61 research outputs found

    Uncalibrated Dynamic Mechanical System Controller

    Get PDF
    An apparatus and method for enabling an uncalibrated, model independent controller for a mechanical system using a dynamic quasi-Newton algorithm which incorporates velocity components of any moving system parameter(s) is provided. In the preferred embodiment, tracking of a moving target by a robot having multiple degrees of freedom is achieved using an uncalibrated model independent visual servo control. Model independent visual servo control is defined as using visual feedback to control a robot's servomotors without a precisely calibrated kinematic robot model or camera model. A processor updates a Jacobian and a controller provides control signals such that the robot's end effector is directed to a desired location relative to a target on a workpiece.Georgia Tech Research Corporatio

    Positioning and trajectory following tasks in microsystems using model free visual servoing

    Get PDF
    In this paper, we explore model free visual servoing algorithms by experimentally evaluating their performances for various tasks performed on a microassembly workstation developed in our lab. Model free or so called uncalibrated visual servoing does not need the system calibration (microscope-camera-micromanipulator) and the model of the observed scene. It is robust to parameter changes and disturbances. We tested its performance in point-to-point positioning and various trajectory following tasks. Experimental results validate the utility of model free visual servoing in microassembly tasks

    Image based visual servoing using bitangent points applied to planar shape alignment

    Get PDF
    We present visual servoing strategies based on bitangents for aligning planar shapes. In order to acquire bitangents we use convex-hull of a curve. Bitangent points are employed in the construction of a feature vector to be used in visual control. Experimental results obtained on a 7 DOF Mitsubishi PA10 robot, verifies the proposed method

    Uncalibrated image-based visual servoing

    Get PDF
    This paper develops a new method for uncalibrated image-based visual servoing. In contrast to traditional image-based visual servo, the proposed solution does not require a known value of camera focal length for the computation of the image Jacobian. Instead, it is estimated at run time from the observation of the tracked target. The technique is shown to outperform classical visual servoing schemes in situations with noisy calibration parameters and for unexpected changes in the camera zoom. The method’s performance is demonstrated both in simulation experiments and in a ROS implementation of a quadrotor servoing task. The developed solution is tightly integrated with ROS and is made available as part of the IRI ROS stack.Peer ReviewedPostprint (author draft version

    A Comparative Study between Analytic and Estimated Image Jacobian by Using a Stereoscopic System of Cameras

    Full text link
    This paper describes a comparative study of performance between the estimated image Jacobian that come from taking into account the epipolar geometry in a system of two cameras, and the well known analytic image Jacobian that is utilized for most applications in visual servoing. Image Based Visual Servoing architecture is used for controlling a 3 DOF articular system using two cameras in eye to hand configuration. Tests in static and dynamic cases were carried out, and showed that the performance of estimated Jacobian by using the properties of the epipolar geometry is such as good and robust against noise as the analytic Jacobian. This fact is considered as an advantage because the estimated Jacobian does not need laborious previous work prior to control task in contrast to the analytic Jacobian does

    Model-based vs. model-free visual servoing: A Performance evaluation in microsystems

    Get PDF
    In this paper, model-based and model-free image based visual servoing (VS) approaches are implemented on a microassembly workstation, and their regulation and tracking performances are evaluated. A precise image based VS relies on computation of the image jacobian. In the model-based visual servoing, the image Jacobian is computed via calibrating the optical system. Precisely calibrated model based VS promises better positioning and tracking performance than the model-free approach. However, in the model-free approach, optical system calibration is not required due to the dynamic Jacobian estimation, thus it has the advantage of adapting to the different operating modes

    Uncalibrated image-based visual servoing

    Get PDF
    This paper develops a new method for uncalibrated image-based visual servoing. In contrast to traditional image-based visual servo, the proposed solution does not require a known value of camera focal length for the computation of the image Jacobian. Instead, it is estimated at run time from the observation of the tracked target. The technique is shown to outperform classical visual servoing schemes in situations with noisy calibration parameters and for unexpected changes in the camera zoom. The method’s performance is demonstrated both in simulation experiments and in a ROS implementation of a quadrotor servoing task. The developed solution is tightly integrated with ROS and is made available as part of the IRI ROS stack.Peer ReviewedPostprint (author draft version

    Visual guidance of unmanned aerial manipulators

    Get PDF
    The ability to fly has greatly expanded the possibilities for robots to perform surveillance, inspection or map generation tasks. Yet it was only in recent years that research in aerial robotics was mature enough to allow active interactions with the environment. The robots responsible for these interactions are called aerial manipulators and usually combine a multirotor platform and one or more robotic arms. The main objective of this thesis is to formalize the concept of aerial manipulator and present guidance methods, using visual information, to provide them with autonomous functionalities. A key competence to control an aerial manipulator is the ability to localize it in the environment. Traditionally, this localization has required external infrastructure of sensors (e.g., GPS or IR cameras), restricting the real applications. Furthermore, localization methods with on-board sensors, exported from other robotics fields such as simultaneous localization and mapping (SLAM), require large computational units becoming a handicap in vehicles where size, load, and power consumption are important restrictions. In this regard, this thesis proposes a method to estimate the state of the vehicle (i.e., position, orientation, velocity and acceleration) by means of on-board, low-cost, light-weight and high-rate sensors. With the physical complexity of these robots, it is required to use advanced control techniques during navigation. Thanks to their redundancy on degrees-of-freedom, they offer the possibility to accomplish not only with mobility requirements but with other tasks simultaneously and hierarchically, prioritizing them depending on their impact to the overall mission success. In this work we present such control laws and define a number of these tasks to drive the vehicle using visual information, guarantee the robot integrity during flight, and improve the platform stability or increase arm operability. The main contributions of this research work are threefold: (1) Present a localization technique to allow autonomous navigation, this method is specifically designed for aerial platforms with size, load and computational burden restrictions. (2) Obtain control commands to drive the vehicle using visual information (visual servo). (3) Integrate the visual servo commands into a hierarchical control law by exploiting the redundancy of the robot to accomplish secondary tasks during flight. These tasks are specific for aerial manipulators and they are also provided. All the techniques presented in this document have been validated throughout extensive experimentation with real robotic platforms.La capacitat de volar ha incrementat molt les possibilitats dels robots per a realitzar tasques de vigilància, inspecció o generació de mapes. Tot i això, no és fins fa pocs anys que la recerca en robòtica aèria ha estat prou madura com per començar a permetre interaccions amb l’entorn d’una manera activa. Els robots per a fer-ho s’anomenen manipuladors aeris i habitualment combinen una plataforma multirotor i un braç robòtic. L’objectiu d’aquesta tesi és formalitzar el concepte de manipulador aeri i presentar mètodes de guiatge, utilitzant informació visual, per dotar d’autonomia aquest tipus de vehicles. Una competència clau per controlar un manipulador aeri és la capacitat de localitzar-se en l’entorn. Tradicionalment aquesta localització ha requerit d’infraestructura sensorial externa (GPS, càmeres IR, etc.), limitant així les aplicacions reals. Pel contrari, sistemes de localització exportats d’altres camps de la robòtica basats en sensors a bord, com per exemple mètodes de localització i mapejat simultànis (SLAM), requereixen de gran capacitat de còmput, característica que penalitza molt en vehicles on la mida, pes i consum elèctric son grans restriccions. En aquest sentit, aquesta tesi proposa un mètode d’estimació d’estat del robot (posició, velocitat, orientació i acceleració) a partir de sensors instal·lats a bord, de baix cost, baix consum computacional i que proporcionen mesures a alta freqüència. Degut a la complexitat física d’aquests robots, és necessari l’ús de tècniques de control avançades. Gràcies a la seva redundància de graus de llibertat, aquests robots ens ofereixen la possibilitat de complir amb els requeriments de mobilitat i, simultàniament, realitzar tasques de manera jeràrquica, ordenant-les segons l’impacte en l’acompliment de la missió. En aquest treball es presenten aquestes lleis de control, juntament amb la descripció de tasques per tal de guiar visualment el vehicle, garantir la integritat del robot durant el vol, millorar de l’estabilitat del vehicle o augmentar la manipulabilitat del braç. Aquesta tesi es centra en tres aspectes fonamentals: (1) Presentar una tècnica de localització per dotar d’autonomia el robot. Aquest mètode està especialment dissenyat per a plataformes amb restriccions de capacitat computacional, mida i pes. (2) Obtenir les comandes de control necessàries per guiar el vehicle a partir d’informació visual. (3) Integrar aquestes accions dins una estructura de control jeràrquica utilitzant la redundància del robot per complir altres tasques durant el vol. Aquestes tasques son específiques per a manipuladors aeris i també es defineixen en aquest document. Totes les tècniques presentades en aquesta tesi han estat avaluades de manera experimental amb plataformes robòtiques real

    Image Based Visual Servoing: Estimated Image Jacobian by Using Fundamental Matrix VS Analytic Jacobian

    Get PDF
    This paper describes a comparative study of performance between the estimated image Jacobian that come from taking into account the geometry epipolar of a system of two cameras, and the well known analytic image Jacobian that is utilized for most applications in visual servoing. Image Based Visual Servoing architecture is used for controlling a 3 d.o.f. articular system using two cameras in eye to hand configuration. Tests in static and dynamic cases were carried out, and showed that the performance of estimated Jacobian by using the properties of the epipolar geometry is such as good and robust against noise as the analytic Jacobian. This fact is considered as an advantage because the estimated Jacobian does not need laborious previous work prior the control task in contrast to the analytic Jacobian does

    Model free visual servoing in macro and micro domain robotic applications

    Get PDF
    This thesis explores model free visual servoing algorithms by experimentally evaluating their performances for various tasks performed both in macro and micro domains. Model free or so called uncalibrated visual servoing does not need the system (vision system + robotic system) calibration and the model of the observed scene, since it provides an online estimation of the composite (image + robot) Jacobian. It is robust to parameter changes and disturbances. A model free visual servoing scheme is tested on a 7 DOF Mitsubishi PA10 robotic arm and on a microassembly workstation which is developed in our lab. In macro domain, a new approach for planar shape alignment is presented. The alignment task is performed based on bitangent points which are acquired using convex-hull of a curve. Both calibrated and uncalibrated visual servoing schemes are employed and compared. Furthermore, model free visual servoing is used for various trajectory following tasks such as square, circle, sine etc. and these reference trajectories are generated by a linear interpolator which produces midway targets along them. Model free visual servoing can provide more exibility in microsystems, since the calibration of the optical system is a tedious and error prone process, and recalibration is required at each focusing level of the optical system. Therefore, micropositioning and three di erent trajectory following tasks are also performed in micro world. Experimental results validate the utility of model free visual servoing algorithms in both domains
    corecore