28,777 research outputs found

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    Preference-based evolutionary algorithm for airport runway scheduling and ground movement optimisation

    Get PDF
    As airports all over the world are becoming more congested together with stricter environmental regulations put in place, research on optimisation of airport surface operations started to consider both time and fuel related objectives. However, as both time and fuel can have a monetary cost associated with them, this information can be utilised as preference during the optimisation to guide the search process to a region with the most cost efficient solutions. In this paper, we solve the integrated optimisation problem combining runway scheduling and ground movement problem by using a multi-objective evolutionary framework. The proposed evolutionary algorithm is based on modified crowding distance and outranking relation which considers cost of delay and price of fuel. Moreover, the preferences are expressed in a such way, that they define a certain range in prices reflecting uncertainty. The preliminary results of computational experiments with data from a major airport show the efficiency of the proposed approach

    Multi-disciplinary robust design of variable speed wind turbines

    Get PDF
    This paper addresses the preliminary robust multi-disciplinary design of small wind turbines. The turbine to be designed is assumed to be connected to the grid by means of power electronic converters. The main input parameter is the yearly wind distribution at the selected site, and it is represented by means of a Weibull distribution. The objective function is the electrical energy delivered yearly to the grid. Aerodynamic and electrical characteristics are fully coupled and modelled by means of low- and medium-fidelity models. Uncertainty affecting the blade geometry is considered, and a multi-objective hybrid evolutionary algorithm code is used to maximise the mean value of the yearly energy production and minimise its variance

    Survey on the use of computational optimisation in UK engineering companies

    Get PDF
    The aim of this work is to capture current practices in the use of computational optimisation in UK engineering companies and identify the current challenges and future needs of the companies. To achieve this aim, a survey was conducted from June 2013 to August 2013 with 17 experts and practitioners from power, aerospace and automotive Original Equipment Manufacturers (OEMs), steel manufacturing sector, small- and medium-sized design, manufacturing and consultancy companies, and optimisation software vendors. By focusing on practitioners in industry, this work complements current surveys in optimisation that have mainly focused on published literature. This survey was carried out using a questionnaire administered through face-to-face interviews lasting around 2 h with each participant. The questionnaire covered 5 main topics: (i) state of optimisation in industry, (ii) optimisation problems, (iii) modelling techniques, (iv) optimisation techniques, and (v) challenges faced and future research areas. This survey identified the following challenges that the participant companies are facing in solving optimisation problems: large number of objectives and variables, availability of computing resources, data management and data mining for optimisation workflow, over-constrained problems, too many algorithms with limited help in selection, and cultural issues including training and mindset. The key areas for future research suggested by the participant companies are as follows: handling large number of variables, objectives and constraints particularly when solution robustness is important, reducing the number of iterations and evaluations, helping the users in algorithm selection and business case for optimisation, sharing data between different disciplines for multi-disciplinary optimisation, and supporting the users in model development and post-processing through design space visualisation and data mining

    Robust control of room temperature and relative humidity using advanced nonlinear inverse dynamics and evolutionary optimisation

    Get PDF
    A robust controller is developed, using advanced nonlinear inverse dynamics (NID) controller design and genetic algorithm optimisation, for room temperature control. The performance is evaluated through application to a single zone dynamic building model. The proposed controller produces superior performance when compared to the NID controller optimised with a simple optimisation algorithm, and classical PID control commonly used in the buildings industry. An improved level of thermal comfort is achieved, due to fast and accurate tracking of the setpoints, and energy consumption is shown to be reduced, which in turn means carbon emissions are reduced

    Work Roll Cooling System Design Optimisation in Presence of Uncertainty

    Get PDF
    Organised by: Cranfield UniversityThe paper presents a framework to optimise the design of work roll based on the cooling performance. The framework develops Meta models from a set of Finite Element Analysis (FEA) of the roll cooling. A design of experiment technique is used to identify the FEA runs. The research also identifies sources of uncertainties in the design process. A robust evolutionary multi-objective algorithm is applied to the design optimisation I order to identify a set of good solutions in the presence of uncertainties both in the decision and objective spaces.Mori Seiki – The Machine Tool Compan

    Ascent trajectory optimisation for a single-stage-to-orbit vehicle with hybrid propulsion

    Get PDF
    This paper addresses the design of ascent trajectories for a hybrid-engine, high performance, unmanned, single-stage-to-orbit vehicle for payload deployment into low Earth orbit. A hybrid optimisation technique that couples a population-based, stochastic algorithm with a deterministic, gradient-based technique is used to maximize the nal vehicle mass in low Earth orbit after accounting for operational constraints on the dynamic pressure, Mach number and maximum axial and normal accelerations. The control search space is first explored by the population-based algorithm, which uses a single shooting method to evaluate the performance of candidate solutions. The resultant optimal control law and corresponding trajectory are then further refined by a direct collocation method based on finite elements in time. Two distinct operational phases, one using an air-breathing propulsion mode and the second using rocket propulsion, are considered. The presence of uncertainties in the atmospheric and vehicle aerodynamic models are considered in order to quantify their effect on the performance of the vehicle. Firstly, the deterministic optimal control law is re-integrated after introducing uncertainties into the models. The proximity of the final solutions to the target states are analysed statistically. A second analysis is then performed, aimed at determining the best performance of the vehicle when these uncertainties are included directly in the optimisation. The statistical analysis of the results obtained are summarized by an expectancy curve which represents the probable vehicle performance as a function of the uncertain system parameters. This analysis can be used during the preliminary phase of design to yield valuable insights into the robustness of the performance of the vehicle to uncertainties in the specification of its parameters

    CAutoCSD-evolutionary search and optimisation enabled computer automated control system design

    Get PDF
    This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of 'Computer-Aided Control System Design' (CACSD) to the novel 'Computer-Automated Control System Design' (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency-domains. Such performance-prioritised unification is aimed to relieve practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-committing to the adopted scheme. With the recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytically and practically, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, meets multiple objectives in designing an LTI controller for a non-minimum phase plant and offers a high-performing LTI controller network for a nonlinear chemical process

    Evolutionary L∞ identification and model reduction for robust control

    Get PDF
    An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do
    corecore