97 research outputs found

    Uncertainty management for on-line optimisation of a POMDP-based large-scale spoken dialogue system

    No full text
    International audienceThe optimization of dialogue policies using reinforcement learning (RL) is now an accepted part of the state of the art in spoken dialogue systems (SDS). Yet, it is still the case that the commonly used training algorithms for SDS require a large number of dialogues and hence most systems still rely on artificial data generated by a user simulator. Optimization is therefore performed off-line before releasing the system to real users. Gaussian Processes (GP) for RL have recently been applied to dialogue systems. One advantage of GP is that they compute an explicit measure of uncertainty in the value function estimates computed during learning. In this paper, a class of novel learning strategies is described which use uncertainty to control exploration on-line. Comparisons between several exploration schemes show that significant improvements to learning speed can be obtained and that rapid and safe online optimisation is possible, even on a complex task

    Model-based Bayesian Reinforcement Learning for Dialogue Management

    Get PDF
    Reinforcement learning methods are increasingly used to optimise dialogue policies from experience. Most current techniques are model-free: they directly estimate the utility of various actions, without explicit model of the interaction dynamics. In this paper, we investigate an alternative strategy grounded in model-based Bayesian reinforcement learning. Bayesian inference is used to maintain a posterior distribution over the model parameters, reflecting the model uncertainty. This parameter distribution is gradually refined as more data is collected and simultaneously used to plan the agent's actions. Within this learning framework, we carried out experiments with two alternative formalisations of the transition model, one encoded with standard multinomial distributions, and one structured with probabilistic rules. We demonstrate the potential of our approach with empirical results on a user simulator constructed from Wizard-of-Oz data in a human-robot interaction scenario. The results illustrate in particular the benefits of capturing prior domain knowledge with high-level rules

    Machine Learning for Interactive Systems: Challenges and Future Trends

    Get PDF
    National audienceMachine learning has been introduced more than 40 years ago in interactive systems through speech recognition or computer vision. Since that, machine learning gained in interest in the scientific community involved in human- machine interaction and raised in the abstraction scale. It moved from fundamental signal processing to language understanding and generation, emotion and mood recogni- tion and even dialogue management or robotics control. So far, existing machine learning techniques have often been considered as a solution to some problems raised by inter- active systems. Yet, interaction is also the source of new challenges for machine learning and offers new interesting practical but also theoretical problems to solve. In this paper, we address these challenges and describe why research in machine learning and interactive systems should converge in the future
    corecore