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Abstract—As airports all over the world are becoming more
congested together with stricter environmental regulations put
in place, research on optimisation of airport surface operations
started to consider both time and fuel related objectives. However,
as both time and fuel can have a monetary cost associated
with them, this information can be utilised as preference during
the optimisation to guide the search process to a region with
the most cost efficient solutions. In this paper, we solve the
integrated optimisation problem combining runway scheduling
and ground movement problem by using a multi-objective evo-
lutionary framework. The proposed evolutionary algorithm is
based on modified crowding distance and outranking relation
which considers cost of delay and price of fuel. Moreover, the
preferences are expressed in a such way, that they define a certain
range in prices reflecting uncertainty. The preliminary results of
computational experiments with data from a major airport show
the efficiency of the proposed approach.

I. INTRODUCTION

With continuous growth of air traffic, which is predicted
to carry double passengers in 2030 compared to 2013 [1], it
is forecasted that without any action taken, many airports will
become congested and air transportation as a whole will have
a significant impact on the environment. As a result, research
on management of aircraft movements on and in the proximity
of airports attracted a lot of attention in general (e.g. [2], [3])
and airport surface operations in particular [4]. Specifically,
the most research focused on optimisation of individual airport
surface operations such as ground movement, runway schedul-
ing or gate assignment to maximise the utilisation of available
resources.

The objective of runway scheduling problem is of-
ten expressed as a minimisation of delay, the number of
changes compared to First-come-first-served (FCFS) sequence,
makespan or their combination. A wide range of exact and
heuristic methods has been employed to solve this problem
including dynamic programming [5], hybrid tabu search [6],
and genetic algorithms [7]. A detailed review of recent research
on runway scheduling problem can be found in [8].

The objective of ground movement has been considered
to be mainly the minimisation of the total taxi time or other
time related objectives [4]. Approaches to solve the ground
movement problem include integer programming [9], [10] or

a graph-based approach utilised in [11], [12]. In addition to
the total taxi time, a few researchers started to consider also
fuel consumption during ground movement as an objective of
the multi-objective optimisation problem [13]. Since runway
scheduling and ground movement are interconnected problems,
recently both problems have been integrated together, min-
imising time related objective [14]–[16] or both time and fuel
consumption [17] in a multi-objective manner.

As some of the above-mentioned approaches use multi-
objective optimisation to minimise distinct objectives such as
time and fuel at the same time, the result of such approach is a
set of non-dominated solutions, from which the decision maker
(DM) has to implement one solution. In practice, often is the
case that there exist some preferences beforehand, such as the
price of fuel or cost of a single minute of delay. However,
as argued in [18], utilising this information to convert the
multi-objective problem into a single-objective one is con-
traproductive. By finding only a single solution, DM is unable
to investigate the properties of optimal/near-optimal solutions
respecting higher-level preference information. Instead, this
preference can be utilised during the optimisation to guide
the search to an preferred region of interest (RoI) on the
Pareto front. Research on incorporating preferences into multi-
objective optimisation, whether in a-posteriori manner when
the preferences are known before the search or in an interactive
approach when preference information is iteratively obtained
from the DM during the search, has been very active in the last
years. Preferences are often expressed as reference points, goal
vectors or aspiration levels corresponding to desired levels of
objective values. The dominance relation is modified according
to the distance to the reference point in [19] or aspiration
level satisfaction in [20]. An achievement scalarizing function
taking into account reference point is used to prefer some
solutions closer to RoI in [21]–[24]. The original optimisation
problem is modified by a weight distribution function in [25].
A binary preference in terms of linguistic variables is used in
[26]; the crowding distance in Nondominated Sorting Genetic
Algorithm-II (NSGA-II) [27] is changed in order to incorporate
reference direction (weights) [28] or reference point [18], [23].

However, the desired values of objectives expressed as a
reference point or aspiration levels are often unknown to the
DM before the optimisation. As the result, an initial run of
the optimisation algorithm is necessary to discover the whole



Pareto front from which the DM can subsequently choose a
RoI. On the other hand, if the preferences are modelled as
weights, the extent of RoI is usually defined by some non-
intuitive parameter during the search as in [28].

In this paper, we solve the integrated optimisation problem
combining runway scheduling and ground movement problem,
similar as in [17], by using a multi-objective evolutionary opti-
misation (EMO) framework based on genetic algorithm (GA)
and NSGA-II. The proposed algorithm employs a modified
crowding distance presented in [23] and outranking relation of
the Light Beam Search (LBS) method [29], which considers
preference information in terms of cost of delay and price of
fuel, guiding the search towards the most cost optimal RoI.
Moreover, the preferences are expressed in a such way, that
they give the DM a possibility to define a certain range of
prices reflecting uncertainty.

The rest of the paper is organised as follows. Section II
provides details about individual components of the integrated
model, including runway scheduling and ground movement
problem. The proposed EMO framework taking into account
preferences is described in Section III. A set of computational
experiments is carried out using data instances from Doha
International Airport in Section IV. Finally, conclusions are
drawn in Section V.

II. PROBLEM DESCRIPTION

This section provides a description of the integrated opti-
misation problem of airport ground operations combining the
runway scheduling and ground movement problem similar to
one introduced in [17].

A. Runway scheduling problem

The aim of runway scheduling in this paper is to find the
optimal landing/take-off time of arriving/departing aircraft at
the given runway minimising the delay and fuel burnt during
waiting while respecting given safety constraints. In this paper,
only take-off times are optimised whereas landing times are
considered to be fixed, as from the practical point of view, it
is easier to control taking-off aircraft still on the ground rather
than airborne arriving aircraft.

The main constraint that limits the throughput of the
runway is the minimum time interval between landing/taking-
off aircraft. These minimum separations are due to wake
vortices created by moving aircraft and in-flight separation
constraints. In this paper, only separation due wake vortices
is taken into account. The strength of wake vortices and thus
separation depends on the aircraft type and is approximately
proportional to its weight.

Let M = (A ∪ D) be the set of total |M | = m arriving
aircraft A and departing aircraft D. Let V (vi, vj) be the
function to calculate the wake vortex separations from weight
categories vi and vj of leading aircraft i and trailing aircraft
j. The wake vortex separations used in this paper satisfy
the triangle inequality V (vi, vj) + V (vj , ve) ≥ V (vi, ve) for
aircraft taking off in the order i, j, e and are given in Table I.

Let ri be the actual landing time for aircraft i ∈ A and take-
off time for aircraft i ∈ D. For arriving aircraft, ri is given.
For departing aircraft, let di denote the time the departing

TABLE I: Separations in seconds between departing (D) and
arriving (A) flights for weight classes: Heavy (H), Large (L),
Small (S).

Trailing

Leading

A-H A-L A-S D-H D-L D-S
A-H 96 157 207 60 60 60
A-L 60 69 123 60 60 60
A-S 60 69 82 60 60 60
D-H 60 60 60 96 120 120
D-L 60 60 60 60 60 60
D-S 60 60 60 60 60 60

aircraft i ∈ D arrived at the runway holding point. Aircraft
i ∈ D can take-off immediately, i.e. di = ri if there is enough
time elapsed from landing/take-off time ri−1 of the previous
aircraft i− 1 to comply with separation given by V (vi, vi−1),
otherwise, the departing aircraft i has to wait at the runway
holding point until it is safe to take-off:

ri =

{
di if di − ri−1 ≥ V (vi, vi−1),

di + V (vi, vi−1)− (di − ri−1) otherwise.

Then, the waiting time wi of the departing aircraft i ∈ D is
equal to wi = di − ri.

The objective of the runway scheduling is to minimise
the total runway delay trwy and the total runway fuel frwy
burned by aircraft while waiting to take-off which depends on
the delay wi and idle fuel flow φvi specified for the weight
category vi:

trwy =

D∑
i=1

wi, (1)

frwy =

D∑
i=1

wi · φvi . (2)

The idle fuel flow φvi corresponds to fuel flow from the Inter-
national Civil Aviation Organization (ICAO) engine database
for 5 % of full power thrust of the representative aircraft, as
explained in Section II-B.

B. Ground movement problem

The aim of the ground movement problem is to find routes
and schedules for aircraft taxiing from runway to gate/stand
and vice versa in a time and fuel efficient manner, respecting
routes of other aircraft while preventing conflicts between
them.

In this paper, due to the simple layout of the airport,
the problem of finding routes is reduced to the shortest path
problem. The shortest paths between each gate/stand and
runway exit points are pre-calculated beforehand. Then, for
each path optimised speed profiles are found by a specialized
heuristic described in [30]. The speed profiles are optimised
in a multi-objective manner, minimising taxi time and fuel
consumption for the given route. The resulting non-dominated
speed profiles are stored in a look-up table, with a separate
table for each weight category vi and then retrieved during
the on-line optimisation in order to save computational time.



Given the route of the aircraft and time needed to travel
from origin to destination depends on the chosen speed profile,
some delay may be added in order to prevent conflicts between
taxiing aircraft. The conflicts between aircraft are solved by
adding a small buffer time such that aircraft always maintain a
safe time distance δ = 12 s between them (which corresponds
to approximately 62 m at taxiing speed 10 knots).

Let yi be an integer representing the speed profile of
aircraft i from the Pareto front of efficient speed profiles
retrieved from the look-up table for the shortest route qi from
the runway to the stand si for arriving aircraft i ∈ A, or
vice versa for departing aircraft i ∈ D. We define a function
T (qi, yi) which returns travel time of aircraft i taxiing on route
qi for the given speed profile yi, including a delay to prevent
taxiing conflicts.

In order to retrieve the fuel consumption of aircraft i
of weight category vi, for route qi, using speed profile yi,
a function F (qi, yi, vi) is defined. The function F (qi, yi, vi)
is based on the method introduced in [30], which employs
physics-based equations taking into account the acceleration
force and rolling resistance to calculate thrust. The calculated
thrust and aircraft engines are then mapped into corresponding
fuel flows according to the ICAO emissions database.

Then, the objective of the ground movement problem is
to minimise the total taxi time ttaxi and the total fuel f taxi
burned during ground movement:

ttaxi =

M∑
i=1

T (yi), (3)

f taxi =

M∑
i=1

F (yi). (4)

C. Integrated optimisation problem

The runway scheduling and ground movement problem are
combined into the integrated bi-objective optimisation problem
with the following objective functions:

min g1 = ttaxi + trwy, (5)

min g2 = f taxi + frwy, (6)

where g1 corresponds to the total time and g2 is the fuel
consumption to be minimised. The decision variables for this
optimisation problem are the pushback time for departing
aircraft xi ∈ {−300, . . . , 300} and the speed profile yi ∈
{1, . . . , 12} for all aircraft. The pushback time xi represents an
integer number of seconds before/after the baseline time given
as input flight schedule when the aircraft starts taxiing. The
value of speed profile yi determines which solution from the
pre-computed look-up table of non-dominated speed profiles
is going to be selected, ranging from 1 representing the most
time-efficient (fastest) speed profile to 12 standing for the most
fuel efficient one. The number of speed profiles depends on
the heuristic used for their generation, for details see [30].

Given the decision variables, the objective function values
g1, g2 are determined as follows. Firstly, aircraft are considered
sequentially according to their initial sequence specified by
the input flight schedule. For each arriving aircraft i ∈ A a

shortest route qi is retrieved from the look-up table between
the runway and designated gate/stand si or in the opposite
direction for departing aircraft i ∈ D. The route qi, weight
category vi and speed profile value yi determine which pre-
computed speed profile is retrieved from the look-up table and
used to schedule aircraft i along the route qi after all taxiing
conflicts have been resolved. Then, the total taxi time ttaxi and
the total fuel f taxi are computed as stated in Section II-B.
Based on taxi time T (yi), the runway holding point arrival
time di is determined for each departing aircraft i ∈ D. The
delay wi is calculated as defined in section II-A and summed
for all departing aircraft i ∈ D to get the total runway delay
trwy and subsequently the total fuel frwy. Finally, objectives
g1, g2 are calculated according to 5 and 6.

D. Preferences based on costs

The bi-objective optimisation problem formulated in Sec-
tion II-C minimises two objective functions g1, g2 simulta-
neously. In practice, the total time g1 and fuel consumption
g2 are associated with economic costs incurred by operations
on the airport surface. For example, the fuel consumption
g2 is connected to fuel cost defined by fuel price. Similarly,
total time g1 incurs costs due to the fact, that each second
of delay (i.e. unproductive time spent taxiing or waiting at
runway) is an extra cost in terms of crew, maintenance,
deprecation of aircraft, etc. Therefore, once costs related to
g1, g2 are known, they can be used as weights during the
optimisation, directing the search to a single cost-optimal
solution. However, determining these cost, specifically cost of
delay, is often difficult and only approximate as for example,
crew wages or maintenance fees vary from airline to airline.
Therefore, it might be more useful to guide the search to a
region on the Pareto front containing solutions optimal for a
certain cost range. We define a price vector c = [c1, . . . , cn]
which, in general, specifies cost for each one of n objectives.
Furthermore, to include the uncertainty in costs, l boundary
price vectors cBl = [cBl

1 , . . . , cBl
n ] are defined. The number

of boundary vectors depends on the DM. For example, DM
can specify only upper bound for cost, both upper and lower
bounds or different combinations in case of many objectives.

Then, each solution zj found during optimisation can be
evaluated by function Ctotal(zj , c) in terms of total monetary
cost, using price vector c:

Ctotal(zj , c) =

n∑
k=1

ck · gk(zj). (7)

III. EMO FRAMEWORK WITH PREFERENCES

In order to optimise the objective functions g1, g2 of the
integrated optimisation problem stated in Section II taking
into account preferences given by costs, the following EMO
framework is proposed in this section. Firstly, the DM is asked
to provide a price vector c and l boundary price vectors cBl as
defined in Section II-D. Then, the search is divided into two
parts:

1) A single objective optimisation search with aggre-
gated objective function is performed by GA to
quickly approach to the vicinity of the global Pareto
front.



2) The best solutions from the single objective optimi-
sation part are seeded into a preference-based EMO
algorithm to reach RoI of the global Pareto front.

The single-objective optimisation is carried out by the GA
minimising total costs Ctotal as defined in 7. The single-
objective search is further accelerated by taking advantage of
known preferences during the search process. For each aircraft
i, speed profile is fixed to a value yi ∈ {1, 12} with minimum
Ctotal. As a result, the search space is restricted to decision
variable xi promising faster convergence, however sacrificing
some of the optimality.

A. Preference-based NSGA-II

For the second phase, the EMO algorithm proposed in
this paper, denoted as Preference-based NSGA-II (P-NSGA-
II), is based on Light Beam Search EMO algorithm [23] which
is a derivative of NSGA-II [27]. The initial population of
random solutions is seeded with a specified number of best
solutions (set to 10 in this paper) found by GA during the
first phase. In the second phase, P-NSGA-II considers all
decision variables xi and yi thus finding potentially better
solutions. The P-NSGA-II performs the usual EMO operations:
selection, crossover, mutation, replacement for the specified
number of generations similar to original NSGA-II. In order to
incorporate preferences into EMO algorithm, the replacement
procedure which selects the solutions surviving to the next
generation is modified. The original replacement procedure in
NSGA-II favours non-dominated solutions with large crowding
distance. In P-NSGA-II, the replacement is carried out with
modified crowding distance to prefer solutions closer to RoI.

During replacement procedure, non-domination ranking is
carried out for all solutions in the population. Then, the middle
point and characteristic neighbours are determined as depicted
on Fig. 1. The middle point zC is a solution zj with minimum
cost defined by price vector c:

zC = argmin
zj

(Ctotal(zj , c)). (8)

The characteristic neighbour zBl is a solution zj for which the
cost using the boundary price vector cBl is minimum:

zBl = argmin
zj

(Ctotal(zj , c
Bl)). (9)

Subsequently, for each solution zj , belonging to the same
non-dominated front, crowding distance cdj is calculated:

cdj =


∞ if zj is middle point zC ,
M + dj else if zj outranks zC ,

1/Ctotal(zj , c) otherwise.
If the solution zj is the middle point, it is assigned an
infinite crowding distance, so it is always included in the next
generation. Other solutions are categorized according to their
outranking relation to zC . A solution zj is said to outrank
middle point zC (denoted as zjSz

C) if mv(zC , zX) = 0,
where mv is defined as follows:

mv(z
C , zX) = card{k : gk(zX)−gk(zC) ≥ vk, k = 1, . . . , n}

(10)
Solutions outranking the middle point zC are considered to
be as good as zC and form the outranking neighbourhood. As
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all solutions in outranking neighbourhood belong to the same
non-dominated front, if solution zj is better than zC in some
objectives, then it must be worse in at least one other objective.
Solution zjSz

C if this deterioration in objective k is not larger
than veto threshold vk. The veto threshold vk for objective k
is determined by characteristic neighbours:

vk = max{gk(zBl), l = 1, . . . , n}. (11)

Solutions zj in the outranking neighbourhood are assigned
M + dj crowding distance, where M is a big positive integer,
set to M = 106 in this work and dj is the original crowding
distance as defined by Deb [27]:

dj =

K∑
k=1

gk(zj+1,k)− gk(zj−1,k)

gmax
k − gmin

k

. (12)

Where gmax
k is the maximum and gmin

k the minimum value
of the objective function gk found so far. The big integer
M ensures that crowding distance cdj is large enough to
guarantee inclusion into the next generation whereas dj causes
the preference of solutions in less crowded areas, resulting
in a uniformly distributed solutions across the characteristic
neighbourhood.

For remaining solutions, the crowding distance cdj is
inversely related to Ctotal(zj , c). As a result, solutions zj
with smaller Ctotal(zj , c) and thus closer to the RoI are
assigned larger crowding distance giving them larger chance
to be included in the next generation.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

A. Experimental setup

The proposed EMO framework was tested on a dataset of
real arrival and departure flights on Doha International Airport
(DOH) which was the largest airport in Qatar and a hub airport
for Qatar Airways until the new Hamad International airport
was completed in late April 2014. DOH airport has one runway
and 55 stands. The data were recorded on 16th March 2014 and
divided into two instances doh1 representing medium traffic
conditions and doh2 for high traffic conditions. The instance
doh1 includes 96 flights between 17:00 and 21:00 UTC from
which 50 are arrivals and 46 departures. The instance doh2



TABLE II: Specifications of the representative aircraft.

Learjet 35A Airbus A320 Airbus A333
Take-off weight 8300 kg 78000 kg 230000 kg
Engines TFE731-2-2B CMF56-5-A1 CF6-80E1A2
Number of engines 2 2 2
Rated output R 2×15.6 kN 2×111.2 kN 2×287 kN
Rolling resistance 1221 N 11.48 kN 33.84 kN
Fuel flow at 7% R 0.024 kg·s−1 0.101 kg·s−1 0.228 kg·s−1

Fuel flow at 30% R 0.067 kg·s−1 0.291 kg·s−1 0.724 kg·s−1

TABLE III: Average Iε indicator for 30 runs.

NSGA-II P-NSGA-II P-NSGA-II with seed
doh1 1.061 1.053 1.016
doh2 1.219 1.207 1.040

consists of 84 flights between 21:00 and 23:00 UTC from
which there are 27 arrivals and 57 departures. The data
provided specified landing/pushback times and gates/runway
exits for each flight.

The aircraft have been divided into 3 groups according
their wake vortex separation requirements as defined in [31].
For each category, a representative aircraft is designated and its
specifications are used during the fuel consumption calculation.
The specifications are summarized in Table II.

The computational experiments were performed on a com-
puter with an Intel i3-2120 processor and 3.16 GB of RAM,
running Linux. The EMO framework is implemented using
the Inspyred package for Python [32]. The termination criteria
for EMO framework was set to 900 seconds, of which 600
seconds is allocated to GA and 300 seconds to P-NSGA-II.
Based on initial experiments, the number of individuals in
population for GA was set to 200 and 50 for P-NSGA-II.
The price vector c is equal to [0.469, 0.71], where the first
element corresponds to costs of delay as defined in [17] and
the second element is the jet fuel price (as of 14.1.2014), both
in Euro. The boundary vector cB1 = [1.2× 0.469, 0.8× 0.71]
and cB2 [0.8× 0.469, 1.2× 0.71].

B. Computational results

The performance of the proposed two-phase EMO frame-
work (P-NSGA-II with seed) was compared to original NSGA-
II and P-NSGA-II without the seed from single-objective
GA. Fig. 2 shows the best Pareto fronts from 30 runs of
the algorithms for doh1 instance. As can be seen, single-
objective GA was able to find better solutions than NSGA-
II and comparable with P-NSGA-II alone. Then, P-NSGA-
II could further improve the solutions from the initial seed,
focusing the search on RoI.

The multiplicative unary epsilon indicator Iε is used as the
performance index, expressing the distance of the resulting
Pareto front to the global Pareto front, which was constructed
by considering all solutions found during the experiments and
leaving only non-dominated ones. Average Iε indicator values
for 30 runs of the algorithms are given in Table III.
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The results of Iε show that P-NSGA-II alone could only
marginally improve the performance compared to NSGA-
II. However, adding seed to P-NSGA-II significantly helped
the algorithm to find better solutions. The improving effect
is even more evident for doh2 instance with high traffic
conditions. We can hypothesize that beneficial impact of initial
single-objective GA on the overall performance of the EMO
framework will increase in case of many (i.e. more than 3)
objectives as indicated in [22], due to the fact that many
objectives resulting in high number of non-dominated solutions
deteriorate the performance of EMO algorithms.

The convergence during the evolution for the doh1 is
documented in Fig. 3. Single-objective GA in the first phase of
the search quickly finds good solutions, helping the P-NSGA-
II in the second phase obtain good values of Iε. Furthermore,
fixing speed profiles yi for GA results in better values of Iε
for the initial population, effectively accelerating the search.

V. CONCLUSION

In this paper, a multi-objective evolutionary framework tak-
ing into account preferences in an a-priori manner is proposed
to solve integrated optimisation problem of runway scheduling
and ground movement on airport surface. The preference was
incorporated in the first phase to transform the original multi-
objective problem to a single-objective one to quickly approach



the region of interest. Then, in the second phase a modified
crowding distance in NSGA-II was applied to finally arrive
to Pareto front of cost-efficient solutions. The preliminary
computational experiments conducted on real-world data from
a major Asian airport showed promising results and indicate
that the proposed approach could be suitable as an optimisation
framework for decision support at the airport. The evolutionary
framework utilising the preferences given as costs associated
with objectives successfully accelerated the search. Moreover,
the input values of costs enabled to control the extent of
the resulting region and include some uncertainty about the
prices. The incorporation of preferences helps the decision
maker to focus his attention on only cost-effective solutions
in a shorter computational time. For the future research, the
approach needs to be validated on a more diverse set of
problem instances. Also, the idea of including uncertainty
into preference information deserves more attention. As an
example, the uncertainty could be expressed in terms of fuzzy
values.

REFERENCES

[1] ICAO. (2014) Annual Report of the ICAO Council: 2013 The
World of Air Transport. [Online]. Available: http://www.icao.int/
annual-report-2013/Pages/the-world-of-air-transport-in-2013.aspx

[2] L. Bianco, P. Dell’Olmo, and S. Giordani, “Scheduling models
for air traffic control in terminal areas,” Journal of Scheduling,
vol. 9, no. 3, pp. 223–253, 2006. [Online]. Available: http:
//dx.doi.org/10.1007/s10951-006-6779-7
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