15 research outputs found

    Implementing Performance Competitive Logical Recovery

    Full text link
    New hardware platforms, e.g. cloud, multi-core, etc., have led to a reconsideration of database system architecture. Our Deuteronomy project separates transactional functionality from data management functionality, enabling a flexible response to exploiting new platforms. This separation requires, however, that recovery is described logically. In this paper, we extend current recovery methods to work in this logical setting. While this is straightforward in principle, performance is an issue. We show how ARIES style recovery optimizations can work for logical recovery where page information is not captured on the log. In side-by-side performance experiments using a common log, we compare logical recovery with a state-of-the art ARIES style recovery implementation and show that logical redo performance can be competitive.Comment: VLDB201

    Designee of a Scalable Database Management Systems (DBMS)

    Get PDF
    Scalable database management systems (DBMS)-both for update intensive application workloads as well as decision support systems for descriptive and deep analytics-are a critical part of the cloud infrastructure and play an important role in ensuring the smooth transition of applications from the traditional enterprise infrastructures to next generation cloud infrastructures. Though scalable data management has been a vision for more than three decades and much research has focused on large scale data management in traditional enterprise setting, cloud computing brings its own set of novel challenges that must be addressed to ensure the success of data management solutions in the cloud environment. This tutorial presents an organized picture of the challenges faced by application developers and DBMS designers in developing and deploying internet scale applications. Our background study encompasses both classes of systems: (I) for supporting update heavy applications and (II) for ad-hoc analytics and decision support. We then focus on providing an in-depth analysis of systems for supporting update intensive web-applications and provide a survey of the state-of-the-art in this domain. We crystallize the design choices made by some successful systems large scale database management systems, analyze the application demands and access patterns, and enumerate the desiderata for a cloud-bound DBMS

    云数据库

    Get PDF
    报告包括如下内容:云数据库概念和特点、云数据库与传统的分布式数据库、云数据库的影响、云数据库产品、云数据库领域的研究问题

    CumuloNimbo: a cloud scalable multi-tier SQL database

    Get PDF
    This article presents an overview of the CumuloNimbo platform. CumuloNimbo is a framework for multi-tier applications that provides scalable and fault-tolerant processing of OLTP workloads. The main novelty of CumuloNimbo is that it provides a standard SQL interface and full transactional support without resorting to sharding and no need to know the workload in advance. Scalability is achieved by distributing request execution and transaction control across many compute nodes while data is persisted in a distributed data store. In this paper we present an overview of the platform

    SQLCheck: Automated Detection and Diagnosis of SQL Anti-Patterns

    Full text link
    The emergence of database-as-a-service platforms has made deploying database applications easier than before. Now, developers can quickly create scalable applications. However, designing performant, maintainable, and accurate applications is challenging. Developers may unknowingly introduce anti-patterns in the application's SQL statements. These anti-patterns are design decisions that are intended to solve a problem, but often lead to other problems by violating fundamental design principles. In this paper, we present SQLCheck, a holistic toolchain for automatically finding and fixing anti-patterns in database applications. We introduce techniques for automatically (1) detecting anti-patterns with high precision and recall, (2) ranking the anti-patterns based on their impact on performance, maintainability, and accuracy of applications, and (3) suggesting alternative queries and changes to the database design to fix these anti-patterns. We demonstrate the prevalence of these anti-patterns in a large collection of queries and databases collected from open-source repositories. We introduce an anti-pattern detection algorithm that augments query analysis with data analysis. We present a ranking model for characterizing the impact of frequently occurring anti-patterns. We discuss how SQLCheck suggests fixes for high-impact anti-patterns using rule-based query refactoring techniques. Our experiments demonstrate that SQLCheck enables developers to create more performant, maintainable, and accurate applications.Comment: 18 pages (14 page paper, 1 page references, 2 page Appendix), 12 figures, Conference: SIGMOD'2

    Fast Distributed Transactions for Partitioned Database Systems.

    Get PDF
    ABSTRACT Many distributed storage systems achieve high data access throughput via partitioning and replication, each system with its own advantages and tradeoffs. In order to achieve high scalability, however, today's systems generally reduce transactional support, disallowing single transactions from spanning multiple partitions. Calvin is a practical transaction scheduling and data replication layer that uses a deterministic ordering guarantee to significantly reduce the normally prohibitive contention costs associated with distributed transactions. Unlike previous deterministic database system prototypes, Calvin supports disk-based storage, scales near-linearly on a cluster of commodity machines, and has no single point of failure. By replicating transaction inputs rather than effects, Calvin is also able to support multiple consistency levels-including Paxosbased strong consistency across geographically distant replicas-at no cost to transactional throughput
    corecore