side of the trench face rather than across the entire face.  Water and dye that 

does not arrive at the trench face is either held in storage or flows along a stronger 

hydraulic gradient with connections to the open conduits.  The sinkhole, interpreted from 

the GPR data, likely provides a vertical pathway through the underlying marl layer. A 

large open conduit on the upslope side of the plot explains the lack of uranine tracer 

reaching the trench, and accounts for a portion of the “lost” 43% of infiltrated water.   

 

Hypotheses on water recharge and carbon sequestration 

 

The GPR polarimetric coherency maps suggest a strong correlation between the 

locations of the juniper stumps and the subsurface discontinuities at this plot.  This 

observation, coupled with the prior knowledge that stemflow is a significant component 

of infiltration (Taucer et al., 2008), suggests that the Juniperus ashei directs water deep 

into the subsurface where it is available to its roots, bypassing the shallow soil where 

grasses may compete for water.  This potential advantage for the limited water resources 

of a semi-arid environment may explain the success of the Juniperus ashei in this 

environment.  Also, by providing a bypass of the shallow soil and directing flow beyond 



 

 

76 

the deep roots of the brush, groundwater recharge could be enhanced.  This provides a 

mechanism that would explain the watershed scale observations of Wilcox et al. (2008) 

of increased ground water volumes following the encroachment of brush in central 

Texas karst systems. 

An area of ponding occurs over a large open fracture, as interpreted from the 

GPR inversion and images. This suggests that the observed hydrophobicity of the litter 

strongly influences infiltration.  While the observation of hydrophobic coatings from 

Juniperus ashei litter is not new, the potential significance of hydrophobicity in this 

environment has not been evaluated.  As matric potential is driven by the attraction of 

the polar molecules of water to the surfaces of minerals, hydrophobicity can nullify 

matric pressure and cause it to change to a positive pressure (Bauters et al., 1998).  

Previous researchers have shown that the presence of hydrophobic coatings enhances 

preferential flow through macropores (Steenhuis et al., 2005).  Additionally, limestone 

has been shown to exhibit partial wetting with water, and complete wetting with organic 

liquids (Taylor et al., 2000).  Thus, hydrophobic coatings on limestone are not easily 

displaced through counter ion exchange in wet conditions, and the influence of matric 

pressure is potentially minimized throughout the rock mass.   Therefore, the hydrophobic 

litter may enhance rapid conduit flow within the limestone at even low moisture levels 

and prevent wetting of the shallow organic soil that grasses occupy.  Hydrophobicity is 

also an important factor in the sequestration of atmospheric carbon within soil.  The 

hydrophobic coatings keep the organic litter dry, preventing it from easily being 

decomposed to release the carbon back into the atmosphere.  Piccolo et al. (1999) 

showed that, in laboratory conditions, hydrophobic amendments to soil significantly 

reduce soil organic decomposition. They further suggested that hydrophobic 

amendments to soil could be used to reduce atmospheric carbon.  Additional research 

should be directed towards better understanding the influence of the hydrophobicity of 

Juniperus ashei on infiltration, subsurface flow and carbon storage.   
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Evaluation of GPR for ecohydrology 

 

Many of the foregoing observations could have been found by careful excavation 

of the site.  Indeed, excavation provides direct ground truth as opposed to the indirect 

subsurface inferences that are characteristic of a GPR study.  However, GPR provides a 

nondestructive means of subsurface characterization that preserves the site for future 

experimentation.  While this forensic analysis of the hydrologic experiments is useful, 

GPR could also be used prior to instrument installation to guide experimental design.  

GPR could also be used as a tool to monitor changes in the subsurface during 

experimentation in areas of interest.  In general, GPR adds considerable value to 

multidisciplinary investigations of physical, chemical and biological interactions 

between the surface, subsurface and ecological communities. 

 

CONCLUSIONS 

 

The geophysics provided evidence that Juniperus ashei occupies fractures and 

karst features within the limestone of the test plot.  These fractures and karst features 

provide preferential pathways through which water can quickly infiltrate deep into the 

subsurface beyond the shallow soil.  The previous observation from this test site shows 

that Juniperus ashei redirects a significant portion of intercepted rainfall directly to its 

roots through stemflow, and that the Juniperus ashei litter is strongly hydrophobic and 

prevents infiltration into the shallow soil.   These plot scale conclusions imply important 

processes that may affect the entire region.  Juniperus ashei is well adapted to access 

water within fractured rock while limiting water to shallow rooted plants competing for 

limited water in the hydrogeologic setting of the Edwards Aquifer region..  This study 

also suggests that the brush may enhance regional groundwater recharge by focusing 

water into conduits where it can bypass the soil and evapotranspiration. Without natural 

fires to keep Juniperus ashei in check, the ecohydrology of the Edwards aquifer region 

has been significantly altered. 
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This study provides support for using multicomponent GPR in the design and 

interpretation of shallow hydrology experiments.  In the context of the ecohydrology 

problem at the Edwards aquifer site, GPR data identified main hydrogeological 

structures that control subsurface flow and the fate of tracers.  If these data were 

available beforehand the placement of the observation trench and the placement of 

sensors and tracer dyes could have been optimized to provide additional information on 

lateral flow and the role of brush removal on the local hydrology.   While identifying 

potential flow pathways with traditional GPR reflection data and processing is very 

useful, the waveform inversion results presented here provide additional detailed 

information on the geometry and the fill properties of the potential flow conduits.  

 The shallow subsurface (0 to 10 m) is one of the most complicated interfaces in 

the earth and ecological sciences.  There are strong interactions between the physical, 

chemical and biological processes of the surface, the ecological communities and the 

subsurface.  GPR is a potentially powerful tool that can provide researchers with unique 

insight into this important zone. 
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CHAPTER IV 

DISCOVERING NEW GEOPHYSICAL KNOWLEDGE WITH THE GROWING 

HIERARCHICAL SELF-ORGANIZING MAP: AN EXAMPLE FROM 3D 

POLARIMETRIC GPR 

 

SUMMARY 

 

In this chapter I apply the recently developed growing hierarchical self-

organizing maps (GHSOM) to knowledge discovery from geophysical data.  I also 

introduce an automatic labeling procedure adapted for geophysical data sets.  The 

GHSOM is an unsupervised learning technique appropriate for clustering and 

interpreting data where little to no prior information exists.  It displays data in both 

topological and hierarchical orders, and when coupled with the automatic labeling 

procedure, provides intuitive understanding of cluster relationships.  The GHSOM is a 

tool for discovering patterns within geophysical data sets that can be used for target 

discrimination.  To test the approach, GHSOM is applied to multicomponent GPR data 

from a shallow ecohydrologic experimentation plot situated on fractured and karst 

limestone of the Glen Rose formation in central Texas, USA.  When the GHSOM is 

coupled with the migrated GPR volume and prior knowledge of the local geology, I am 

able to distinguish patterns identifying soil filled cavities within the limestone.  These 

newly discovered patterns allow estimation of the volume of soil within the limestone. 

Such an estimate is vital for understanding carbon, nitrogen and water fluxes within the 

plot domain.  The GHSOM with the automatic labeling scheme shows strong potential 

as exploratory geophysical data tools, and are particularly useful for situations in which 

little prior information is available.   
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INTRODUCTION 

 

The recently developed growing hierarchical self-organizing maps (GHSOM) 

(Dittenback et al., 2002) have potential for knowledge discovery from geophysical data 

in cases where little or no ground truthing is available.  The GHSOM is an unsupervised 

learning technique appropriate for clustering and interpreting data.  It displays data in 

both topological and hierarchical orders, and when coupled with an automatic labeling 

procedure, provides intuitive understanding of cluster relationships in terms of 

subsurface targets.  Here the GHSOM is applied to 3-D multicomponent GPR data from 

a shallow hydrologic experimentation plot consisting of soil-covered fractured and 

karsted limestone.  My primary objective is to evaluate the effectiveness of GHSOM 

combined with an automatic labeling procedure for discovering patterns from 

geophysical data that are useful to interpretation.  My secondary objective is to find 

patterns within attributes extracted from the GPR data which may indicate the location 

of fractures and karst cavities within the limestone.  It is hoped to distinguish the fill 

materials of these features.  At this stage I lack direct samples from the subsurface that 

could be used to constrain the results and only have the aid of the prior geologic 

knowledge to evaluate the data mining results.  This provides a classic unsupervised 

learning situation. 

Ever increasing computational power and storage space has provided 

geophysicists with the opportunity to access and process enormous amounts of data.  

The proliferation of geophysical attributes has provided interpreters with greater 

insights.  This has helped to remove some of the guess work from interpretation.  

Interpreters hope to recognize patterns of a particularly useful attribute, or combination 

of attributes, to more confidently identify features of interest.  Once a correlation 

between patterns and targets has been established, the patterns themselves become an 

attribute for finding and verifying the presence of the target.  However, the recognition 

of useful combinations of attributes is not a trivial task.  The computational methods for 
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identifying new and useful patterns fall within the domain of knowledge discovery 

databases and data mining (KDD/DM) (Mitra et al., 2002).  

 Geophysics has its own tradition of knowledge discovery. For example, the 

seismic facies analysis described by Johann et al, (2001) closely resembles the 

KDD/DM process.  The KDD/DM process for geophysical applications is summarized 

below (Figure 4.1).  The process starts with basic geophysical observations, which may 

be raw or previously processed data.  In some cases as in GPR, preprocessing may be 

necessary to remove effects such as attenuation, acquisition angle, or source 

polarization.  In the next step, attributes that may be useful for finding patterns of 

interest are selected.  These attributes usually need some preprocessing or normalization 

so that each attribute has a similar value and variance for the data mining stage.  In the 

data mining stage the data is searched for distinct pattern or trends.  These patterns are 

organized and labeled in such a way to be insightful to the user.  Next, the labeled 

patterns are provided to the interpreter as a key or index to the data.  The interpreter uses 

this key, along with a geospatial representation of the patterns, to evaluate which of the 

patterns most indicates a desired target. 
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Figure 4.1. A flow chart of the geophysical attribute discovery process.  This is an adaptation of the 

KDD/DM process (after Mitra et al., 2002). 

 

 

 Among the decisions needed in the KDD/DM process is the selection of an 

appropriate data mining technique.  In geophysics it is often the case that very little prior 

knowledge of the subsurface is available.  A class of data mining tools for such problems 

is the unsupervised learning techniques, also called clustering techniques.  Unsupervised 

learning techniques group targets exhibiting similar attributes together into clusters 

while distancing targets exhibiting very different attributes.  This is markedly different 

from typical pattern recognition or classification methods, in which the objective is to 
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place targets into groups, or classes, that most closely resemble previously labeled, or 

classified, representative examples. 

 Some of the more commonly used unsupervised classification techniques include 

k-means (MacQueen, 1969), fuzzy-c means (Bezdek et al, 1981), hierarchical clustering 

(e.g. Jardine and Sibson, 1968) and self-organizing maps (Kohonen, 1990).  The popular 

k-means algorithm and the fuzzy-c means clustering methods require prior knowledge of 

the number of clusters.  As a consequence of the continuity and noise inherent in 

geophysical data, distinct clusters often do not exist.  As pointed out by Coleou et al. 

(2003) this characteristic of geophysical data handicaps data segmentation methods, such 

as k-means, that attempt to position cluster nodes as far apart as possible.  “This 

repulsion between cluster nodes makes them sensitive to noise, prevents meaningful 

ordering, and leads to results heavily impacted by the selected number of classes” 

(Coleou et al. 2003).  Because of these factors, methods that do not rely on choosing the 

number of clusters prior to training are preferred.  As an alternative to segmentation 

methods, both the hierarchical clustering techniques and self organizing map (SOM) 

techniques do not require prior knowledge of the number of clusters, but instead thee 

clustering is guided by the data.   

The hierarchical methods have the advantage of graphically displaying 

hierarchical relationships, or detail level, of the data.  This allows the user some 

discretion as to what level of detail to analyze the clusters.   Figure 4.2 illustrates the 

advantage of a hierarchical organization for classes of common basin sediments.   An 

interpreter who is interested only in major divisions between salts and clastics may 

choose a simple representation of the data (Figure 4.2-A), while another interested in 

depositional facies may require a moderate level of detail (Figure 4.2-B). The prospect 

evaluator may be interested in the highest levels of detail (Figure 4.2-C).  This provides 

a good demonstration of how subjective is the choice of the ideal number of clusters.  It 

depends not only on what can be discerned from the data, but also the goals of the 

interpreter.  Unfortunately, the hierarchical methods are computationally time 

consuming, scaling quadratically with dataset size, which limits their use in cases of very 
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large data sets (Herrero et al, 2001).  Conversely, the SOM technique runtime scales 

linearly with the dataset size (Herrero et al, 2001).  Plus, SOMs have the added 

advantage of expressing data of high dimensionality onto a low dimension map, where 

nodes representing similar data are topographically close and the map reflects the 

probability density function of the data (Kohonen, 1990).  This is especially useful for 

applications in which estimates of uncertainty are desired. 

 

 
Figure 4.2.  An example of a hierarchical dendrogram for typical classes of basin sediments.  The user of 

hierarchical classifying techniques can choose from several levels of detail (A, B, or C) depending on the 

objective of the classification.  

 

 

SOM algorithm 

 

 SOMs utilize unsupervised-competitive training algorithms to cluster similar 

inputs within the map during the training phase.  The goal of the SOM is to cluster high-

dimensional input data onto a lower dimension map while preserving the 

multidimensional-spatial relationships, or topological order, of the clusters.  The SOM 

consists of N output nodes arranged in a 2-D grid. Each node is assigned a weight vector 

wi of the same dimension as the output data vectors (Figure 4.3).   
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Figure 4.3.  Illustration of a self-organizing map.  The output nodes (circles) of a self-organizing map are 

typically arranged on a 2D surface.  Output weight vectors are iteratively updated with each display of 

input vectors, with the best matching unit (bmu) being updated with the greatest learning rate (black) and 

the neighboring nodes updated with learning rates that decrease with distance from the bmu (shades of 

gray). 

 

 

The weight vectors are initialized with random values.  Each input vector (xj) is 

displayed to the output nodes to determine the difference (Euclidean distance) between 

the input vector and the weight vector.   The best matching unit (bmu) is determined; it 

and its neighbors are adapted to better match, or quantize, the input vector by 

(t))wxα(t)((t)w=)+(tw ijii
 −−1     (4.1) 

where α(t) is an asymptotically decreasing learning rate.  The learning rate decreases in 

amplitude and spatial influence according to, 
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the spatial influence size and also asymptotically decreases in time (Kohonen, 1990).  

After all input vectors have been displayed, the process is repeated until a predetermined 

number of training epochs or level of match has been reached.  Through the training, 

weight vectors take on the appearance of the set of input vectors best matching them.  

The result is a feature map consisting of output nodes that are organized in position as a 

function of similarity between differing weight vectors.   

 The SOM method has seen previous use in geophysical data analysis.  In a 

comparison of several unsupervised learning techniques for seismic facies analysis, 

Marriquin et al. (2009) preferred SOMs for identifying data clusters.  Castro de Matos et 

al. (2007) used SOMs in their process of seismic facies analysis. Klose (2006) used 

SOMs to analyze patterns from 6 seismic properties to interpret tomographic seismic 

data.    Bauer et al. (2008) used the SOM to find clusters from the attributes of P-wave 

velocity, attenuation and anisotropy in tomographic data.  Benavides et al. (2009) used 

SOMs to identify clusters separating UXOs from fragments and clutter in time-domain 

EM data.  Essenreiter et al. (2001) used the SOM to find patterns useful for identifying 

reflection multiples in seismic data. 

 While traditional SOM methods are growing in popularity within the geophysical 

community, there are some limitations which need to be overcome before SOM can 

become a more accessible and reliable tool.   The SOM requires some expertise in 

visually interpreting the number and boundaries of clusters.  Also, the size of the SOM 

must be predefined before training.  If the map is too small, important clusters may be 

grouped together.   If too large, clusters may be needlessly subdivided.  Without prior 

knowledge of the features expressed by the clusters, interpretation of the meaning of the 

SOM is difficult.  Plus, SOMs do not provide any insight into the hierarchical structure 

of the data so that intuitive decisions at various levels of detail cannot be made.  Several 

adaptations of the SOM have been developed to make it more accessible and less reliant 

on a priori information.  Widely used interpretation methods include the U-matrix 

(Ultsch, 1993) graphic display, which simplifies interpretation by highlighting areas of 

significant change between clusters.  Also, methods have to provide meaning to SOMs 
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without any a priori knowledge using automatic labeling procedures have been 

developed by Rauber and Merkl (1999) and Azcarraga et al. (2005).  To alleviate the 

user from the requirement of defining the size of the SOM prior to training, 

automatically growing SOM algorithms have been introduced (Fritzke, 1994; Fritzke 

1995). Finally, two of the more recent SOM adaptations of the traditional SOM's treat 

several shortcomings by combining automatic map growth with hierarchal growth 

(Herrero, et al., 2001; Dittenbach et al., 2002, Rauber et al., 2002).  This development 

has provided a tool possessing the advantages and computational efficiency of the SOM 

with the intuitive organization of hierarchical clustering methods.  Here I utilize the 

growing hierarchical self-organizing map (GHSOM) algorithm of Dittenbach et al. 

(2002) for unsupervised learning of geophysical data. 

 

THE GHSOM ALGORITHM 

 

Growing grid 

 

Training of a GHSOM begins as it would for the traditional SOM, but with a 

small initial grid size for the first training epoch.  With a growing grid SOM, the 

smallest size map possible (2x2) is initialized which  then grows as dictated by 

comparisons of the mean quantization error (MQE) against the quantization error (qe) of 

its parent node (Figure 4.4).  The parent node quantization error (qeparent) gives the error 

between the n input data vectors xj that best match the parent node weight vector 

(wparent). 

∑ −
n

j=
jparentparent xw=qe

1

    (4.3) 

The mean quantization error of the N nodes of the map is given as: 

MQEi=
1
N ∑i=1

N

qei     (4.4) 
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New nodes are added in the form of rows or columns to the grid if the qeparent is greater 

than a certain fraction (τ1) of the mean quantization error (MQE) of the new map.   

parent1i qeτ<MQE ⋅     (4.5) 

The criterion (4.5) ensures that the grown map will sufficiently describe the input vector 

of the parent node, but purposely does not ensure that every node within this grown map 

equally shares in the total quantization error of the map.  The new nodes are initialized 

with the average of the weights of the surrounding nodes to ensure that map continuity 

and orientation is preserved. Growth is controlled by τ1.  Decreasing τ1 provides larger, 

more complex maps that can reveal more about the pdf of the data, while increasing τ1 

provides simplified maps for easier interpretation. There is a tradeoff between map 

complexity and ease of interpretation. A complex map better describes the complexity of 

the data set but is more difficult to interpret. A simple map understates the complexity of 

the data set but is easier to interpret. 

 

 

 
Figure 4.4. Illustration of growth of a self-organizing map.  The two black nodes represent the node with 

the highest qe and the most different neighboring node.  A new line of nodes is added to the grid to allow 

for the spread of the node possessing the highest qe. 
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Hierarchical growth 

 

Following the initial training of the growing SOM, the quality of the training is 

evaluated to determine if further layers of maps are needed to adequately represent the 

data (Figure 4.5).  The layer quantization error (qelayer) is a measure of the overall 

heterogeneity of the input data mapped to a particular layer. The minimum quality of 

data representation for any particular node is a fraction (τ2) of the layer quantization 

error. 

 

 

 
 

Figure 4.5. The hierarchical structure of the GHSOM.  Nodes with poor fit quality (denoted by arrows) are 

grown into new maps. 

 

The layer quantization error (qelayer) is a measure of the overall dissimilarity of the input 

data mapped to a particular layer: 

qelayer=∑
i=1

N

qei     (4.6) 

While, the node quantization error (qei) gives the error between the n input data vectors 

that best matches the weight vector i 

Layer 2 

Layer 1 

Layer 0 
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∑ −
n

j=
jii xw=qe

1

     (4.7) 

The minimum quality of data representation for any particular node is a fraction (τ2) of 

the layer quantization error: 

layer2i qeτ<qe ⋅     (4.8) 

For any node that fails this quality check, a new 2x2 SOM layer is formed to represent 

the data of that node.  The new node is initialized with the average of the weights of the 

nodes surrounding the failed node to ensure that the new layer preserves the same 

orientation as the parent layer.  This new layer is undergoes the same processes of 

growing the grid and hierarchical growth as before until a previously prescribed level of 

quantization error and data quality is reached. 

 

Labeling and color 

 

In order for a SOM to be useful to the interpreter, the output nodes must be 

labeled. In supervised learning situations, labels are given to clusters through 

representative examples.  Several supervised learning techniques are available for 

classifying and refining SOMs, including learning vector quantization (LVQ) (Kohonen, 

1990).  In an unsupervised case, where one lacks prior knowledge, labels are generated 

using the attributes that are most representative of the cluster or node.  Thus, in 

unsupervised learning, a labeling strategy must be specified. In summary, labels can be 

assigned prior to the learning phase in the supervised case, whereas labels cannot be 

assigned in the unsupervised case until after the learning is completed. 

Rauber and Merkl (1999) developed a labeling technique for SOMs based on the 

observation that output vectors take on the average appearance of the input vectors best 

matching that unit.  Labels are assigned based on the attributes that are most closely fit, 

or best matched, by the output vectors.   In their applications the data are discrete and 

were presented to the SOM in a binary format. In geophysical applications attributes 

values typically vary continuously and the variance of each attribute can be determined.  



 

 

91 

Building on the basic premise that the output vectors take on the average appearance of 

the input vectors best matching that node, I added a normalization step that takes into 

account differences in variance.  The goodness of fit (χk) of the kth attribute to the ith 

output weight is given by, 

k
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j
kj

i
ki

k
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−
= 1

2
,, )(

,   (4.9) 

where xi are the vectors that best match output weight i, N is the number of input vectors 

best matching the ith output weight vector, and σk is the standard deviation of the kth 

attribute for the entire layer.  If this merit function is less than one, it indicates that the 

output node i represents a specific subset of attribute k rather than fitting the entire 

population of that attribute for the layer.  If the value is greater than one then the node 

shows no special adaption to a subset of that attribute.  This merit function is 

nonparametric, or in other words it makes no assumption of the underlying probability 

density distribution function of the data.  Attributes that have merit values less than one 

are ranked in ascending order, and the best ones characterized by a low rank (≤ 5 in 

these examples) are displayed on the trained nodes.  Some nodes have less than five 

labels that indicates that fewer than five attributes have a goodness of fit of less than 1.  

No labels on a node indicate that this node does not represent any specific subset of the 

data.  Also, with geophysical data, rather than binary data, we would like to know if the 

particular subset of attribute k being represented by the output node i is higher or lower 

than the average of that attribute for the layer (µk), and by how much different it is, 

higher or lower, than normal.  A useful measure of how different a particular weight is 

from the average of the layer for a particular attribute is given by 
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This calculation describes how many standard deviations from the mean of the attribute 

that an output weight represents.  While this measure is strictly nonparametric, the 

“empirical rule” provides the user with rules of thumb that 99.7% of the data will be 
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within three standard deviations of the mean, 95% of the data will be within two 

standard deviation of the mean, and 68% of the data will be within one standard 

deviation of the mean, if the important assumption that the probability density function 

(pdf) of the data is normally distributed is true (Harnett and Murphy, 1980).  However, 

the assumption of normally distributed data does not limit the user from making 

inferences with this measure in cases of non-normally distributed data.  For example, if a 

significant portion of the input vectors are assigned to a node where the representative 

attribute is three standard deviations or more from the mean it indicates that it is highly 

probable that the distribution is not normal.  These adaptations of the automatic labeling 

procedure of Dittenbach at al., (2002), for use with continuous geophysical data sets, 

provide useful insights into the patterns extracted by SOMs or GHSOMs.  An example 

of an automatically labeled output node is shown in Figure 4.6. 

 

 

 
Figure 4.6.  A node with automatically generated labels for the GHSOM.   Each output node of the 

GHSOM is automatically labeled to provide the user with insight into the patterns represented by each 

node. 

 

 

Following the training and labeling of the GHSOM, the cell of each input vector 

within the geophysical dataset is then assigned the color of the output node that it best 

matches.  The result is that the geospatial distributions of the data can be visualized with 

Link to next 
hierarchical level 

Number of input 
vectors best 
matching the node 
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devs. from mean 

Link to additional 
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the GHSOM feature maps, thereby providing a key for interpretation.  It is useful both in 

interpreting the SOM maps and in interpreting the geospatial representation of the 

pattern that the user has an intuitive representation of how closely related patterns are.  

Therefore, I ranked the output of nodes of the SOM by the distance from the node with 

the highest number of bmu's.  The node with the highest number of BMU's is assigned 

blue and the node farthest from that node is labeled red (Figure 4.7).  All other nodes are 

colored according to their distance ranking from the blue node using a linear RGB color 

map (blue to green to red).  The result is that closely related nodes are colored similarly.   

In the geospatial display, sudden changes in color would indicate a significant 

discontinuity in the character of the subsurface, while continuous changes would be seen 

as gradual changes in color.  This scheme provides the user with an intuitive 

representation of changes in patterns.  This linear RGB color map scheme is most 

appropriate to data exhibiting two end members, which would be colored blue and red 

respectively.  However, in cases of three or more end members within the data, two or 

more nodes may be unrelated yet have nearly identical distance from the node with the 

highest number of bmu’s. Thus, there is some ambiguity when using an RGB color 

scheme to represent a complex data set with more than two end members.  
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Figure 4.7.  Screen capture of a GHSOM layer displaying the colored and labeled SOM (top), and a 

selected depth slice showing the geospatial distribution of the patterns (bottom).  

 

 

APPLICATION EXAMPLE: POLARIMETRIC GROUND PENETRATING 

RADAR 

 

Three dimensional multicomponent GPR data were acquired from a shallow 

ecohydrologic experimentation plot situated on fractured and karst limestone of the Glen 

Rose formation, 45 km north of San Antonio, Texas, USA.  The experiment plot 

measures14 m by 7 m and has a 2.5 m deep trench excavated on the downslope (2% 
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topographic gradient) boundary of the site.  Additional coring and digging was 

prohibited because of the requirement that the integrity of the site be preserved for future 

experimentation.  The geophysical objective is to determine the location and character of 

possible flow conduits with this fractured-karst limestone.  Each component of the GPR 

data was acquired with a Sensors and Software Pulse Ekko 100 system using 200 MHz 

antennas.  A fixed transmitter and receiver offset of 0.5 m was used, and each radar trace 

was stacked 64 times.  The spacing between stations is 0.1 m in the in-line direction and 

0.15 m in the cross-line direction.  All data were identically processed and migrated 

(Sassen and Everett, 2009).  Several geophysical attributes were extracted from the data 

to aid in the interpretation: coherency; instantaneous amplitude spectra; texture, and; 

polarization.  While some of these attributes helped to distinguish the location of 

subsurface discontinuities, the attributes do not indicate whether a conduit is open, filled 

with soil, or contains roots.  I show here that data mining of the numerous attributes with 

the GHSOM yields patterns that better distinguish the properties of these conduits. 

 

Preprocessing  

 
 An important step in the preparation of the GPR data for data mining is reducing 

the dependence on instrument parameters, otherwise known as the spatiotemporal aspect 

(e.g. angle of incidence, response time, polarization, and source spectra).  Standard 

geophysical processing steps, such as migration, can minimize the impact of 

spatiotemporal aspect on GPR and seismic data.  In this example of ground penetrating 

radar, the polarization of the transmitter and receiver play an important role in shaping 

the response from subsurface features.  To reduce polarization dependence, fully 

polarimetric data should be acquired and then reduced to the principle components, or 

eigenvalues, of the data.  Polarimetric data can be described by the time-domain 

scattering matrix S(t) (Chen et al., 2001). 
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where Sij is the intensity of the electric field at the receiving antenna at time (t) of 

polarization direction (âj) backscattered from an arbitrary target illuminated by a 

transmitting antenna of polarization âi.   The rotation of the S matrix sketches out an 

ellipse, where the primary axis and secondary axis are defined respectively by the 1st and 

2nd eigenvalues (λ) and eigenvectors (Figure 4.8).  The first eigenvalue λ1 corresponds to 

the maximum of the electric field, as the antenna polarization is varied.   

 

 

 
Figure 4.8.  Illustration of the scattering ellipse for the electric field.  The first and second eigenvalues 

correspond to the largest and smallest radius of the ellipse. 

 

 

While the terms of the scattering matrix are dependent upon the coordinate basis of the 

survey, the eigenvalues and eigenvectors are invariant.  Therefore, utilizing the first 

eigenvalue of the scattering matrix, one minimizes the response dependence to 

polarization.  The amplitude at each time (t) from each of the components at each 

discrete position has been replaced with a single polarization invariant eigenvalue for 

extracting the attributes defined below. 
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Attributes 

 

In data mining and pattern recognition it is often desirable to reduce data 

complexity to the most salient points to improve the efficiency of training.  In the 

example of GPR, important characteristics of the data include spectra, wavelet shape, the 

texture of the migrated data, and polarization.  These characteristics can be extracted 

from the data with the use of attributes.  The selection of the attributes also strongly 

influences the end result of the pattern clustering.  The user must select attributes for 

analysis that apply the problem at hand.  The four attributes that I chose are: (1) 

instantaneous amplitude spectra; (2) a textural attribute; (3) coherency, and; (4) the 

estimated linearity factor.  Note that the four attributes are not orthogonal in the sense 

that the information contents of each attribute somewhat overlap. This is in contrast, for 

example, with using empirical orthogonal functions as attributes. 

 

Instantaneous amplitude spectra:  The spectra are estimated with the discrete wavelet 

transform (DWT) using the Morelet Wavelet (Chopra and Marfurt, 2007) centered on a 

time slice of interest (Figure 4.9).   

 

 

A)    B)    C) 

 
Figure 4.9.   A time slice at 32 ns showing the instantaneous amplitude response of fractured limestone A) 

90 MHz, B) 130MHz, and C) 180MHz.  Reds indicate high amplitude response while blues represent low 

amplitude response.  All slices are 12.7 x 6.3 meters. 
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The spectra are normalized by the maximum amplitude in each frequency bin to 

minimize the effect of the source spectra.  Ten different frequencies spanning a range 

centered on the peak of the amplitude spectra (130 MHz) were used in the GHSOM 

training.  The instantaneous amplitude spectra are useful in discriminating resonant 

features, such as thin layers, as some frequencies will constructively interfere and others 

destructively. 

 

Textural analysis:  The R*-transform (Moysey et al., 2006) is used as the textural 

attribute (Figure 4.10).  The R*-transform, based on the radon transform, provides a 

rotationally invariant measure of texture.  The output of the R*-transform is the power 

for both the positive and negative component of each angle within the analysis window.  

This texture measure lends itself to intuitive understanding of the pattern. For example, 

the R*-transform of textures dominated by horizontal layers will have peak power at 

angles approaching 0º, vertical features will have peak power at angles approaching 90 º, 

and random textures will have flat distributions.  Ten angle bins were selected from 0º to 

90º at 10º intervals to create the texture attribute vector used in the training set.  Figure 

4.10 show the R*-transform for three different angle bins. 

 

 

A)    B)    C) 

 
Figure 4.10.  A time slice at 32 ns showing the textural features of fractured limestone A) horizontal, B) 

40°, and C) vertical.  Reds indicate high total amplitude for that dip angle response while blues represent 

low total amplitude.  All slices are 12.7 x 6.3 meters. 
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Estimated Linearity Factor (ELF):  ELF (Chen et al., 2001) is a measure of the 

polarization dependence of a scatterer.  ELF was calculated with the normalized 

difference between the time averaged primary λ1 and secondary λ2 eigenvalues of the 

scattering matrix. 
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Features that are of high electromagnetic contrast and elongate, or linear, have high ELF 

scores approaching 1, such features include fractures faults, karst pipes, and veins, while 

features that are omni-directional scatterers approach 0 (Figure 4.11). 

 

 

 
Figure 4.11.  A time slice at 32 ns showing the estimated linearity factor (ELF) of fractured limestone. 

Reds indicate highly linear features and blues indicate omni-directional scatterers. Eight samples, or 3.2 ns 

of data, were averaged for each eigenvalue component. 

 

 

Polarimetric coherency:  Polarimetric Coherency (Sassen and Everett, 2009) measures 

the similarity of wavelet shape within an analysis window.  It is useful for delineating 

discontinuities such as fractures.  The GPR polarimetric coherency is an extension of the 

standard seismic coherency attributes used in exploration geophysics. Areas of poor 

similarity trend towards a coherency score of 0, and areas of high similarity have 

coherency scores trending towards 1 (Figure 4.12). 
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Figure 4.12.  A time slice at 32 ns showing the polarimetric coherency attribute of fractured limestone, 

black indicates low coherency and white represents high coherency. 

 

Normalization 

 

Prior to application of the GHSOM it is important to normalize the attributes.  

Since the calculation of the quantization error is an L1 merit function, the quantization 

error will scale linearly with the absolute value of the attribute.  For example, if an 

attribute is normalized to scale from 0 to 1000 and the same attribute is rescaled to 0 to 1 

the quantization error could be as much as 1000 times greater for the first normalization 

despite the identical misfit in terms of percentage.  Scale disparity leads to an output 

vector that best fits the largest attribute at the expense of the smaller attributes.  

Therefore, to place equal weight amongst all of the attributes they are normalized so that 

the peak value is 1.0.  Conversely, one may change the normalization to give greater or 

less weight to an attribute based on perceived importance or differences in error 

estimates.  The spectral and texture attribute training sets used in this study are 

normalized 

)max(

,

i
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x
x

;     (4.13)
 

 where xmax(i) is the maximum value of each attribute xj of all the frequencies(j) at spatial 

location(i).  The scalar attributes of coherency and ELF were simply normalized by the 

global maxima for those respective attributes.   
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Initial parameters of the GHSOM 

 

To test the GHSOM I used three different sets of the GPR attributes.  The three 

sets are: (1) the instantaneous spectral amplitude vector; (2) the R*transform texture 

vector, and; (3) all four attributes, including the instantaneous spectral amplitude vector 

and the R*transform texture vector along with polarimetric coherency and ELF.  The 

initial learning amplitude A(t) was set to 0.8 and decreased by training epoch (t) by, 

05.1
)1()( −

=
tAtA .     (4.14) 

The initial spatial influence σ was set to 0.6 and decreased with training epoch (t) by, 

05.1
)1()( −

=
tt σσ .    (4.15) 

The threshold values controlling feature map growth (τ1) and hierarchical growth (τ2) are 

0.1 and 0.05 respectively.   

 

UNSUPERVISED CLASSIFICATION RESULTS 

 

Spectral attributes 

 

The first training set for the GHSOM consists of the instantaneous amplitude 

attribute, at 10 frequencies, extracted from the GPR data set.  Layer 1 of the trained 

GHSOM is shown in figure 4.13. To properly interpret the result, the numerical values 

of the attributes contained in the node labels must be analyzed.  The labels of several 

nodes of this GHSOM show significant  differences from the mean attribute of the data 

set, especially nodes 4,1 (red) and 1,2 (yellow-green).  Labels of node 4,1 indicate that 

this node represents spectral patterns with anomalously high amplitudes (+1.6 to +2.4 

standard deviations from the mean) for the frequencies of 140Mhz and above.  

Conversely, the labels of node 1,2 indicates an amplitude peak at the lowest frequency, 

90 MHz, (+2.0 standard deviations from the mean) and low amplitude spectra for higher 

frequencies (-2.0 for 120MHz).  Note that these two nodes represent the two end 
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members of spectral distributions, and the GHSOM has organized these two nodes on 

opposite ends of the map. 

 

 

 
Figure 4.13. The self-organized map of the instantaneous amplitude spectra attributes (Layer 1) is used as 

the key to interpret the geospatial output in figure 4.14. 

 

 

In the visualization of the geospatial distribution of the patterns (Figure 4.14 A-

C) it becomes apparent that areas of very low reflectivity seen in the migrated GPR 

images correlate to the patterns of low frequency dominated spectra of node 1,2 (yellow-

green).   
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Figure 4.14.  Illustration of the interpretation of soil filled cavities within the limestone. Areas of low 

reflectivity within a migrated GPR cross-section are outlined with dashed lines (A), the geospatial 

representation of the patterns from layer 1 of the GHSOM (B), the patterns (nodes 1,2 and 2,1) that 

correlate to the low reflectivity areas(C), the spectral content of the output weight vector shows that the 

output nodes associated with the low reflectivity area have spectra shifted to lower frequency(D) , and a 

photograph of the observation trench showing a soil filled cavity (E) that is aligned with the trend of the 

low amplitude area outlined on the far right side of (A). 
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Originally, these areas of very low reflectivity were thought to be highly fractured areas 

because of low coherency scores (darker areas of Figure 4.15-B), indicative of 

discontinuities in the GPR signal, observed within these areas.  However, the shift in the 

frequency spectra towards a lower center frequency (Figure 4.14-D) suggests that 

frequency dependant attenuation and dispersion caused by conductive material such as 

wet soil or clay is leading to the observations of low reflectivity.  This interpretation is 

backed by the observation that this pattern is collocated on low coherency areas of the 

subsurface (Figure 4.15-B) that have been interpreted as joints and karst features (Sassen 

and Everett, 2009), which would provide a pathway for the subsurface accumulation of 

soil.  In addition, the trend of one area of this pattern aligns with a soil filled karst 

feature seen in the observation trench (Figure 4.14-E). This example has show how the 

SOM can lead to an improved hydrogeophysical interpretation of GPR data. 

 Estimation of soil volume contained within the shallow fractured/karst 

subsurface is very important in hydrologic and ecological studies for understanding 

carbon and nitrogen cycles, as well as potential water storage.  Volume calculations of 

these patterns (Figure 4.15-C and D) are 5% of the total volume of the experimentation 

plot for node 1,2 and 7% for node 2,1.  The anomalously high frequency pattern 

expressed by node 4,1 (Figure 4.13) could be caused by resonant features such as karst 

pipes or thin layers.  However, in the visualization of the pattern, no obvious correlation 

exists between this high frequency pattern and interpretable features.  More information 

is needed to understand what geologic feature these patterns indicate. 
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Figure 4.15. 3-D aspect views of the distribution of the patterns assigned to node 1,2 and node 2,1 (Figure 

4.13) that are associated with the interpreted soil filled cavities (Figure 4.14).  The spatial relationship 

between the patterns and an amplitude time slice at 1.5 meters depth (A), and a coherency attribute time 

slice at 1.5 meters depth (B).  3-D surface renderings of the patterns node 2,1 (D) and both nodes 2,1 and 

1,2 together (C) superimposed on GPR fence diagrams. 

 

 

Texture attributes 

 

In analysis of the textural attribute vector, several end members of texture 

become apparent.  The size of the analysis window used in the textural analysis limits 

the use of this attribute to within areas more than half a window size from the spatial 
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edge of the data.  As a result the first 8 and last 8 columns of each GPR line are given a 

null texture vector (Figure 4.17-B).  The GHSOM positioned this pattern, node 2,3 

(orange), at the far end of the map from the most common node, node 1,1 (blue).  The 

labels of the node with the greatest number of bmu’s, node 1,1 (blue), show that within 

this texture pattern the power from horizontally oriented features are slightly higher than 

the mean, with low energy in higher angled bins (Figure 4.16).  This indicates that this 

node is representative of horizontally continuous features (Figure 4.17-D).  This is 

interpreted as a pattern indicative of largely intact limestone that constitutes the bulk of 

the subsurface within the plot.  This is supported by the observation that the geospatial 

distribution of this pattern is limited to areas of high coherency (light gray areas in 

Figure 4.18-A&C).  The node that is most distant from node 1,1 in Euclidean space is 

node 2,2 (red).   In the geospatial visualization of the patterns one can see that node 2,2 

correlates to the low frequency spectra pattern from node 1,2 in figure 4.16 and low 

coherency areas in figure 4.18.  Given the consistently high power in each of the 

normalized angle bins, this pattern is indicative of a random texture pattern, and is 

consistent with the textured expected from soil colluviums. 

 

 



 

 

108 

 
Figure 4.16.  Interpretation of the GHSOM output for textural attributes. The identical areas of low 

reflectivity within a migrated GPR cross-section are outlined with dashed lines from figure 4.15 are shown 

in (A), the geospatial representation of the patterns from layer 1 of the GHSOM (see figure 4.18) are 

shown in (B), the distribution of pattern (nodes 2,2) that correlates to the low reflectivity areas (C), and the 

spatial distribution of the pattern from node 1,1 that is interpreted as intact limestone. 
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Figure 4.17. The self-organized map of the textural attributes (Layer 1) is used as the key to interpret the 

geospatial output in Figure 4.16. 
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Figure 4.18. 3-D aspect views of the distribution of the patterns assigned to nodes 2,2 and node 1,1 (Figure 

4.17) with a coherency time slice at 1.5 meters (A).  The surface rendering of the textural pattern (node 

2,2) is shown in (B). Figures C and D show a time slice of the intact limestone pattern (node 1,1 from 

figure 4.17) superimposed on the coherency time slice, where D shows the distribution of layer 2 pattern 

assignments seen in Figure 4.19. 

 

 

In an attempt to gain more specific information on the state of the intact 

limestone I analyzed the second layer (Figure 4.19) grown from the bmu’s of node 1,1 of 

figure 4.17.   
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Figure 4.19. Shown here is the 2nd layer of the self-organized map of the instantaneous amplitude spectral 

attributes grown from the input patterns best matching the intact limestone pattern (node 1,1 of Figure 

4.16), and is used as the key to aid in the interpretation of the geospatial output in figure 4.18-D. 

 

 

The automatic labels for the feature map of the second layer show that very few nodes 

have labels (Figure 4.19), indicating that the nodes do not represent specific subsets of 

the data, but largely represent the entire population of the layer.  Plus, the colors 

assigned to the geospatial output (Figure 4.18-D) change gradually from blue to red.  

The labels and geospatial data suggests that divisions within the second layer are mostly 

attributable continuous variation in texture.  This gradual variation of patterns was 

typical of most of the higher layers of the GHSOM outputs.  This subtle level of detail 

seen in the higher levels of the GHSOM is much more than what I need to meet my 

objective.   
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Combined attributes 

 

The final application of the GHSOM utilized the amplitude attributes, the 

textural attributes, coherency and ELF together as the training set (Figure 4.20).  Many 

of the same patterns emerge from the combined set of attributes. The labels output for 

some nodes are nearly identical to the previous outputs from the other training sets.  

Again, with this training set we see a distinct pattern with its amplitude spectra shifted 

towards low frequencies, node 1,2 – red, that correlates with the spatial distribution of 

the pattern interpreted as soil fill within the limestone (Figure 4.21).  Another distinctive 

pattern, node 3,1 (yellow-green), is distinguished by the very high frequency 

components, that possible indicates resonant features, and was also seen within the first 

training set (Figure  4.13).  In some cases, the combination of all of the attributes 

together is more informative than the previous sets.  The labels of nodes 2,2 and 1,1 

(Figure 4.20) indicate that these nodes are representative inputs with higher than average 

coherency (+0.422 to +0.327 standard deviations from the mean), texture dominated by 

horizontal features (0 bin +0.368 to +0.399 std. dev. from mean), and the spectral peaks 

close to mean of the data.  These defining attributes are consistent with intact limestone 

that constitutes the bulk of the background that is also identified in the previous 

examples.  The success from using the larger input set in the training in identifying the 

same patterns demonstrates the effectiveness of the GHSOM and automatic labeling 

procedure in identifying significant clusters and their defining attributes even with 

combinations of disparate attributes. 
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Figure 4.20. The SOM feature map generated from input vectors consisting of the instantaneous spectral 

amplitude attributes, the textural attributes, coherency and ELF.  This feature map is used as the key to 

interpret the geospatial output in figure 4.21. 
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Figure 4.21.  Interpretation of the GHSOM output for the combination of all attributes.  The identical areas 

of low reflectivity within a migrated GPR cross-section are outlined with dashed lines from figures 4.14 

and 4.17 are shown in (A), the geospatial representation of the patterns from layer 1 of the GHSOM (see 

figure 4.20) are shown in (B), the distribution of pattern (nodes 1,2) that correlates to the low reflectivity 

areas (C), and the spatial distribution of the pattern from node 3,1 indicating areas of anomalous spectral 

shift towards high frequencies(D). 
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DISCUSSION AND CONCLUSIONS 

 

The DM/KDD process in this example has led to the discovery of patterns 

indicative of the soils within the fractured/ karst limestone.  The labeled GHSOMs 

provide a means of exploring data in a structured manner that allows the use of geologic 

and geophysical based knowledge to discover new information.  Through the various 

examples I have demonstrated that the GHSOM can produce a useful key to help in the 

interpretation of data where little or no information exists.  It also shows the potential for 

providing an estimate of the total volume of soil within the experimentation plot.  

However, because direct samples are lacking these interpretations suffer from significant 

uncertainty.  Using the geospatial distributions of the patterns I can efficiently design 

subsurface coring surveys to test these interpretations, and to place error estimates on the 

volume of the soils within the karst with minimal impact to the experimentation site. 

While the main focus of this paper is on the unsupervised learning case of data 

mining and knowledge discovery, the SOM also has significant advantages once 

independent confirmation of subsurface features becomes available and one can move 

towards supervised learning.  Kohonen (1990) provides specific supervised learning 

methods, known as learning vector quantization (LVQ), that work within the context of 

the self-organizing map.  In the LVQ process, nodes of an SOM best matching sets of 

representative examples define class centroids, and class memberships are defined as a 

function of a node’s vector space distance from the various class centroids.  Kohonen, 

1990, showed that LVQ class boundaries closely follow Bayesian decision boundaries, 

where inclusion within the class indicates that an input vector most likely resembles the 

centroid of that class than any other centroid.   Also, the capability of the SOM to 

represent the probability density function (pdf) of a cluster becomes useful.  Bayesian 

statistics can then be used to suggest the probability of misclassifying features, thus 

providing estimates of risk.   

The flexibility and adaptability of the GHSOM are important characteristics for 

geophysical applications.  Geophysical data does not lend itself to simple clustering, 
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because most geologic features vary continuously from one end-member to the next and 

also because of omnipresent noise.  Additionally, the data mining procedure must always 

be tailored to the end goal of the user.  These issues suggest an iterative process where 

the interpreter can select different levels of hierarchy of adjust the weights and 

thresholds to get the needed level of detail without being negatively affected by 

excessive information.  The ability to adjust data weights and threshold values prior to 

training leads to a certain level of supervision by the end user.  While minimizing the 

need for user input and reliance on prior knowledge are important characteristics of the 

GHSOM, in many cases this limited supervision of the training process is vital to the end 

goal.  In addition to the ability to define, or redefine, classes within the SOM with LVQ, 

an existing GHSOM may also adapt to new environments by additional training with 

new input vectors.  Thus, it accumulates knowledge from each survey and exploits that 

knowledge to perform increasingly better in a wider domain of situations 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

 
 

 This research has been highly successful in pushing the envelope of knowledge 

in the area of nondestructive detection and characterization of fractures and karst 

features.  The research has provided three distinct paths for dealing with GPR data 1) 

image enhancement for detecting discontinuities with polarimetric coherency, 2) 

quantitative interpretation of fractures with full-waveform inversion of transmission 

data, and 3) pattern identification with the growing hierarchical self-organizing map 

(GHSOM).  These three distinctive methods complement each other by refining the 

interpretation of the results from the ecohydrology test site when used together. 

 The polarimetric coherency algorithm has minimized the bias of antenna 

polarization in the detection of subsurface discontinuities.  Plus, it has been shown to be 

clearly better than existing methods.  While the method was demonstrated on fractures, it 

has applications to any situation where subsurface discontinuities exist.  The 

polarimetric coherency results were vital in providing the necessary constraint for the 

inversion results, and it also aided in the evaluation of the patterns extracted with the 

GHSOMs.  The most significant caveat of the method is the requirement of three 

coordinated antenna polarization to construct the scattering matrix that significantly 

increases data acquisition time.  Therefore, the method is best used in areas where 

targets of interest have strong electromagnetic contrasts and/or have large length to 

width ratios. 

 The full-waveform inversion technique for GPR transmission profiles shows 

promise in quantitatively determining the aperture and electromagnetic properties of thin 

layer features.  Plus, the acquisition of the transmission data could be accomplished in a 

variety of ways including transmission from boreholes, cliff faces, and trenches, and 

wide angle reflection surveys.  The method has been validated on idealized synthetic 

data.  The ease of the acquisition of the data of the simplicity of the model makes it very 
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time efficient compared to other methods.  However, the simplicity of the forward model 

limits the application of this method to specific conditions.  The model is built around a 

plane wave approximation, which is only valid in the far field of the GPR source (>3 

wavelengths from the source).  Also, it assumes idealized geometry of the fracture as a 

thin parallel sided plate embedded in the limestone.  Real fractures are rarely perfectly 

straight and often vary in aperture and have asperities.  Also, the tests on the synthetic 

data show that it can only perform reliably on thin layers with a thickness greater than 

5% of the dominant wavelength of the source.  Because of these limitations the inversion 

technique is probably best suited to an auxiliary role for other inversion methods.  It 

could be used as a method of initializing or constraining inversion methods based on 

more general models such as finite difference time domain or finite element that have 

prohibitively long computation times without some guidance. 

 The application of the GHSOM to the GPR data is the first known example of an 

application of this data mining technique to geophysical data.  While most geophysical 

applications of the closely related self-organizing maps focus on the identification of the 

number of clusters, this application has focused on extracting previously undiscovered 

patterns within the data without any representative examples from direct samples.  Also, 

a new automatic labeling procedure is introduced for dealing with continuous data sets 

typical of geophysical data.  Using the GHSOM in the role of data mining and 

knowledge discovery, distinct patterns indicative of soil filled cavities within the 

limestone were discovered.  This allowed for determination of the location and volume 

of soil within the subsurface.  This is very useful information for determining the role of 

these deep soils in the ecology of Juniperus ashei and the water and carbon cycles in this 

environment.  The GHSOM results could be further enhanced with some direct samples 

so that uncertainty levels could be estimated and class boundaries could be refined.   

 One of the primary problems with the development of detection and 

characterization methods at the Honey Creek experimentation site is the inability to dig 

or drill into the plot to directly verify the interpretation of the results.  The integrity of 

the site was to be preserved for future experimentation.  Without direct sampling it is not 
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possible to place an uncertainty on the interpretations.  This is a classic common 

problem throughout geophysics.  Geophysical exploration of the deep interior of planets 

is a prime example of a research problem that lacks the aid of any direct sampling.  In 

near surface geophysics, where direct sampling is often possible, issues of safety, cost or 

socially sensitive areas are common obstacles to direct verification of interpretations.  

However, in the development of new exploration methods some form of independent 

verification should be sought whenever possible.  In part, the ability to verify 

interpretations is a defining characteristic of near surface geophysics, which separates it 

from other geophysical disciplines that require inference and extrapolation.  Despite this 

weakness, this research has provided the framework for others to further push the 

envelope of knowledge for noninvasive methods of detecting and characterizing 

fractured and karsted rock bodies.   

In addition to the contribution to geophysics these methods also improved 

knowledge of the relationship between the subsurface and ecology.  The geophysics 

provided evidence that Juniperus ashei occupies fractures and karst features within the 

limestone of the test plot.  These fractures and karst features provide preferential 

pathways through which water can quickly infiltrate deep into the subsurface beyond the 

shallow soil.  The previous observation from this test site shows that Juniperus ashei 

redirects a significant portion of intercepted rainfall directly to its roots through 

stemflow, and that the Juniperus ashei litter is strongly hydrophobic and prevents 

infiltration into the shallow soil.   These plot scale conclusions imply important 

processes that may affect the entire region.  Juniperus ashei is well adapted to access 

water within fractured rock while limiting water to shallow rooted plants competing for 

limited water in the hydrogeologic setting of the Edwards Aquifer region.  This study 

also suggests that the brush may enhance regional groundwater recharge by focusing 

water into conduits where it can bypass the soil and evapotranspiration.  The difficulties 

in characterizing the subsurface at the experimentation site are what drove the 

development of new geophysical methods. 
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APPENDIX 

THE ALTERNATING DIRECTION IMPLICIT FINITE-DIFFERENCE TIME-

DOMAIN METHOD 

 

INTRODUCTION 

 
The simulation of ground penetrating radar for complicated subsurface 

geometries requires numerical methods, such as the finite-difference time-domain 

(FDTD) method.  The traditional FDTD technique for modeling electromagnetics (EM) 

suffers from numerical dispersion unless time steps are kept below the Courant-

Friedrichs-Lewy (CFL) stability limit.  The accurate modeling of electromagnetic 

scattering by complex targets requires a refined grid, subgrids, or conformal grids that 

can significantly increase computation time (Holland, 1993).  A relatively recent 

adaptation of the FDTD technique, the alternating direction implicit (ADI)-FDTD, uses 

implicit equations that help to cancel numerical dispersion and allow for unconditionally 

stable modeling of EM and therefore is not bound by the CFL stability limit.  Here a 

review of the methods used to construct an ADI-FDTD algorithm for the simulation of 

GPR is presented.  Also, validation and examples of simulations of the completed model 

are provided. 

 

REVIEW OF FDTD METHODS 

 

 The FDTD method has become the preferred method for GPR simulation.  A 

small sample of FDTD applied to GPR include: Lampe and Holliger (2003), Lampe et 

al. (2005), and Roberts and Daniels (1997) who all demonstrated FDTD techniques for 

accurate representations of realistic GPR antennas over a half-space, and Wang and 

Tripp (1996) who demonstrated the utility of the FDTD for modeling the GPR response 

to 3D heterogeneous media.   
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FDTD modeling of electromagnetics seeks the time and space evolution of the 

electric and magnetic field through numerical approximation to Maxwell’s equations. 

H
t

Ex


µ
∂
∂

=∇−   (1) 

sJE
t

EHx


+
∂
∂

+=∇ εσ  (2) 

The classical means of solving these equations was introduced by Yee, (1966).  The Yee 

method is an explicit forward stepping method that utilizes an accurate centered-

difference approximation.  Yee’s most important contribution is the Yee Cell (Figure A-

1), which allows for the implementation of the centered difference scheme for the spatial 

derivatives of the coupled electric (E) and magnetic fields (H).  .  In time the H field 

components are half a step ahead of the known E fields, thus the time derivative is 

updated with accurate midpoint approximations.  The Yee cell is also utilized in the 

ADI-FDTD scheme presented here 

 

 

 
Figure A-1. The Yee unit cell.  All electromagnetic field component are evaluated at separate staggered 

positions. 
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 Stability analysis of the FDTD method has revealed that time steps ∆t of the 

FDTD model must be kept smaller than the Courant-Friedrichs-Lewy (CFL) stability 

limit: 

222
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+
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≤∆ ,      (3) 

where ∆x ,∆y and, ∆z are the spatial step size and c is the maximum velocity in the 

computational domain.  Time steps larger than the CFL stability limit will result in 

numerical dispersion.  The quandary presented by stability limit is that as one decreases 

the spatial increment to increase model accuracy for irregular or small features the 

number of time steps must increase significantly.  To overcome this problem alternative 

discritization techniques such as the Crank-Nicholson scheme can be used. 

 The Crank-Nicholson scheme of finite-difference modeling is commonly used in 

diffusion equations.  The Crank-Nicholson scheme takes advantage of the fact that a 

forward-time stepping FDTD and backward-time stepping FDTD both suffer from 

numerical dispersion, but with the key difference that the two have opposing dispersion.  

The great insight of the Crank-Nicholson scheme is that if one averages together both 

the forward in time centered in space approximation and the backward in time centered 

in space approximation, the two opposite dispersion terms cancel each other out making 

the resulting discritization unconditionally stable.  However, in practice the Crank-

Nicholson scheme for FDTD is too computationally expensive.  Implementation of this 

scheme requires the inversion of very large and spars matrices.  The ADI-FDTD method 

also overcomes problems of numerical dispersion, but with significant computational 

savings. 

 The ADI-FDTD algorithm was introduced simultaneously by Namiki, (1999) and 

Zheng and Zhang, (1999).  The ADI-FDTD scheme combines a forward in time centered 

in space approximation with a backward in time centered in space approximation, which 

cancels the opposite numerical dispersion effects, resulting in a discritization that is 

unconditionally stable.  However, the ADI-FDTD technique can allow for significant 
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decreases in computation time compared to the FDTD.  The ADI-FDTD method breaks 

the implicit equations into two substeps in time that alternate in the spatial direction of 

update.  This difference changes the problem of solving the implicit equations from the 

expensive task of inverting a large spare matrix to the trivial task of inverting a 

tridiagonal matrix.  While the ADI-FDTD has obvious advantages, it has limitations in 

accuracy for simulations run at time steps significantly greater than the CFL.   

 Staker et al., 2003, demonstrated that the traditional FDTD method is actually 

more accurate than the ADI-FDTD method when both are run at the CFL limit.  

However, Staker et al., 2003, identified a class of problems that the ADI-FDTD method 

provides a means to decrease simulation execution time while maintaining accuracy.  

They identified that the ADI-FDTD method is best suited for problems that either 

require a refined grid or an irregular grid.  In geophysics one is often presented the task 

of simulating a highly heterogeneous subsurface at fine scales that requires refined or 

irregular grids.  Thus, the ADI-FDTD method is well suited for geophysical modeling. 

 

THE ADI-FDTD ALGORITHM 

 

The ADI-FDTD algorithm was introduced by Namiki, (1999) and Zheng and 

Zhang, (1999).  As in the traditional 3D-FDTD technique, the Ampere and Faraday 

equations (equations 1 and 2) are decomposed into six scalar equations in Cartesians 

coordinates and then discritized using Yee’s method (Equations 5-10).  The ADI 

technique breaks the time-step into two sub-steps.  In the first step the electric field (E) is 

calculated for a nonphysical half-time step (n to n+1/2) (Equations 5-7).   An electric 

field component depends on two orthogonal magnetic field components, one that is 

based on time (n) where the field is already known and the other that is based on the 

unknown time (n+1/2).   
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Substitutions are made to remove the unknown terms from the right hand side 

and the equation is rearranged to isolate the unknown electric field component terms on 

the left hand side (e.g. 10 into 5).  This set of implicit equations (e.g. the Ey component 

in equation 11) can be efficiently solved using tri-diagonal solvers that update the field 

along one spatial axis that is orthogonal to the field component being updated (e.g. z-

axis).  After solving for all three E field components for the non-physical half step 

(n+1/2), the H fields at the half step (n+1/2) can be calculated explicitly (Equations 8-

10). 
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where, 
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The second sub-step (n+1/2 to n+1) is nearly identical with a few important 

differences.  The second sub-step utilizes the already calculated half-step components to 

complete the time-step.  It is important to point out that the in the second half step, the 

unknown magnetic field component on the right hand side is now the component that 

was previously treated as a known in equations (5 through 10).  Again, substitutions are 

made to remove the unknown terms from the right hand side and the equation is 

rearranged to isolate the unknown electric field component terms on the left hand side.  

These equations are solved implicitly, but in the alternate direction (e.g. equation 11 

would be solved in x-direction).  After solving for all the E field components, the H field 

can be calculated explicitly.  The newly updated components are saved into memory and 

treated as previously known values (n) in the next iteration.  While each full time step 

iteration is approximately two times longer than the traditional FDTD technique, the 

saving made by using larger time steps can decrease computation time significantly.  In 

Namiki’s (2000) original paper on the 3-D ADI-FDTD scheme for one example, it was 

reported that computation time is 24% of the traditional FDTD method while retaining 

accuracy. 
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Boundary conditions 

 

The ADI-FDTD scheme updates Maxwell’s equations accurately through an open 

homogenous computational domain and for changes in electromagnetic properties within 

the domain, when boundaries fall along the model grid.  However, for boundaries that do 

not conform to the model grid, such as curved or dipping surfaces, one must ensure 

continuity of the tangential electric and magnetic field components (Yeh, 1993) and 

minimize the problems of a staircase boundaries (Holland, 1993).  Also, special attention 

must be paid to terminating the model space to prevent reflections from the boundaries of 

the model space, and to minimize the size of the computational space by using absorbing 

boundary conditions (ABC). 

Currently, the most accurate method of terminating model boundaries for the 

ADI-FDTD method are based on the perfectly matched layer (PML) technique of 

(Berenger 1994 and 1996).  This method splits the magnetic and electric fields in a layer 

near the boundary into two nonphysical fields that provide the freedom to perfectly 

match the impedance of any field within the normal computational domain.  It also 

allows for arbitrary assignment of electric and magnetic conductivity within the PML to 

attenuate the incident fields while not producing any reflections.  This method was 

adapted to the ADI-FDTD simultaneously by Liu and Gedney, (2000), and Chen et al., 

(2000).  Unfortunately, the split field requires a doubling of the sets of implicit equations 

need to solve for the PML conditions within the ADI scheme.  Older, less accurate, but 

more time efficient methods are preferred when ultimate accuracy is not the main 

concern.  To terminate the boundaries of the simulation domain I used 1st order Mur 

absorbing boundary condition (Mur, 1981), which has been adapted to allow 

implementation in the implicit update equations, 
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where, c is the velocity of the media at the boundary.  The Mur ABC is a discrete 

version of the 1-D plane wave solution to the Helmholtz equation for electromagnetics.  

It is most accurate for waves approaching at normal incidence.  The Mur ABC is used in 

this model because of the computational simplicity.  Field components that not tangential 

with a computational boundary are terminated with perfect electric conductors (PEC) or 

perfect magnetic conductors (PMC), where the field on the other side of the boundary 

goes to zero. 

 For dealing with curved or dipping interfaces that do not conform to a regular 

grid several steps can be taken to minimize staircase inaccuracies.  One method of 

ensuring continuity across nonconforming boundaries is an average of the 

electromagnetic properties from either side of the boundary (Dey and Mittra, 1999).  

Thus, instead of having update equations with a step, or discontinuity, in electromagnetic 

properties within the update equations, the averaged properties provide a continuous 

ramp between the two sides.  While this does not explicitly account for the boundary 

conditions derived from Maxwell’s equations (e.g. Yeh, 1993), it has been shown to be 

an accurate approximation (Dey and Mittra, 1999; Christ, et al., 2006).  In this 

implementation of the ADI-FDTD code, the conformal mesh technique of Dey and 

Mittra, (1999) is used. 

 

The source 

 

 One of the many advantages of the FDTD method is the ease of implementing 

the current source.  Simple half-wavelength dipole GPR antennas, such as those used in 

the PulseEkko 100 system, can be adequately represented by an infinitesimal dipole 

source (Demarest, 1998).  The finite difference equivalent of an infinitesimal source is 

the excitation of a single discrete cell volume.  More sophisticated source geometries 

may be modeled by using a finite source to excite models of more complicated GPR 

antennas (e.g. Lampe and Holliger, 2003, Lampe et al., 2005, and Roberts and Daniels, 
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1997).  In this model the excitation of a single discrete cell is used to represent the GPR 

antenna.  

 The source excitation function Js(t) used in this model is the second time 

derivative of the Gaussian function, or Ricker Wavelet,  
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 where t is time and f is the center frequency of the source.  This wavelet is a good 

approximation of the actual GPR source wavelet of the PulseEkko 100 system used in 

this dissertation.  This is a bandlimited source and only requires that the time steps be 

small enough to properly sample the highest significant frequency of the wavelet.   

 The source function is implemented in the ADI-FDTD update equations using the 

symmetric source procedure of Donderici and Teixeira (2005).  In the traditional FDTD 

source implementation the source Js is added to the field component, explicitly, after 

executing the update equation.  In the ADI-FDTD scheme, this leads in an asymmetric 

implementation of the source (Donderici and Teixeira, 2005). In the symmetric source 

implementation the source Js is included within the right hand side of the tridiagonal set 

of the simultaneous equations,  

1
),2/1,(),,2/1(),1,2/1(

),,2/1(),1,2/1(

),2/1,2/1(),2/1,2/1(

)2/1,2/1,()2/1,2/1,(),2/1,(

2/1
),2/1,1(

2/1
),2/1,(

2/1
),2/1,1(

)()(/}[{2

)()(/}[{2

)(/)(

)(/}{2

222

pn
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

JsixjyExExq

ixjyExExr

ixHzHz

kzHxHxEyp

EyEyEy

+
+−+−

+++

+−++

−++++

+
++

+
+

+
+−

+∆∆−⋅+

∆∆−⋅−

∆−−

∆−+⋅

=−+− γβα

(14) 

where the superscript p1 for the source Js represents the time index of the source.  

Considering the evaluation time of a centered difference scheme, the time index p1 for 

both substeps of the alternating implicit scheme is ½ to preserve the symmetry in the 
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field values. Therefore the same source value is used in both substeps.   

 

MODEL VALIDATION 

 

 To validate the accuracy of the ADI-FDTD code, I compared the analytical 

solution of an infinitesimal dipole in a vacuum with simulation results.  Since many 

geophysical applications probe in the regions that involve both the far field and the near 

field, I used the full analytic solution of the Hertzian dipole in a whole space (see 

Demarest, 1998).  The error between the analytic solution and the ADI-FDTD solution 

for an infinitesimal dipole in a vacuum at one wavelength from the source as a function 

of angle in the x-z plane is 1.68%+-1.61% (Figure A-2). 
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Figure A-2. A comparison of the analytic solution and the ADI-FDTD for an infinitesimal dipole in a 

vacuum at one wavelength from the source as a function of angle in the x-z plane.  The simulation was run 

at twice the Courant stability limit with a grid spacing of 0.035 m.  
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EXAMPLE SIMULATIONS 

 

 To demonstrate the ADI-FDTD model, several models were constructed for 

visualizing a snapshot of the electromagnetic waves as they propagate away from a GPR 

antenna situated at the interface between the air and ground.  In the first example (Figure 

A-1) the simple case of an pulse-excited GPR antenna over a homogenous half space is 

demonstrated.  One can see the main body wave propagating through the ground, the air 

wave propagating through free space and the refracted wave. 

 

 

 
Figure A-3.  This snapshot is of the Ex component in the x-z plane at 9 ns from a Ricker source (Js) with a 

300 MHz center frequency.  The ground space has relative dielectric constant of 4 and a conductivity of 

0.00001 S/m. The simulation was run at twice the Courant stability limit with a even grid mesh of 0.035 

m. 
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In the second example (Figure A-4) the previous model is changed to include a small air 

filled cavity within the ground.  In this simulation one can see the reflected wave 

propagating back towards the GPR antenna, as well as the refraction of the body wave 

from passing through the cavity.   

 

 

 
Figure A-4.  This snapshot is of the Ex component in the x-z plane at 9 ns from a Ricker source (Js) with a 

300 MHz center frequency.  The variables are the same as in Figure A-3 except a 0.3 m cubic cavity has 

been introduced at a depth of 0.3 m. 

 

The final example (Figure A-5) is a 3D vector visualization of the electromagnetic field 

for the previous model.  While the previous scalar representations of the electric field are 

convenient to visualize, the electromagnetic field is actually vector in nature.  This 
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vector representation provides some insight into the complexity of the GPR signal that is 

often ignored when acquiring single component GPR data. 

 

 

 
Figure A-5.  This is vector plot of the electric field intensity for the same simulation as Figure A-4.  Larger 

arrows indicate greater magnitude. 

 

 

CONCLUSIONS 
 

The ADI-FDTD technique provides a tool for solving complicated subsurface 

propagation and scattering problems in much less computation time than traditional 
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FDTD.  This makes it an ideal tool for geophysical applications where small scale 

heterogeneities strongly influence the response.  The ADI-FDTD algorithm presented 

here is designed primarily for speed, with the intention of using it in inverse modeling 

where large numbers of successive forward models must be run. 
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