8,788 research outputs found

    Random Forest variable importance with missing data

    Get PDF
    Random Forests are commonly applied for data prediction and interpretation. The latter purpose is supported by variable importance measures that rate the relevance of predictors. Yet existing measures can not be computed when data contains missing values. Possible solutions are given by imputation methods, complete case analysis and a newly suggested importance measure. However, it is unknown to what extend these approaches are able to provide a reliable estimate of a variables relevance. An extensive simulation study was performed to investigate this property for a variety of missing data generating processes. Findings and recommendations: Complete case analysis should not be applied as it inappropriately penalized variables that were completely observed. The new importance measure is much more capable to reflect decreased information exclusively for variables with missing values and should therefore be used to evaluate actual data situations. By contrast, multiple imputation allows for an estimation of importances one would potentially observe in complete data situations

    Fitting Prediction Rule Ensembles with R Package pre

    Get PDF
    Prediction rule ensembles (PREs) are sparse collections of rules, offering highly interpretable regression and classification models. This paper presents the R package pre, which derives PREs through the methodology of Friedman and Popescu (2008). The implementation and functionality of package pre is described and illustrated through application on a dataset on the prediction of depression. Furthermore, accuracy and sparsity of PREs is compared with that of single trees, random forest and lasso regression in four benchmark datasets. Results indicate that pre derives ensembles with predictive accuracy comparable to that of random forests, while using a smaller number of variables for prediction

    An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests

    Get PDF
    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, that can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine and bioinformatics within the past few years. High dimensional problems are common not only in genetics, but also in some areas of psychological research, where only few subjects can be measured due to time or cost constraints, yet a large amount of data is generated for each subject. Random forests have been shown to achieve a high prediction accuracy in such applications, and provide descriptive variable importance measures reflecting the impact of each variable in both main effects and interactions. The aim of this work is to introduce the principles of the standard recursive partitioning methods as well as recent methodological improvements, to illustrate their usage for low and high dimensional data exploration, but also to point out limitations of the methods and potential pitfalls in their practical application. Application of the methods is illustrated using freely available implementations in the R system for statistical computing

    Variable selection with Random Forests for missing data

    Get PDF
    Variable selection has been suggested for Random Forests to improve their efficiency of data prediction and interpretation. However, its basic element, i.e. variable importance measures, can not be computed straightforward when there is missing data. Therefore an extensive simulation study has been conducted to explore possible solutions, i.e. multiple imputation, complete case analysis and a newly suggested importance measure for several missing data generating processes. The ability to distinguish relevant from non-relevant variables has been investigated for these procedures in combination with two popular variable selection methods. Findings and recommendations: Complete case analysis should not be applied as it lead to inaccurate variable selection and models with the worst prediction accuracy. Multiple imputation is a good means to select variables that would be of relevance in fully observed data. It produced the best prediction accuracy. By contrast, the application of the new importance measure causes a selection of variables that reflects the actual data situation, i.e. that takes the occurrence of missing values into account. It's error was only negligible worse compared to imputation

    Intervention in prediction measure: a new approach to assessing variable importance for random forests

    Get PDF
    Background Random forests are a popular method in many fields since they can be successfully applied to complex data, with a small sample size, complex interactions and correlations, mixed type predictors, etc. Furthermore, they provide variable importance measures that aid qualitative interpretation and also the selection of relevant predictors. However, most of these measures rely on the choice of a performance measure. But measures of prediction performance are not unique or there is not even a clear definition, as in the case of multivariate response random forests. Methods A new alternative importance measure, called Intervention in Prediction Measure, is investigated. It depends on the structure of the trees, without depending on performance measures. It is compared with other well-known variable importance measures in different contexts, such as a classification problem with variables of different types, another classification problem with correlated predictor variables, and problems with multivariate responses and predictors of different types. Results Several simulation studies are carried out, showing the new measure to be very competitive. In addition, it is applied in two well-known bioinformatics applications previously used in other papers. Improvements in performance are also provided for these applications by the use of this new measure. Conclusions This new measure is expressed as a percentage, which makes it attractive in terms of interpretability. It can be used with new observations. It can be defined globally, for each class (in a classification problem) and case-wise. It can easily be computed for any kind of response, including multivariate responses. Furthermore, it can be used with any algorithm employed to grow each individual tree. It can be used in place of (or in addition to) other variable importance measures.This work has been partially supported by Grant DPI2013- 47279-C2-1- R from the Spanish Ministerio de EconomĆ­a y Competitividad. The funders played no role in the design or conclusions of this study
    • ā€¦
    corecore