'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
There exists a widely recognized need to better understand
and manage complex “systems of systems,” ranging from
biology, ecology, and medicine to network-centric technologies.
This is motivating the search for universal laws of highly evolved
systems and driving demand for new mathematics and methods
that are consistent, integrative, and predictive. However, the theoretical
frameworks available today are not merely fragmented
but sometimes contradictory and incompatible. We argue that
complexity arises in highly evolved biological and technological
systems primarily to provide mechanisms to create robustness.
However, this complexity itself can be a source of new fragility,
leading to “robust yet fragile” tradeoffs in system design. We
focus on the role of robustness and architecture in networked
infrastructures, and we highlight recent advances in the theory
of distributed control driven by network technologies. This view
of complexity in highly organized technological and biological systems
is fundamentally different from the dominant perspective in
the mainstream sciences, which downplays function, constraints,
and tradeoffs, and tends to minimize the role of organization and
design