2,326 research outputs found

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    2017 Robotic Instrument Segmentation Challenge

    Get PDF
    In mainstream computer vision and machine learning, public datasets such as ImageNet, COCO and KITTI have helped drive enormous improvements by enabling researchers to understand the strengths and limitations of different algorithms via performance comparison. However, this type of approach has had limited translation to problems in robotic assisted surgery as this field has never established the same level of common datasets and benchmarking methods. In 2015 a sub-challenge was introduced at the EndoVis workshop where a set of robotic images were provided with automatically generated annotations from robot forward kinematics. However, there were issues with this dataset due to the limited background variation, lack of complex motion and inaccuracies in the annotation. In this work we present the results of the 2017 challenge on robotic instrument segmentation which involved 10 teams participating in binary, parts and type based segmentation of articulated da Vinci robotic instruments

    Efficiently learning metric and topological maps with autonomous service robots

    Get PDF
    Models of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topological maps model the structure of the environment using a graph. The contribution of this paper is an approach that learns a metric as well as a topological map based on laser range data obtained with a mobile robot. Our approach consists of two steps. First, the robot solves the simultaneous localization and mapping problem using an efficient probabilistic filtering technique. In a second step, it acquires semantic information about the environment using machine learning techniques. This semantic information allows the robot to distinguish between different types of places like, e. g., corridors or rooms. This enables the robot to construct annotated metric as well as topological maps of the environment. All techniques have been implemented and thoroughly tested using real mobile robot in a variety of environments

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    Motion Tracking for Medical Applications using Hierarchical Filter Models

    Get PDF
    A medical intervention often requires relating treatment to the situation, which it was planned on. In order to circumvent undesirable effects of motion during the intervention, positional differences must be detected in real-time. To this end, in this thesis a hierarchical Particle Filter based tracking algorithm is developed in three stages. Initially, a model description of the individual nodes in the aspired hierarchical tree is presented. Using different approaches, properties of such a node are derived and approximated, leading to a parametrization scheme. Secondly, transformations and appearance of the data are described by a fixed hierarchical tree. A sparse description for typical landmarks in medical image data is presented. A static tree model with two levels is developed and investigated. Finally, the notion of 'association' between landmarks and nodes is introduced in order to allow for dynamic adaptation to the underlying structure of the data. Processes for tree maintenance using clustering and sequential reinforcement are implemented. The function of the full algorithm is demonstrated on data of abdominal breathing motion

    Doctor of Philosophy

    Get PDF
    dissertationMagnetic resonance guided high intensity focused ultrasound (MRgHIFU) is a promising minimal invasive thermal therapy for the treatment of breast cancer. This study develops techniques for determining the tissue parameters - tissue types and perfusion rate - that influence the local temperature during HIFU thermotherapy procedures. For optimal treatment planning for each individual patient, a 3D volumetric breast tissue segmentation scheme based on the hierarchical support vector machine (SVM) algorithm was developed to automatically segment breast tissues into fat, fibroglandular tissue, skin and lesions. Compared with fuzzy c-mean and conventional SVM algorithm, the presented technique offers tissue classification performance with the highest accuracy. The consistency of the segmentation results along both the sagittal and axial orientations indicates the stability of the proposed segmentation routine. Accurate knowledge of the internal anatomy of the breast can be utilized in the ultrasound beam simulation for the treatment planning of MRgHIFU therapy. Completely noninvasive MRI techniques were developed for visualizing blood vessels and determining perfusion rate to assist in the MRgHIFU therapy. Two-point Dixon fat-water separation was achieved using a 3D dual-echo SSFP sequence for breast vessel imaging. The performances of the fat-water separation with various readout gradient designs were evaluated on a water-oil phantom, ex vivo pork sample and in vivo breast imaging. Results suggested that using a dual-echo SSFP readout with bipolar readout gradient polarity, blood vasculature could be successfully visualized through the thin-slab maximum intensity projection SSFP water-only images. For determining the perfusion rate, we presented a novel imaging pulse sequence design consisting of a single arterial spin labeling (ASL) magnetization preparation followed by Look-Locker-like image readouts. This flow quantification technique was examined through simulation, in vitro and in vivo experiments. Experimental results from a hemodialyzer when fitted with a Bloch-equation-based model provide flow measurements that are consistent with ground truth velocities. With these tissue properties, it is possible to compensate for the dissipative effects of the flowing blood and ultimately improve the efficacy of the MRgHIFU therapies. Complete noninvasiveness of these techniques allows multiple measurements before, during and after the treatment, without the limitation of washout of the injected contrast agent
    corecore