8,854 research outputs found

    Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design

    Get PDF
    Cyber-physical systems (CPSs) are built from, and depend upon, the seamless integration of software and hardware components. The most important challenge in CPS design and verification is to design CPS to be reliable in a variety of uncertainties, i.e., unanticipated and rapidly evolving environments and disturbances. The costs, delays and reliability of the designed CPS are highly dependent on software-hardware partitioning in the design. The key challenges in partitioning CPSs is that it is difficult to formalize reliability characterization in the same way as the uncertain cost and time delay. In this paper, we propose a new CPS design paradigm for reliability assurance while coping with uncertainty. To be specific, we develop an uncertain programming model for partitioning based on the uncertainty theory, to support the assured reliability. The uncertainty effect of the cost and delay time of components to be implemented can be modeled by the uncertainty variables with uncertainty distributions, and the reliability characterization is recursively derived. We convert the uncertain programming model and customize an improved heuristic to solve the converted model. Experiment results on some benchmarks and random graphs show that the uncertain method produces the design with higher reliability. Besides, in order to demonstrate the effectiveness of our model for in coping with uncertainty in design stage, we apply this uncertain framework and existing deterministic models in the design process of a sub-system that is used in real world subway control. The system implemented based on the uncertain model works better than the result of deterministic models. The proposed design paradigm has the potential to be generalized to the design of CPSs for greater assurances of safety and security under a variety of uncertainties

    Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures

    Get PDF
    There exists a widely recognized need to better understand and manage complex “systems of systems,” ranging from biology, ecology, and medicine to network-centric technologies. This is motivating the search for universal laws of highly evolved systems and driving demand for new mathematics and methods that are consistent, integrative, and predictive. However, the theoretical frameworks available today are not merely fragmented but sometimes contradictory and incompatible. We argue that complexity arises in highly evolved biological and technological systems primarily to provide mechanisms to create robustness. However, this complexity itself can be a source of new fragility, leading to “robust yet fragile” tradeoffs in system design. We focus on the role of robustness and architecture in networked infrastructures, and we highlight recent advances in the theory of distributed control driven by network technologies. This view of complexity in highly organized technological and biological systems is fundamentally different from the dominant perspective in the mainstream sciences, which downplays function, constraints, and tradeoffs, and tends to minimize the role of organization and design

    An Assurance Framework for Independent Co-assurance of Safety and Security

    Get PDF
    Integrated safety and security assurance for complex systems is difficult for many technical and socio-technical reasons such as mismatched processes, inadequate information, differing use of language and philosophies, etc.. Many co-assurance techniques rely on disregarding some of these challenges in order to present a unified methodology. Even with this simplification, no methodology has been widely adopted primarily because this approach is unrealistic when met with the complexity of real-world system development. This paper presents an alternate approach by providing a Safety-Security Assurance Framework (SSAF) based on a core set of assurance principles. This is done so that safety and security can be co-assured independently, as opposed to unified co-assurance which has been shown to have significant drawbacks. This also allows for separate processes and expertise from practitioners in each domain. With this structure, the focus is shifted from simplified unification to integration through exchanging the correct information at the right time using synchronisation activities

    Environment-Centric Safety Requirements forAutonomous Unmanned Systems

    Get PDF
    Autonomous unmanned systems (AUS) emerge to take place of human operators in harsh or dangerous environments. However, such environments are typically dynamic and uncertain, causing unanticipated accidents when autonomous behaviours are no longer safe. Even though safe autonomy has been considered in the literature, little has been done to address the environmental safety requirements of AUS systematically. In this work, we propose a taxonomy of environment-centric safety requirements for AUS, and analyse the neglected issues to suggest several new research directions towards the vision of environment-centric safe autonomy
    corecore