19,192 research outputs found

    Influence d'une contamination initiale sur une dynamique spatiale non itérative

    No full text
    International audiencen consommateurs répartis sur un réseau spatial S choisissent tour à tour entre deux standards A et B suivant des régles locales. Un unique balayage du réseau est effectué, c'est-à-dire que la dynamique est non itérative. Dans ce cas, et contrairement aux dynamiques itératives ergodiques, les caractéristiques de la configuration spatiale finale du réseau dépendent de la configuration initiale et ne peuvent pas être évaluées mathématiquement. Nous en faisons l'étude empirique par simulation, pour un certain nombre de règles d'adoption bien spécifiées. L'objectif central de ce travail est de voir quel est l'effet d'une contamination initiale, ou effet de dumping, sur le standard A au taux τ sur la répartition spatiale finale. On évaluera en particulier de manière empirique la fréquence finale du standard A, la corrélation spatiale, ainsi que des mesures d'aggrégation et de connexité. Pour chacun de ces indicateurs, on constate que l'effet du dumping est d'autant plus important que le taux de contamination initial est faible

    Revue bibliographique des méthodes de prévision des débits

    Get PDF
    Dans le domaine de la prévision des débits, une grande variété de méthodes sont disponibles: des modèles stochastiques et conceptuels mais aussi des approches plus novatrices telles que les réseaux de neurones artificiels, les modèles à base de règles floues, la méthode des k plus proches voisins, la régression floue et les splines de régression. Après avoir effectué une revue détaillée de ces méthodes et de leurs applications récentes, nous proposons une classification qui permet de mettre en lumière les différences mais aussi les ressemblances entre ces approches. Elles sont ensuite comparées pour les problèmes différents de la prévision à court, moyen et long terme. Les recommandations que nous effectuons varient aussi avec le niveau d'information a priori. Par exemple, lorsque l'on dispose de séries chronologiques stationnaires de longue durée, nous recommandons l'emploi de la méthode non paramétrique des k plus proches voisins pour les prévisions à court et moyen terme. Au contraire, pour la prévision à plus long terme à partir d'un nombre restreint d'observations, nous suggérons l'emploi d'un modèle conceptuel couplé à un modèle météorologique basé sur l'historique. Bien que l'emphase soit mise sur le problème de la prévision des débits, une grande partie de cette revue, principalement celle traitant des modèles empiriques, est aussi pertinente pour la prévision d'autres variables.A large number of models are available for streamflow forecasting. In this paper we classify and compare nine types of models for short, medium and long-term flow forecasting, according to six criteria: 1. validity of underlying hypotheses, 2. difficulties encountered when building and calibrating the model, 3. difficulties in computing the forecasts, 4. uncertainty modeling, 5. information required by each type of model, and 6. parameter updating. We first distinguish between empirical and conceptual models, the difference being that conceptual models correspond to simplified representations of the watershed, while empirical model only try to capture the structural relationships between inputs to the watershed and outputs, such as streamflow. Amongst empirical models, we distinguish between stochastic models, i.e. models based on the theory of probability, and non-stochastic models. Three types of stochastic models are presented: statistical regression models, Box-Jenkins models, and the nonparametric k-nearest neighbor method. Statistical linear regression is only applicable for long term forecasting (monthly flows, for example), since it requires independent and identically distributed observations. It is a simple method of forecasting, and its hypotheses can be validated a posteriori if sufficient data are available. Box-Jenkins models include linear autoregressive models (AR), linear moving average models (MA), linear autoregressive - moving average models (ARMA), periodic ARMA models (PARMA) and ARMA models with auxiliary inputs (ARMAX). They are more adapted for weekly or daily flow forecasting, since the yallow for the explicit modeling of time dependence. Efficient methods are available for designing the model and updating the parameters as more data become available. For both statistical linear regression and Box-Jenkins models, the inputs must be uncorrelated and linearly related to the output. Furthermore, the process must be stationary. When it is suspected that the inputs are correlated or have a nonlinear effect on the output, the k-nearest neighbor method may be considered. This data-based nonparametric approach simply consists in looking, among past observations of the process, for the k events which are most similar to the present situation. A forecast is then built from the flows which were observed for these k events. Obviously, this approach requires a large database and a stationary process. Furthermore, the time required to calibrate the model and compute the forecasts increases rapidly with the size of the database. A clear advantage of stochastic models is that forecast uncertainty may be quantified by constructing a confidence interval. Three types of non-stochastic empirical models are also discussed: artificial neural networks (ANN), fuzzy linear regression and multivariate adaptive regression splines (MARS). ANNs were originally designed as simple conceptual models of the brain. However, for forecasting purposes, these models can be thought of simply as a subset of non linear empirical models. In fact, the ANN model most commonly used in forecasting, a multi-layer feed-forward network, corresponds to a non linear autoregressive model (NAR). To capture the moving average components of a time series, it is necessary to use recurrent architectures. ANNs are difficult to design and calibrate, and the computation of forecasts is also complex. Fuzzy linear regression makes it possible to extract linear relationships from small data sets, with fewer hypotheses than statistical linear regression. It does not require the observations to be uncorrelated, nor does it ask for the error variance to be homogeneous. However, the model is very sensitive to outliers. Furthermore, a posteriori validation of the hypothesis of linearity is not possible for small data sets. MARS models are based on the hypothesis that time series are chaotic instead of stochastic. The main advantage of the method is its ability to model non-stationary processes. The approach is non-parametric, and therefore requires a large data set.Amongst conceptual models, we distinguish between physical models, hydraulic machines, and fuzzy rule-based systems. Most conceptual hydrologic models are hydraulic machines, in which the watershed is considered to behave like a network of reservoirs. Physical modeling of a watershed would imply using fundamental physical equations at a small scale, such as the law of conservation of mass. Given the complexity of a watershed, this can be done in practice only for water routing. Consequently, only short term flow forecasts can be obtained from a physical model, since the effects of precipitation, infiltration and evaporation must be negligible. Fuzzy rule-based systems make it possible to model the water cycle using fuzzy IF-THEN rules, such as IF it rains a lot in a short period of time, THEN there will be a large flow increase following the concentration time. Each fuzzy quantifier is modeled using a fuzzy number to take into account the uncertainty surrounding it. When sufficient data are available, the fuzzy quantifiers can be constructed from the data. In general, conceptual models require more effort to develop than empirical models. However, for exceptional events, conceptual models can often provide more realistic forecasts, since empirical models are not well suited for extrapolation.A fruitful approach is to combine conceptual and empirical models. One way of doing this, called extended streamflow prediction or ESP, is to combine a stochastic model for generating meteorological scenarios with a conceptual model of the watershed.Based on this review of flow forecasting models, we recommend for short term forecasting (hourly and daily flows) the use of the k-nearest neighbor method, Box-Jenkins models, water routing models or hydraulic machines. For medium term forecasting (weekly flows, for example), we recommend the k-nearest neighbor method and Box-Jenkins models, as well as fuzzy-rule based and ESP models. For long term forecasting (monthly flows), we recommend statistical and fuzzy regression, Box-Jenkins, MARS and ESP models. It is important to choose a type of model which is appropriate for the problem at hand and for which the information available is sufficient. Each type of model having its advantages, it can be more efficient to combine different approaches when forecasting streamflow

    Cartes auto-organisées pour l'analyse exploratoire de données et la visualisation

    No full text
    Article de synthèse sur les applications de l'algorithme de Kohonen pour la visualisation et l'analyse de donnéesThis paper shows how to use the Kohonen algorithm to represent multidimensional data, by exploiting the self-organizing property. It is possible to get such maps as well for quantitative variables as for qualitative ones, or for a mixing of both. The contents of the paper come from various works by SAMOS-MATISSE members, in particular by E. de Bodt, B. Girard, P. Letrémy, S. Ibbou, P. Rousset. Most of the examples have been studied with the computation routines written by Patrick Letrémy, with the language IML-SAS, which are available on the WEB page http://samos.univ-paris1.fr

    Méthodologie destinée aux essais de sélection du cacaoyer

    Get PDF
    L'efficacité des dispositifs expérimentaux est fonction des techniques d'installation de l'arbuste, de l'hétérogénéité du milieu choisi, de la durée de l'expérience. Après avoir présenté les facteurs de perturbations des essais, les auteurs étudient la taille qu'il faut donner aux parcelles élémentaires pour avoir la plus grande précision possible, premièrement dans le cas où une ligne de bordure interparcellaire n'est pas nécessaire, deuxièmement dans celui où une ligne de bordure interparcellaire est nécessaire. La précision des essais est étudiée et des possibilités d'amélioration de celle-ci sont présentées. (Résumé d'auteur

    Dans l'atome, des mondes quantiques

    Get PDF

    Approximation spline L1C1 par fenêtres glissantes pour le signal et l'image

    Get PDF
    National audienceDans cet article, nous traitons le problème d'approximation de nuages de points par une courbe spline ou surface au sens de la norme L1. L'utilisation de cette norme permet de préserver la forme des données même en cas de changement brutal de celle-ci. Dans nos précédents travaux, nous avons introduit une méthode par fenêtre glissante de cinq points pour l'approximation courbe spline L1 et une méthode de croix glissante de neuf points pour l'approximation surface spline L1 de données type grille. Malgré leur complexité linéaire, ces méthodes peuvent demeurer lentes lorsqu'elles sont appliquées sur un large flot de données. Par conséquent, sur la base de nouveaux résultats algébriques sur l'approximation L1 sur un nombre restreint de données, nous proposons ici des méthodes reposant sur des fenêtres de taille inférieure et nous comparons les différentes méthodes. In this article, we adress the problem of approximating scattered data points by C1-smooth polynomial spline curves and surfaces using L1-norm optimization. The use of this norm helps us to preserve the shape of the data even near to abrupt changes. In our previous work, we introduced a five-point sliding window process for L1 spline curve approximation and a nine-point cross sliding window process for L1 spline surface approximation of grid datasets. Nethertheless, these methods can be still time consuming despite their linear complexity. Consequently, based on new algebraic results obtained for L1 approximation on restricted sets of points in both planar and spatial cases, we define in this article methods with smaller windows and we lead a comparison between the methods
    corecore