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Ascent Trajectory Optimisation for a

Single-Stage-to-Orbit Vehicle with Hybrid Propulsion

Fabrizio Pescetelli∗, Edmondo Minisci†, Christie Maddock‡, Ian Taylor†,Richard E Brown§

Centre for Future Air-Space Transportation Technology, Dept. of Mechanical & Aerospace Engineering

University of Strathclyde, Glasgow G4 0LT, Scotland, UK

This paper addresses the design of ascent trajectories for a hybrid-engine, high per-
formance, unmanned, single-stage-to-orbit vehicle for payload deployment into low Earth
orbit. A hybrid optimisation technique that couples a population-based, stochastic algo-
rithm with a deterministic, gradient-based technique is used to maximize the final vehicle
mass in low Earth orbit after accounting for operational constraints on the dynamic pres-
sure, Mach number and maximum axial and normal accelerations. The control search space
is first explored by the population-based algorithm, which uses a single shooting method
to evaluate the performance of candidate solutions. The resultant optimal control law and
corresponding trajectory are then further refined by a direct collocation method based
on finite elements in time. Two distinct operational phases, one using an air-breathing
propulsion mode and the second using rocket propulsion, are considered. The presence of
uncertainties in the atmospheric and vehicle aerodynamic models are considered in order
to quantify their effect on the performance of the vehicle. Firstly, the deterministic optimal
control law is re-integrated after introducing uncertainties into the models. The proximity
of the final solutions to the target states are analysed statistically. A second analysis is
then performed, aimed at determining the best performance of the vehicle when these un-
certainties are included directly in the optimisation. The statistical analysis of the results
obtained are summarized by an expectancy curve which represents the probable vehicle
performance as a function of the uncertain system parameters. This analysis can be used
during the preliminary phase of design to yield valuable insights into the robustness of the
performance of the vehicle to uncertainties in the specification of its parameters.

Nomenclature

a Acceleration, m/s2 or speed of sound, m/s
A Area, m2

c Specific heat capacity, J/K·kg
c Control design vector
C Optimisation constraint

or aerodynamic coefficient
D Drag, N
EAS Equivalent air speed, m/s
fa Fuel-air ratio
F Force or thrust, N
g Gravitation acceleration, m/s2

h Altitude above mean sea level, m or km
Isp Specific impulse, s
lb Lower bound percentage, %

L Lift, N
m Mass, kg
M Mach number
p Probability, %
P Pressure, Pa
q Dynamic pressure, Pa
Qr Heating value of the fuel, J/kg
R Radius, m
SE Sampling surface
T Temperature, K
ub Upper bound percentage, %
v Velocity, m/s
α Angle of attack, rad
γ Flight path angle, rad
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γi Isentropic index
δT Throttle control
ε Angle between the thrust vector and

velocity vector of the vehicle, rad
ε Uncertainty distribution function
η Efficiency, %
θ Longitude, rad or deg E

λ Latitude, rad or deg N
µ Bank angle, rad
ρ Density, kg/m3

χ Path direction angle, rad
ω Angular velocity, rad/s

Subscript

0 Initial time, usually t = 0
aero Aerodynamic model
atm Atmospheric model
c Cut-off value
comb Combustion
D Drag
e Exit of the engine
E Earth
f Final time
hs Hypersonic

L Lift
nom Nominal
P, Pg Propellant, Propellant post-combustion
ref Reference
s State
ss Supersonic
T Thrust
unc Uncertainty
wing Lifting surfaces

I. Introduction

Spurred by the retirement of the NASA Space Shuttle and the obsolescence of the current generation of
conventional launchers, the technology that will be required for the next generation of space-access vehicles is
currently a very active field of research. A range of re-usable single-stage-to-orbit (SSTO) aerospace vehicles
is currently being considered, and hybrid engines that combine the high thrust of rocket engines with the
low fuel consumption of air-breathing engines at lower altitudes and Mach numbers are serious contenders
for their propulsion. The next generation of vehicles will be used to carry either payload or crews into space,
and by emphasizing full re-usability in their design and employing an airline-like approach, where the cost
of acquisition is amortized over repeated flights, these vehicles promise to dramatically reduce the cost per
kilogram of access to space. An example of such a vehicle is the Skylon space plane that is currently under
development within the UK by Reaction Engines Ltd.1,2

The overarching aim of the research described in this paper is to develop a model-based software tool
that will aid in the preliminary design of the next generation of space-access vehicles. Within this paper, an
ascent trajectory, starting in the low supersonic regime and extending through to hypersonic velocities, is
designed for a representative space plane concept by optimizing a control law that alters the angle of attack
of the vehicle and the throttle setting of its engines to vary the flight time along its trajectory into orbit. The
key performance index for a space-access vehicle is the maximum payload mass it can transport into space.
The total mass fraction (i.e., fully loaded vehicle mass/initial mass) is limited principally by the achievable
specific impulse (Isp) of the engines.3

In the process of designing the next generation of air-space transportation systems, it is fundamental that
any new tools and approaches that are developed for the evaluation of vehicle performance are also capable
of functioning reliably in an integrated design environment. As such, the optimal trajectories that result
from the application of these tools need to be robust, in the sense that cognizance must be taken of the effect
of uncertainties within the various parameters and models that comprise the overall vehicle system design.
During the process whereby the control law is optimized in order to maximize the total payload mass into
orbit (or equivalently to minimize the fuel consumption), it is thus also highly desirable to be able to assess
the sensitivity of the design to variations in, for instance, the performance of the engines (available thrust and
mass flow rate), the vehicle aerodynamics (lift and drag coefficients) and, for a vehicle propelled by hybrid
engines, the effect of changing the speed and altitude at which its engines switch between air-breathing and
rocket propulsion modes.

In this vein, in addition to finding an optimal control law for the ascent trajectory of a representative
air-space transport vehicle, the impact on the predicted overall performance of the level of uncertainty
inherent in various parameters in the atmospheric and aerodynamic models used to characterize the vehicle
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is also evaluated. While the analysis presented here is by no means comprehensive, the idea is to conduct
a preliminary assessment of the performance of the vehicle in the presence of uncertainties in its modeling
and characterization.

Two different approaches are used. In the first approach, a set of trajectories are integrated using
uncertainties introduced into the system models but with the nominal optimal control law applied to the
system. The second approach instead re-optimizes the control law, in the presence of uncertainties to
determine the effect on the vehicle performance, in this case using the final vehicle mass into orbit as the
figure of merit. A statistical analysis is conducted on the results in order to produce an expectancy curve
which relates the probability of the vehicle having a certain performance to the expected variation due to
uncertainty in the system design parameters.

The foundation of an ideal robust and reliable method for trajectory optimisation is an algorithm which
guarantees convergence, with a high level of confidence, to the global optimum of the system. The convergence
of traditional gradient-based optimal control solvers is severely compromised by the presence of discontinuities
in any of the design models, and it can be difficult, if not impossible, to find a valid optimal solution using
this approach if a good initial guess is not properly chosen. One of the interesting elements of the work
presented here is that a hybrid stochastic-deterministic approach to the optimization of the system has been
used in order to overcome the limitations of traditional gradient-based techniques.

The paper starts by describing the methods and tools that were used to solve the trajectory optimisation
problem for the representative space plane and to characterize the various uncertainties in the models that
were used in its design. In the subsequent section of the paper, the composition of the various models that
comprise the overall system design for the space plane are described in more detail. The specific trajectory
optimisation problem is then addressed, followed by a discussion of the results.

II. Optimisation and robustness analysis

The following section provides background into the different types of optimisation approaches that are
used in this work to determine the optimal control law for the ascent trajectories of the space access vehicles
and explains the rationale behind the approach that has been adopted.

A. Trajectory optimisation

All practical methods for solving optimal control problems involves an approach which discretizes the system
into a finite set of unknowns. Generally, the dynamical system, characterized by a set of continuous functions,
is transcribed into a problem with a finite set of variables, following which the resultant finite dimensional
problem is solved by using a numerical parameter optimisation method. A further step is required to assess
the accuracy of the finite dimensional approximation to the continuous problem. This methodology allows
the optimal control problem to be re-written as a non-linear programming problem (NLP).

There are several methods that can be used to transcribe an optimal control problem into a NLP.4 The
easiest approach is the direct shooting method, where only the system controls are discretized and the whole
optimisation process iterates over the integration of dynamical system from initial to final conditions. The
disadvantage of the approach is that the objective function and the constraints on the optimization can
only be evaluated at the end of the simulation. Transcription by the single shooting approach results in a
NLP problem with a relatively small number of independent design variables, but dynamical systems which
are subject to instability for certain values of their control parameters (as is often the case) are difficult to
treat with this method. A more sophisticated approach is the direct collocation method where both the
controls and the state variables defining the system are discretized in terms of the elapsed time. In this
way, an infinite-dimensional ODE system is replaced by a finite number of equality constraints, and the
integrals associated with the objective and constraint functions of the original problem are approximated.
This approach gives a large but sparse NLP, which can be solved conveniently using any one of a number of
sequential quadratic programming (SQP) solvers.5

The proposed trajectory optimization approach is based on a mixed formulation which combines a
population-based stochastic algorithm with a deterministic gradient-based method. Population-based stochas-
tic algorithms are able to explore the global search space very efficiently, and are thus able to find feasible
solutions when the constraints on the system are sufficiently loose and the dimensionality of the problem
is not high (generally less than 100 design variables). Sampling of the search space can become inefficient,
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however, if the constraints on the system are overly strict. On the other hand, deterministic gradient based
solvers can deal efficiently with equality constraints and problems with many dimensions (generally many
more than 100 design variables). The idea here is to use a stochastic approach coupled to a single shooting
transcription method to find an initial solution, in terms of the variation of the system states and controls
with time, for the optimized trajectory by first relaxing the constraints on the final states of the system. Then
this solution is used as a starting point for a further local optimisation by the direct collocation method.
This second step is intended to both improve the value of the objective function and to ensure that the
equality constraints on the required final states are satisfied.

Figure 1: General scheme of the trajectory optimisation process.

A general overview of the optimisation process that was used in the work described in this paper is shown
in Fig. 1 and is described in more detail as follows.

1. Transcribe the optimal control problem into a single shooting NLP As a first step, the opti-
mal control problem is converted to a problem with a finite set of variables by using a direct single
shooting approach and relaxing the constraints on the system.

2. Solve the single shooting NLP using MOPED The NLP is then solved using a hybrid Evolution-
ary Algorithm (EA) which is obtained by coupling together two different algorithms: the Multi-
Objective Parzen-based Estimation of Distribution6 (MOPED) and a modified version of the Infla-
tionary Differential Evolution Algorithm7,8 (IDEA).

The MOPED algorithm belongs to a subset of Evolutionary Algorithms called Estimation of Distribu-
tion Algorithms9 (EDA). Within these algorithms the typical evolutionary search operators, such as
crossover and mutation, are replaced with statistical tools. These tools build an approximate proba-
bilistic model of the search space, with the role of the crossover and mutation operators replaced by
appropriate sampling of this model. MOPED is an EDA that can be used for multi-objective optimi-
sation of continuous problems, and uses the Parzen method10 to build a probabilistic representation of
Pareto solutions and can handle multivariate dependencies of the variables.6,11 This EDA optimizer
implements the general layout and selection techniques of the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II),12 but with the traditional crossover and mutation search approaches of NSGA-II
replaced by sampling of the Parzen model. NSGA-II was chosen as the basis for MOPED mainly due
to its simplicity and for the quality of the results that are obtained using this approach for various
diverse optimisation problems. The Parzen method uses a non-parametric approach to kernel density
estimation. It allocates Nind identical elementary probability density functions (PDF) (where Nind is
the number of individuals within the current population), each one centered on a different element of
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the sample. A probabilistic model of the promising search space portion is built on the basis of the
statistical data provided by Nind individuals, and new individuals are sampled by the probabilistic
model itself. The variance of each elementary PDF depends on i) the location of the individuals in
the search space and ii) the fitness value of these individuals. The way the algorithm is constructed
leads to values that favor sampling in the neighborhood of the most promising solutions. The features
of MOPED, which is used here for a single objective problem, allows for an efficient exploration of the
search space but often prevent fine convergence on the optimal point particularly when the solutions of
the final population are spread over different areas which are far apart from each other in the feasible
space. This feature of the approach has prompted the idea of coupling MOPED with another EA
which has better convergence properties. To this end, IDEA has been selected.

3. Refine MOPED solution using IDEA The Inflationary Differential Evolution Algorithm (IDEA) is
based on a hybridization of a differential evolution13 (DE) variant and the logic behind monotonic
basin hopping14 (MBH). The resulting algorithm has been demonstrated to out-perform both DE and
MBH on some difficult space trajectory design problems, for instance those where the search space has
a (multi) funnel-like structure.7 The main features of the IDEA algorithm are reported in depth by
Vasile et al.;7 here just the more practical aspects of the currently adopted algorithm are discussed. In
essence, the final solutions obtained by MOPED are clustered based on the Euclidean distance between
them in the search space, resulting in a variable number of solution clusters. The distance threshold
for each cluster is chosen such that each cluster should have a number of individuals in the range
[Ncl,l, Ncl,u]. A DE process is then performed a number of times, beginning with the sub-population
of each cluster. Each process is stopped only when the population contracts to below a predefined
threshold. Every time the DE process stops, a local search is performed in order to properly converge
to the local optimum. As the design optimisation in this case is constrained, the internal DE mechanism
can be modified such that the comparison of individuals during the DE process is able to account for the
constraints on the system. In the unconstrained DE algorithm,13 each parent solution is compared with
its offspring; the solution with the best objective function value is chosen to be part of the population of
the next generation. Instead, for the constrained DE algorithm used here, when parents and offspring
are compared, the solutions are first evaluated in terms of constraint compatibility. Evaluating the
solutions based first on how well they comply with the constraints ensures that each solution is valid
before optimality in terms of the objective function for the system is assessed.

4. Transcribe the optimal control problem using DFET The optimal control problem is converted
to a problem with a finite set of variables using a direct collocation method based on Finite Elements
in Time (DFET) on a spectral basis.15

5. Initialize DFET-based NLP using best solution from IDEA and solve using gradient method
The NLP problem is then solved by a gradient-based optimisation method, which uses the solution
obtained from the previous stochastic optimisation as a starting point.

B. Robust design and uncertainties

Within the early stages of design, where models and simulations are used to assess preliminary design options,
it is important to characterize the uncertainty affecting the models and to consider their impact on the design
in order to properly assess the performance of the system. Uncertainties occur across all of the different
phases of modeling and simulation, and can be categorized either as aleatory uncertainties, which are due
to the inherent random behavior of a system, or epistemic uncertainties that arise from a lack of knowledge
about a system.

Once the levels of uncertainty within the system have been estimated and implemented, they can be used
to i) estimate the sensitivity of the control law(s) to the uncertainties themselves (robustness analysis), ii)
obtain a statistical characterization of the likely vehicle performance in the presence of uncertainty, and/or
iii) obtain a robust optimization of the trajectory, in other words to optimize the performance of the system
while minimizing the effect of uncertainties. In this paper the estimated uncertainties have been used to
analyze the robustness of the nominal control law for the vehicle and to obtain a statistical characterization
of the vehicle performance in the presence of uncertainty in some of its key design variables.

Two types of uncertainty-based analyses are performed. The first test is aimed at evaluating the ro-
bustness of the nominal control law against the estimated uncertainties. Once the optimisation has been
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performed using nominal models, the nominal control law is reintegrated using atmospheric and aerodynamic
models whose output variables have been perturbed relative to their nominal values. The second test instead
is aimed at evaluating the optimal performance of the vehicle subject to uncertainties within the optimisation
loop. Multiple optimizations are performed, each one with a different randomized set of perturbations in
the atmospheric and aerodynamic models.

The level of uncertainty on a specific variable is represented by a percent deviation around the nominal
value. Specifically, the atmospheric temperature and pressure are perturbed as any uncertainty considered
for these two quantities affects other atmospheric values, such as the density and speed of sound, as well as
other models such as the aerodynamics and propulsion which lead to altering the trajectory dynamics and
ultimately the control. Uncertainties within the aerodynamics model specifically are evaluated by perturbing
the net lift and drag forces.

Once a deterministic solution is available from the atmospheric and aerodynamic models, uncertainties
are introduced by perturbing the nominal values of the outputs of the models. The value of a generic
uncertain quantity, xnom, in the presence of uncertainty, xunc, can be defined as:

xunc = xnom + εSExnom (1)

where ε is the uncertainty bounding function which depends on the operational conditions, and SE is a
sampling surface mapping the set of operating conditions into the interval [−1, 1]. The function SE is
defined as an interpolating surface dependant on the value of each interpolating node. Each time a new
perturbation profile is needed, a new set of values for the parameters defining SE is randomly generated. For
the robustness analysis of the nominal control law, the process generates n different SE surfaces by randomly
choosing the values defining SE from an uniform distribution in the interval [−1, 1], where n is the total
number of integrations performed. For the multiple optimisation robustness analysis, the same set of n SE
surfaces are used to generate n optimised trajectories accounting for uncertainty.

III. System Models

The following section presents the mathematical models used to simulate the vehicle performance, specif-
ically the propulsion system, vehicle aerodynamics, atmospheric model and the trajectory dynamics. As the
vehicle configuration is based on a horizontal take-off, the full ascent profile should include a runway take-off
followed by a subsonic climb-out. For this analysis however the complexities of the near-ground segment
were ignored. The ascent profile instead starts just after the transition into the supersonic regime, at an
altitude of around 8 km.

A. Dynamic model

The vehicle is considered to be a point with variable mass flying around a spherical, rotating earth. The
dynamics of the vehicle along the trajectory is governed by the following set of differential equations:16

ḣ = v sin γ (2a)

v̇ =
FT cos ε−D

m
− g sin γ + ω2

e(Re + h) cosλ (sin γ cosλ− cos γ sinχ sinλ) (2b)

γ̇ =
FT sin ε+ L

mv
cosµ−

(
g

v
− v

Re + h

)
cos γ + 2ωe cosχ cosλ (2c)

+ ω2
e

(
Re + h

v

)
cosλ (sinχ sin γ sinλ+ cos γ cosλ)

χ̇ =
L

mv cos γ
sinµ−

(
v

Re + h

)
cos γ cosχ tanλ (2d)

+ 2ωe (sinχ cosλ tan γ − sinλ)− ω2
e

(
Re + h

v cos γ

)
cosλ sin γ cosχ

λ̇ =
v cos γ sinχ

Rt + h
(2e)

θ̇ =
v cos γ cosχ

(Rt + h) cosλ
(2f)
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where h is the altitude above mean sea level, v is the absolute velocity in a rotating Earth-centered reference
frame, γ is the flight path angle, χ is the path direction angle, µ is the bank angle, λ is the latitude, θ
is the longitude, m is the mass of the vehicle, FT is the magnitude of the thrust given by the engine, L
and D are the aerodynamic lift and drag forces, respectively, Re = 6375 km is the mean Earth radius,
ωe = 7.2921× 10−5 rad/s is the rotational velocity of the Earth, g0 = 9.80665 m/s2 is the acceleration due
to gravity at sea level and lastly ε = 0.08727 +α rad is the angle between the thrust vector and the velocity
vector of the vehicle, accounting for a 5◦ thrust vector offset.

For simplicity, the control law only governs the angle of attack and thrust level, so no out of plane motion
is considered (χ, µ = 0). In addition, the launch, ascent and orbit are all assumed to be contained within
the equatorial plane (λ = 0).

B. Earth model

The gravitational field is assumed to be a function of the altitude and varies according to an inverse square
law g(h) = g0 (h/(Re + h))

2
. The atmospheric characteristics (temperature, pressure, density and speed of

sound) follow the US Standard Atmosphere 1976 model up to 1000 km.

C. Propulsion model

As the vehicle is assumed to be propelled by a hybrid engine, two different models, one for the engine’s
air-breathing mode and another for its rocket mode, were developed. For both modes, the models give the
maximum available thrust FT and propellant consumption ṁP as a function of altitude h, Mach number M
and atmospheric conditions.

The numerical model for the air-breathing propulsion system is based on a modified analysis of a ramjet-
type engine. The stagnation temperature T0 at the intake of the engine is a function of the flight Mach
number and is assumed to be that which results from isentropic compression of the oncoming flow. Losses
in the intake are manifest as a reduction in stagnation pressure at the exit of the intake diffuser compared to
the ideal case, as specified using a simple pressure recovery factor. For present purposes, a constant efficiency
is assumed for the intake, and this results in a pressure recovery factor between 0.75 and 0.95, depending on
the flight Mach number.

As the flight Mach number increases, the temperature rise due to compression in the intake increases
rapidly. If this temperature rise becomes too high then this limits the amount of energy that can be added
during the combustion process and thus the thrust that can be produced by the engine. This effect is
mitigated in the present analysis by setting the post-combustion temperature based on the flight Mach
number and altitude in order to ensure that sufficient energy can be input into the combustion chamber and
thus an appropriate level of thrust can be maintained.

Fuel usage in the combustion chamber is determined from an energy balance across the combustion
chamber, with the actual fuel-air ratio, fa, given by,

fa =
cPgT04 − cPT03

ηcomb (Qr − cPgT04)
(3)

where T03 and T04 are the temperatures at the start and end of combustion respectively, cP and cPg are
the specific heats of the gas before and after combustion respectively, Qr is the heating value of the fuel,
here assumed to be hydrogen, and ηcomb is the combustion efficiency. A pressure drop across the combustion
chamber of 4% is assumed.

The exit nozzle of the engine is assumed to expand the flow to ambient pressure, and the resulting nozzle
exit static temperature is used to determine the exit Mach number and hence jet velocity. Expansion through
the nozzle is assumed to have a constant adiabatic efficiency of 93%.

The overall mass flow for the engine, ṁeng, is given by multiplying the nozzle exit area by the exit velocity
and the static density. The fuel mass flow ṁPi for the engine is then obtained by multiplying the fuel-air
ratio, fa in Eq. (3), by the engine mass flow. The total fuel usage ṁP,ramjet of the vehicle is determined
by scaling ṁPi by the number of engines on the airframe, assuming all engines are operating at identical
conditions.

The total thrust for a single engine is given by the general thrust equation

FT,ramjet = ṁeng ((1 + fa) ve − vfl) (4)
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where ve is the nozzle exit velocity, and vfl is the flight velocity, determined from the flight Mach number
and atmospheric temperature. The total thrust delivered to the airframe is determined by scaling FT by the
number of engines and again assuming that all engines are operating at the same conditions.

Figure 2 shows the overall thrust and fuel consumption as a function of altitude and Mach number for
the air-breathing engine model.
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Figure 2: Propulsion model outputs for the air-breathing ramjet-type engine.

Once the vehicle nears hypersonic speeds, the engine transitions from air-breathing mode to rocket mode.
When the engine is in rocket mode, the basic rocket equation is used to determine the thrust level FT , and
the specific impulse Isp is then used to determine the propellant mass flow according to,

FT,rocket = ṁP ve + ∆PAe (5)

ṁP,rocket =
Frocket
g0Isp

(6)

where Ae is nozzle area at the exit, and ∆P is the difference between the free stream and exit pressures. A
specific impulse of 460 s was assumed.

Finally, a throttle setting is applied as part of the control law such that both the applied thrust and mass
flow are scaled proportionally,

Fapplied = δTFT (7a)

ṁP,applied = δT ṁP (7b)

D. Aerodynamic model

A simple algebraic model is used to calculate the aerodynamic forces acting on the vehicle as a function of
angle of attack α and flight Mach number M . At low supersonic Mach numbers, the lift on the vehicle is
modeled as that due to a delta wing at a given angle of attack, as per linearized aerodynamic theory so that,

CL,ss =
CLα√
M2 − 1

Awing

Aref
sinα cosα (8)

where Awing is the area of the lifting surfaces of the vehicle and CLα is a constant that is dependent on the
geometry of the vehicle. As the flight Mach number is increased towards the hypersonic regime, the non-
linear variation of lift coefficient with angle of attack becomes progressively more important. An additional
contribution to the lift coefficient,

CL,hs = 2
Awing

Aref
sin2 α cosα (9)
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is thus calculated according to Newtonian flow theory17 and the variation with Mach number of the overall
lift coefficient that is generated by the vehicle is then modeled as:

CL =
CL,ss + CL,hs

2
+
√

(CL,ss)2 + (CL,hs)2 (10)

The drag coefficient of the vehicle is calculated simply as:

CD = CD0(M) + CL tanα (11)

where the first term CD0
, a function of the Mach number, accounts for the wave, base, and viscous drag of

the vehicle and the second term is the induced drag of its lifting surfaces. The overall lift and drag forces on
the vehicle are then obtained by multiplying by the dynamic pressure q and the vehicle reference area Aref.

IV. Test Case

Due to the nature of the hybrid engine, the ascent trajectory is modeled as two phases: a first phase with
the engine in air-breathing mode, and a second phase with the engine in rocket mode.

For the trajectory optimisation problem, the control vector c = [ααα, δδδT , t1, t2], where ααα(t), δδδT (t) give the
time schedule of the angle of attack and throttle setting respectively, and t1, t2 are the durations of the first
and second phase with the engine mode switching from air-breathing to rocket propulsion at t1. The search
space D for the controls is defined by the following bounds: α ∈ [−1, 1] rad, δT ∈ [0, 1] (i.e., from 0 to 100%
of the maximum available thrust), and the flight time for each phase t1, t2 cannot exceed 1800 s, where the
total flight time is tf = t1 + t2. The control law is the result of the optimal control problem maximizing the
final vehicle mass,

max
c∈D

(m(t = tf )) (12)

subject to dynamics in Eq. (2) plus initial conditions set to start after the transition into the supersonic
regime:

h(t = 0) = h0 = 8.2 km

v(t = 0) = v0 = 0.470 km/s

γ(t = 0) = γ0 = 8 deg

χ(t = 0) = χ0 = 0 deg

λ(t = 0) = λ0 = 0 deg

θ(t = 0) = θ0 = 0 deg

m(t = 0) = m0 = 261380 kg

(13)

The terminal conditions: h(t = tf ) = hf = 80 km, v(t = tf ) = vf = 7.380 km/s and γ(t = tf ) = γf =
0 deg are those required to enter into a circular 80 km altitude orbit, in a rotating Earth reference frame.
Link constraints are enforced between the two phases to guarantee the required continuity on both the states
and controls.

hf,1 = h0,2

vf,1 = v0,2

γf,1 = γ0,2

mf,1 = m0,2

αf,1 = α0,2

(14)

Additional path constraints based on operating conditions are imposed for both phases on the maximum
axial acceleration ax(t) ≤ 30 m/s2, maximum normal acceleration az(t) ≤ 30 m/s2, dynamic pressure through
the equivalent air speed EAS(t) ≤ 335 m/s, and for the maximum Mach number in the air-breathing mode
M(t ≤ t1) ≤ 5.4.

1. Shooting based evolutionary optimisation

For the evolutionary optimisation, the control vector c is composed of discrete values for the control law. For
each solution, the control law is interpolated using a piecewise cubic interpolation and directly integrated
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in time. The NLP problem to solve in this case is relatively small and can be handled by an evolutionary
approach.

Within the control vector c, the angle of attack is discretized into 9 variables or elements for the first
air-breathing phase, c(1:9) ∈ [0, 30] deg and 8 elements for the second rocket phase, c(10:17) ∈ [−5, 30] deg.
The throttle control setting for the first phase is preset to δT = 1, while the second phase is discretized
into 9 elements c(18:26) ∈ [0.5, 1]. The last 2 design variables define the duration of first and second phase
respectively, c(27, 28) ∈ [80, 1800] s. The equality constraints on final states are converted into inequality
constraints such that hf ∈ [80, 82] km, vf ∈ [7.34, 7.40] km/s, and γf ∈ [−2, 2] deg.

2. Finite element in time direct collocation

When solved by FET direct collocation method, the trajectory is decomposed into N elements, each of which
has nc collocation points. After transcription, the optimal control problem including the initial and final
conditions given above becomes the general NLP problem with the objective function,

max
αααs,δδδs,ts

(m(t = tf )) (15)

subject to the nonlinear algebraic constraints in the form,

C(hs,vs,χχχs,λλλs, θθθs,ms,αααs, δδδs, ts) = 0 (16)

where hs, vs, χχχs, λλλs, θθθs, ms, αααs, δδδs, ts are vectors containing the set of discrete points for each of the state,
control, and time variables at each node defined by the transcription scheme. Due to its high dimensionality of
the NLP problem, a deterministic large-scale method was used over a more conventional stochastic approach,
such DE.

A. Implementation of uncertainty

For the two atmospheric parameters, temperature and pressure, the uncertainty distribution function in
Eq. (1) is given by,

εatm(h) = lb,atm

(
1− h

hc

)
+ ub,atm

(
h

hc

)
(17)

where lb,atm and ub,atm are, respectively, the lower and upper boundaries defined as the percentage around
the nominal value, and h ∈ [0, hc] where hc = 150 km is the cut-off value for the increase, here set equal to the
maximum value of the altitude vector. For the atmospheric temperature, the boundaries of the perturbations
are between lb,T = 10% and ub,T = 50%, while for pressure the bounds are set to between lb,P = 1% and
ub,P = 50%. Figure 3 shows an example of the approach applied to the temperature showing the nominal
profile compared to a perturbed profile due to uncertainties.
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Figure 3: Nominal and perturbed values for the atmospheric temperature as a function of altitude.

In general, the level of uncertainty in atmospheric modeling increases with altitude. Specifically with
the US 1976 Standard Atmosphere model used here, below 32 km the model is well known and identical
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to the Standard Atmosphere of the International Civil Aviation Organization (ICAO), however above that,
and more notably above the ozone layer at 86 km the model becomes less accurate when compared with
other complex models based on more recent experimental data.18 Other key contributors to uncertainty are
the stochastic nature of the radiation pattern from the Sun on the Earth’s surface and differences between
geographic locations. A certain level of error is unavoidable when creating an averaged, globally applicable
atmospheric model.

Aleatory uncertainties in the aerodynamic model arise, for instance, from the unknown effects of tur-
bulence and any unsteadiness in the flow over the vehicle, while epistemic uncertainties, particularly in the
high altitude or high speed regimes, arise from basic deficiencies in understanding the role of flow rarefaction
and gas chemistry in governing the loads generated on the vehicle.

The uncertainty distribution function for the aerodynamic model is a function of three parameters within
the model: the altitude, Mach number and angle of attack although is applied only to the lift and drag force
variables. The bounds of the uncertainties are assumed to increase linearly with altitude, Mach number and
the absolute value of the angle of attack.

εaero(h,M,α) =

(
lb,h

(
1− h

hc

)
+ ub,h

(
h

hc

))
+

(
lb,M

(
1− M

Mc

)
+ ub,M

(
M

Mc

))
(18)

+

(
lb,α

(
1− α

αc

)
+ ub,α

(
α

αc

))
where h ∈ [0, hc = 150] km, |α| ∈ [0, αc = 1] rad, M ∈ [0,Mc = 40]. The lower and upper bounds are
set to 10% and 20% respectively, and are the same for all three parameters. As the uncertainty function
is dependant on multiple sources it means that the perturbations can be as much as ±30% of the nominal
value when the vehicle is at Mach 0 at sea level with a 0◦ angle of attack, and can be as much as ±60%
of the nominal value if the vehicle flies at Mach 40 at an altitude of 150 km with a 57.3◦ (1 rad) angle of
attack.

The uncertainty distribution function εaero is designed to reflect the expected margins of uncertainty of
the aerodynamic model used here, which increases with the altitude and velocity since the model cannot
accurately predict the characteristics of the vehicle when flying at very high speed through the rarefied flow
regime. The increase of the uncertainty bounds with the increase in angle of attack represents the inability
to properly model the complex phenomena that occur at high angles of incidence, such as flow separation.

These uncertainty models, in particular the boundary conditions and uncertainty distribution functions,
are general approximations and intentionally overestimated the potential uncertainties. Future work will be
aimed at properly characterizing the uncertainties within the system by appropriate physical modelling.

V. Simulation Results

Following the procedures described above, a baseline trajectory was optimized using the nominal values
from the models, i.e., not affected by any uncertainty. Figure 4 shows the optimized control law for the angle
of attack α (see Fig. 4a) and the throttle setting δT (see Fig. 4b) as a function of time. The figures also
show the timings and transition point where the engine switches from air-breathing to rocket propulsion.

In order to analyze the sensitivity of the nominal control law to uncertainties in the system models,
the set of controls shown in Fig. 4 were integrated 100 times with different randomized atmosphere and
aerodynamic model parameters. The evolutions of state vectors with time are showed in Fig. 5. As can
be clearly seen none of the perturbed trajectories meet the final target conditions (h = 80 km, v = 7.38
km/s, γ = 0◦). Figure 6 and Table 1 show the statistics on the deviation of the perturbed trajectories from
the target conditions. In total, 94 of the 100 integrations converge towards the desired target conditions
following a quasi-Gaussian distribution, while the remaining 6 computations diverge. Table 1 reports the
mean value and standard deviation of the final states of the system both when all runs are taken into account
(‘full’) and when diverging runs are discarded from the set (‘clean’).

Similarly, Fig. 7 shows the constraints on the EAS and axial acceleration throughout the trajectory.
Compared to the nominal trajectory, which meets exactly the limit of the constraint in both cases, the
majority of the perturbed trajectories violate the maximum allowable EAS and ax values. Figure 8 and
Table 2 show the statistics of the two constraint variables. In the case of the EAS, even with the outlying
values removed (so the clean set considering only 94/100 of the solutions), the mean EAS value is 431 m/s
compared to the constraint limit of 335 m/s. The axial acceleration is slightly closer to the maximum limit
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Figure 4: Nominal control laws where the red lines refer to primary air-breathing phase, while the black
lines refer to the secondary rocket phase.

of 30 m/s2, with the full and clean sets having similar mean values of 30.16 m/s2 and 30.3 m/s2, respectively,
with small standard deviations of 0.86 and 0.67.

Table 1: Statistics on the values of design parameters

Mean Standard deviation Mean Standard deviation

State (full) (full) (clean) (clean)

Altitude, h (m) 91649 51091 86158 29103

Velocity, v (m/s) 7114 1028 7370 250

Flight path angle, γ deg 6 29 -0.1 2.7

Final mass m, kg 56846 1941 56465 1293

Table 2: Statistics of path constraints.

Mean Standard deviation Mean Standard deviation

Constraint (full) (full) (clean) (clean)

Maximum EAS (m/s) 424 56.8 431 53

Maximum ax (m/s2) 30.16 0.86 30.3 0.67

Since the perturbed trajectories do not fully satisfy the various path and final constraints, the obtained
values for the final vehicle mass cannot be used as a basis for comparison. As such, a second approach was
used which performed 100 separate optimizations, each considering a different set of randomly perturbed
atmospheric and aerodynamic parameters. The resultant control laws are shown in Fig. 9. The control
laws all follow the same pattern or shape as the nominal one, and are able to exactly meet the desired final
conditions (see Fig. 10) while also fulfilling all the path constraints. Figure 11 shows the values of the EAS
and axial acceleration for the entire trajectory, demonstrating that the two constraints are satisfied over the
whole trajectory.

The final vehicle masses that were obtained from the set of 100 optimizations of the control law can
be statistically analysed. The mean values of the final mass are quite similar (56752 kg for the multiple
optimisation case, and 56846 kg for the randomized integration of the nominal control law), while the
standard deviations are quite different, with 702 kg for the multiple optimisation case and 1941 kg for the
perturbed integration of the nominal control laws.
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Figure 5: Evolution of the states, where the bolded red and black lines refer to air-breathing and rocket
phases respectively of the nominal trajectory, and the blue and green lines refer to air-breathing and rocket
phases integrated with perturbations.

Figure 13 shows two cumulative distribution functions (CDF) representing the integration of the discrete
PDFs given in Fig. 12 and Fig. 6d. The information summarized in Fig. 13 can give an engineer, during the
preliminary design phase, an immediate understanding of the effect of uncertainties on the performance of the
vehicle, shown here in terms of the final vehicle mass into orbit. The lower left side of the curve corresponds
to the worst case scenario, when the effect of the uncertainty has the largest negative impact on the design
which results in a very low final mass (in this analysis, every trajectory started with the same initial mass,
thus the vehicle with largest final mass corresponds to the one with the lowest fuel consumption). On the
other hand, the upper right side of the solid curve corresponds to the best case scenario, giving the highest
maximum final mass that can be obtained given the effects of the uncertainty.

As it is a maximisation problem that is being considered, the CDF curves give the complement of the
expectancy for obtaining a particular value of final mass between the best and worst case values. That is, if
the uncertainties are correctly estimated, it can be guaranteed that in all cases (i.e., with a probability p = 1)
that the vehicle will arrive in orbit with a final mass which is equal to the value obtained in the worst case
scenario (54768 kg in the case of the solid green curve), while there is a probability p ≤ 0.01 that the vehicle
will arrive into orbit with a mass greater or equal to the value obtained in the best case scenario (58400 kg
in this case). It is therefore possible to have a direct quantification of the probability of a given final mass
value between the best case and the worst case values, e.g., a final mass of 56188 kg can be obtained with
p = 0.8, while a final mass of 57279 kg can be obtained only with p = 0.2.

It should be noted that while a sample size of only 100 is generally not considered large enough to draw
accurate conclusions from the statistics, the sample size is large enough to test the validity and usefulness
of this approach and to assess the potential for future work.
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Figure 6: PDF of the final states when the nominal control laws are integrated by means of perturbed
atmospheric and aerodynamic models.

VI. Conclusion

The paper describes a general approach for a trans-atmospheric trajectory optimisation. A hybrid
stochastic-deterministic algorithm and its application for the design of ascent trajectories for a hybrid-engine,
high performance, unmanned, single-stage-to-orbit vehicle for payload deployment into low Earth orbit have
been detailed. Uncertainties in atmospheric and aerodynamic models were considered, highlighting the need
for the effect of both epistemic and aleatory uncertainties to be considered from the very beginning of the
design phase in order to gain an estimation of the impact on the performance of the vehicle. Integrating the
trajectory using a static, nominal optimal control law with randomly perturbed models allows for a sensi-
tivity analysis of the obtained control law and the deviation of the results from the target final conditions to
be evaluated. A second multiple optimisation approach is then performed, giving a performance expectancy
curve based on the objective function, e.g., the final mass, which can be used at the preliminary stage of the
vehicle design to estimate the performance of the vehicle while accounting for uncertainties in the simulation
models.

Future work will aim towards the implementation of further tools for the robust optimisation of trans-
atmospheric trajectories, with the aim to optimise the expected values of performance while minimising the
effect of uncertainties. The authors are currently working on a more efficient clustering technique for the
mesh required by the FET method, and the identification of suitable methods and approaches which will
be able to solve large scale problems that are affected by noise and that are heavily constrained. Efficient
sampling techniques are also being developed that, by reducing the noise, would allow the current hybrid
optimisation tool to be applied to robust optimisation.
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Figure 7: Time evolution of the equivalent air speed (EAS) and axial acceleration ax, where the bolded red
and black lines refer to air-breathing and rocket phases respectively of the nominal trajectory, and the blue
and green lines refer to air-breathing and rocket phases integrated with perturbations.
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Figure 8: PDF of constrained values when the nominal control laws are integrated by means of perturbed
atmospheric and aerodynamic models.
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Figure 10: Evolution of the states for optimized control law where the bolded red and black lines refer to
air-breathing and rocket phases respectively of nominal trajectory, and the green and magenta lines refer to
optimised air-breathing and rocket phases with perturbations.
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Figure 11: Evolution in time of equivalent air speed and axial acceleration, where the bolded red and black
lines refer to air-breathing and rocket phases respectively of nominal trajectory, and the green and magenta
lines refer to optimised air-breathing and rocket phases with perturbations.
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