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ABSTRACT 

 Magnetic resonance guided high intensity focused ultrasound (MRgHIFU) is a 

promising minimal invasive thermal therapy for the treatment of breast cancer.  This 

study develops techniques for determining the tissue parameters — tissue types and 

perfusion rate — that influence the local temperature during HIFU thermotherapy 

procedures.   

For optimal treatment planning for each individual patient, a 3D volumetric breast 

tissue segmentation scheme based on the hierarchical support vector machine (SVM) 

algorithm was developed to automatically segment breast tissues into fat, fibroglandular 

tissue, skin and lesions.  Compared with fuzzy c-mean and conventional SVM algorithm, 

the presented technique offers tissue classification performance with the highest 

accuracy.  The consistency of the segmentation results along both the sagittal and axial 

orientations indicates the stability of the proposed segmentation routine.  Accurate 

knowledge of the internal anatomy of the breast can be utilized in the ultrasound beam 

simulation for the treatment planning of MRgHIFU therapy.   

Completely noninvasive MRI techniques were developed for visualizing blood 

vessels and determining perfusion rate to assist in the MRgHIFU therapy.  Two-point 

Dixon fat-water separation was achieved using a 3D dual-echo SSFP sequence for breast 

vessel imaging.  The performances of the fat-water separation with various readout 

gradient designs were evaluated on a water-oil phantom, ex vivo pork sample and in vivo 



 

iv 

 

breast imaging.  Results suggested that using a dual-echo SSFP readout with bipolar 

readout gradient polarity, blood vasculature could be successfully visualized through the 

thin-slab maximum intensity projection SSFP water-only images.  

For determining the perfusion rate, we presented a novel imaging pulse sequence 

design consisting of a single arterial spin labeling (ASL) magnetization preparation 

followed by Look-Locker-like image readouts.  This flow quantification technique was 

examined through simulation, in vitro and in vivo experiments.  Experimental results 

from a hemodialyzer when fitted with a Bloch-equation-based model provide flow 

measurements that are consistent with ground truth velocities.  

With these tissue properties, it is possible to compensate for the dissipative effects 

of the flowing blood and ultimately improve the efficacy of the MRgHIFU therapies.  

Complete noninvasiveness of these techniques allows multiple measurements before, 

during and after the treatment, without the limitation of washout of the injected contrast 

agent. 
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CHAPTER 1 

INTRODUCTION 

Purpose of this dissertation 

 Breast cancer is the most common cancer among women.  About one in eight 

women in America will develop breast cancer during her lifetime (1). Due to early 

detection and improved treatment, the death rate from breast cancer has dropped over the 

past two decades.  Studies have been shown the curative breast-conserving therapy offers 

an equivalent therapeutic effect compared with radical mastectomy (2).  

Magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is a 

promising procedure that may eventually play an important role in minimal invasive 

thermal therapy for breast cancer treatment.  In the HIFU procedure, a focused ultrasound 

beam is applied to destroy tumors without damaging the surrounding healthy tissue and 

skin, therefore providing excellent cosmetic outcomes and reducing surgery recovery 

time.  With the guidance of magnetic resonance imaging (MRI), it allows clear delinea-

tion of tumor margin and the control of the temperature in the noninvasive thermal thera-

py.   

This dissertation focuses on developing novel MR image acquisition schemas and 

image processing algorithms for determining tissue parameters that can assist in MRgHI-

FU therapy.  Segmented tissue models with accurate anatomical distribution information 
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are attained using a supervised classification algorithm.  Moreover, various pulse se-

quence designs are presented to visualize blood vasculature and estimate the blood perfu-

sion rate.  

Calculation of the acoustic parameters of the ultrasound sonication to completely 

ablate the target tissue volume is an important pretreatment planning step in MRgHIFU 

procedures.  Since the variation of the thermal and acoustic properties between different 

tissue types affects both the simulated ultrasound beam pattern and the resulting thermal 

models, it is essential to not only know the distribution of the lesion to be treated, but also 

the acoustic and thermal properties of the tissue along the proposed ultrasound trajectory.  

Previous studies of MRgHIFU for breast cancer utilize manual drawing of the target le-

sion volume based on a single or multiple slices of T1-weighted fast flow angle shot 

(FLASH) (3) or T2-weighted turbo spin echo (TSE) images (4) for pretreatment planning.  

The resulting hand-drawn information was then used to calculate the ultrasound acoustic 

parameters of the ultrasound sonication, where error can be easily introduced due to 

manual classification of localized target volume with a limited number of image slices 

and single image contrast.  Several algorithms have been proposed for breast MRI seg-

mentation (5-7), mostly focusing on localized regions (8) or certain specific tissue types 

(9).  However, a complete volumetric breast MRI segmentation algorithm was not availa-

ble but could be very helpful in interventional thermal treatments for breast cancer, which 

require accurate knowledge of the internal anatomy of the breast.  This motivated the first 

project of my dissertation work, which was aimed at developing a 3D volumetric breast 

tissue segmentation algorithm.  The algorithm does not require additional manual inter-

vention other than giving the training data by identifying each tissue type on a training 
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dataset.  In addition to treatment planning, the proposed tissue classification technique 

can also be applied in MRgHIFU therapy monitoring and posttreatment evaluation.   

To achieve accurate temperature evolution, precise physical modeling of heat 

transfer should take into account the tissue-dependent perfusion rate and the individually 

different structures of the vascular system.  The objective of MRgHIFU therapies is to 

induce sufficient heating on pathological tissue while preserving surrounding healthy tis-

sue (10).  The therapeutic objective of thermal therapies can be compromised due to the 

dissipative effects of tissue perfusion and blood vessels.  For example, tumors with high-

er perfusion rates result in increased heat evacuation and rapid cooling of the target tissue.  

This can reduce the maximal temperature increase achievable for a given deposited ener-

gy and thus results in smaller ablation zones, reducing the efficiency of the therapeutic 

procedure.  Similarly, when the procedure is performed in the proximity of large blood 

vessels, convective cooling can lead to substantially different outcomes compared to tis-

sue without large-scale flow (11).  These tissue-dependent properties play an important 

role in temperature distribution in thermal therapies.  Several methods have been pro-

posed to estimate tissue perfusion and image breast vasculature.  Positron emission to-

mography (PET) was used to monitor breast tumor perfusion (12,13).   Tumor vascular 

structure has been demonstrated with digital subtraction angiography (DSA) technique 

(14).  Estimation of the breast perfusion and vasculature imaging have been performed 

using dynamic contrast enhanced (DCE)-MRI (13,15).  Image contrast generated from 

these techniques relies on either injection of the contrast agent or the use of radioisotopes.  

Specifically, DCE-MRI has been utilized in treatment evaluation in MRgHIFU therapy 

(3,4,16); however, due to unknown properties of contrast agent in the presence of ultra-
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sound, a contrast-agent-free method would be more appropriate, especially for monitor-

ing blood flow during MRgHIFU treatment.  Therefore, in the second project of my dis-

sertation work, MRI techniques without injecting contrast agent were developed for visu-

alization of blood vessels in the breast and quantification of tissue perfusion to assist in 

MRgHIFU therapy.  Compared to techniques that involve external injection of either con-

trast agent or radioisotopes, the developed contrast-agent-free methods do not cause al-

lergic reactions, are much cheaper to implement, and permit repetitive measurements 

without limitation by the washout of the contrast agent, which is favorable in clinical ex-

amination.  

Overview of this dissertation 

  This dissertation is composed of six chapters, including this introductory chapter.  

The basic principles of MRI are reviewed in Chapter 2, where detailed discussion of MR 

data acquisition and some commonly used fast imaging sequence, e.g., gradient echo 

(GRE) and steady-state free precession (SSFP) sequences are presented.  Theories on 

multipoint Dixon fat-water separation and quantitative flow imaging are also discussed.  

These MR principles lay the foundation for the advanced techniques described in 

Chapters 3–5.    

In Chapter 3, a hierarchical support vector machine (SVM) algorithm is presented 

to achieve accurate 3D breast MRI segmentation.  The hierarchical SVM decomposes a 

multiclass classification problem into multiple binary-classifiers.  Taking advantage of 

the multiparametric MRI image contrasts and a series of preprocessing procedures, supe-

rior segmentation accuracy has been demonstrated using the presented technique, com-
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pared to that from the conventional SVM and Fuzzy c-mean (FCM) algorithms.  This 

work has been published in Academic Radiology. 2013, 20(2): 137–47 and is entitled “3D 

Multi-parametric breast MRI segmentation using hierarchical support vector machine 

with coil sensitivity correction” (17).  

Chapter 4 presents an arterial spin labeling (ASL) based sequence design with 

Look-Locker-like (18) image readouts for visualizing blood vasculature and quantifying 

blood flow.  This technique is systematically examined through theoretical simulation, in 

vitro and in vivo experiment.  Bloch-equation-based modeling has been developed and 

validated using a hemodialyzer as a tissue-mimicking flow phantom.  This chapter is 

based on the 2009 International Society of Magnetic Resonance in Medicine (ISMRM) 

presentation entitled “High resolution 3D MR angiography using arterial spin labeling” 

(19), and a paper published in Medical Physics. 2010, 37(11): 5801–5810, under the title 

of “Flow measurement in MRI using arterial spin labeling with cumulative readout pulses 

— theory and validation” (20). 

In Chapter 5, a 3D dual-echo SSFP sequence featured with alternating bipolar 

readout polarity is described for breast magnetic resonance angiography (MRA) imaging.  

This contrast-agent-free technique allows accurate separation of the fat-only and water-

only images by properly combing the in-phase and out-of-phase source images from ad-

jacent repetition time (TR).  Signal behaviors of the in-phase and out-of-phase image are 

simulated for both fat and fibroglandular tissue.  The optimized imaging parameters are 

then used in the phantom, ex vivo and in vivo experiments.  The breast vasculature infor-

mation can be obtained from the resulting water-only images.  This chapter is partially 

based on the 2012 ISMRM presentation entitled “Two-point Dixon fat and water separa-



6 

 

 

tion using dual-echo SSFP sequence in breast imaging” (21). 

Finally, conclusions are given in Chapter 6 summarizing the accomplishments 

and limitations of this dissertation, followed by suggestions for future work.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 2 

MAGNETIC RESONANCE IMAGING 

Introduction 

Magnetic resonance imaging (MRI) is a tomographic imaging technique that 

detects the internal physical information based on signals acquired externally.  In 1946, 

nuclear magnetic resonance (NMR) phenomenon was independently reported by both 

Edward Purcell (22) and Felix Bloch (23), and the researchers were awarded the Nobel 

Prize in 1952 for their work.  After this discovery, magnetic resonance spectroscopy 

(MRS) quickly gained popularity because of its ability to obtain information about the 

chemical composition and physical structures of matter.  Paul Lauterbur reported the first 

2D MR image with spatial information encoding in 1973 (24).  In his experiment, a 

magnetic field gradient, a weak magnetic field changing as a function of position, was 

superimposed on a stronger magnetic field to encode the physical position of nuclei 

within the imaged object.  The spatial variation in the magnetic field causes a 

corresponding variation in the nuclear resonance frequency.  Consequently, spatial 

information can be obtained from the spectral analysis of the NRM signals.  In 1991, 

Richard Ernst (25) was granted the Nobel Prize of chemistry for his contributions in the 

development of pulsed NMR and MRI techniques.  Following these major developments, 
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NMR saw a rapid growth in various fields, especially in clinical applications after the 

1980s.  The development of NMR went from a purely experimental laboratory phase to 

become a widely recognized clinical diagnostic imaging tool.  Its success resides in its 

ability to generate high resolution images with structural, metabolic, and functional 

information. 

In this chapter, the fundamental theory of MRI is explained.  Principles of an MRI 

system are presented from a NMR spin system, MR signal formation and reception per-

spectives.  The associated hardware components including main magnetic field, radiofre-

quency (RF) field and gradient field are also described.  

NMR spin system 

The formation of an MRI signal could be traced down to the atomic level 

characterized by the quantum mechanics.  Nuclei with nonzero spin numbers possess an 

angular momentum J, often called spin.  An ensemble of spins forms a spin system in 

MRI.  The angular momentum  is related to the magnetic moment 


 of nuclei by 

 

J


γ                                                         [2.1] 

 

where γ  is the gyromagnetic ratio, a constant for each type of nucleus.  For example, 

2

γ
γ 

 
of 

1
H is 42.58 MHz/T.  

1
H, the most abundant nucleus in the human body, has an 

atomic number of 1/2.  Such a spin system is called a spin-half system.  In addition to hy-

drogen 
1
H, other nuclei such as 

3
He, 

13
C, 

17
O, 

19
F, 

23
Na, 

31
P can also be used for MR im-

J
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aging and spectroscopy.  Nuclear magnetic resonance (NMR) properties of these nuclei, 

including gyromagnetic ratio, resonance frequency, natural abundance and relative sensi-

tivity, are listed in Table 2.1.  The high abundance of 
1
H leads to its prevalent utility in 

generating MRI signals clinically. 

In the absence of an external magnetic field, the nuclear magnetic moments 


 are 

randomly oriented which results in a zero net magnetic field.  When the nuclei are placed 

in a strong external magnetic field B0, spins in different orientations relative to the B0 di-

rection will have different energy of interaction with the external magnetic field, referred 

as B0 direction.  According to the quantum theory,  

 

                                             
00 γ BmhBE I


                                          [2.2] 

 

where Im  is the magnetic quantum number.  For a spin-half system, two energy levels 

exist, i.e., for pointing-up spins (
2

1
Im ), 

 

0γ
2

1
BhE 


                                                [2.3] 

 

and for pointing-down spins (
2

1
Im ), 

 

                                                                0γ
2

1
BhE 


                                                    [2.4] 

The Zeeman splitting of the energy level is illustrated in Fig. 2.1.  The energy difference 
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between the two spin states is 

 

                                                        0γ BhEEE 


                                           [2.5] 

 

where h  is the Plank’s constant divided by 2 .  The energy 


E  and 


E  represent the 

lower-energy and the higher-energy states for the spin-up and spin-down state, respec-

tively (26).  According to the Boltzmann relationship, the spin population difference be-

tween the two energy levels can be expressed as 

 

                                                                                                      [2.6] 

 

where K= J/K is Boltzmann constant,  is the absolute temperature of the 

spin system.  A bulk magnetization reflecting the collective behavior of a spin system 

can be defined as 

 

                                                               [2.7] 

 

where sN  is the total number of spins.  The magnitude of the bulk magnetization for a 

spin-half system with two spin states is 

                                                         
s

s

KT

NBh
M

4

γ 0

22




                                               [2.8] 
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
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It is apparent that the magnitude of the bulk magnetization is proportional to the strength 

of the main magnetic field and the absolute temperature.  Since temperature in a living 

system cannot usually be changed dramatically, the magnitude of the main magnetic field 

thus becomes a key factor affecting the bulk magnetization.   

MR signal formation 

B0 field 

 The main magnetic field B0 is one of the key components for any MRI system.  

Ranging from 0.1–11T, the magnets can be resistive, permanent, or superconducting.  

These magnets are the most expensive part of an MR system and are used to generate the 

strong, uniform, and static main magnetic field.  Classically, the motion of the moment 

vector  of the spins could be described by the equation of motion 

 

                                                         kB
dt

d 


0γ  


                                                  [2.9] 

 

when assuming the B0 field is applied in the z-direction k


.  Solving the equation, the fol-

lowing magnetic moments are obtained  

 

                                                       
)0()(

)0()( 0γ

zz

tBi

xyxy

t

et










                                        [2.10] 

indicating that the nuclear spins precess around the main magnetic field, i.e., the direction 

of the B0 field.  The process is called precession, as illustrated in Fig. 2.2.  The angular 



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precession frequency  is called the Larmor frequency.  It is related to the main B0 field 

by the relationship 

 

                                                                0γB                                                   [2.11] 

 

Since the gyromagnetic ratio γ  is nuclei dependent, different nuclei precesses at different 

frequencies in a given B0 field.  

Ideally, the B0 field should have a constant magnetic field throughout the whole 

imaging volume.  However, two factors can contribute to field inhomogeneity —

susceptibility-induced field variation and the chemical shift.  Different bulk magnetic 

susceptibility within the sample can cause B0 variation.  This sample-induced field inho-

mogeneity depends on the susceptibility difference and the geometry of the object being 

imaged.   The resultant inhomogeneity is most severe near the boundaries between two 

materials with distinct susceptibilities (26).  The imperfection of the field can be partially 

alleviated by applying shimming, where spatially varying field patterns are generated by 

a set of shim coils to compensate for the field inhomogeneity. 

Due to the high abundance of 
1
H, signals from hydrogen nuclei residing on water 

molecules and fat molecules are the major sources of signal contribution in MRI.  Be-

cause different shielding of the nuclei created by the orbital motion of the surrounding 

electrons in response to the main B0 field, protons attached to water and fat resonate at 

slightly different frequencies.  This displacement of the resonance frequency is called the 

chemical shift, and can be expressed the following relationship  

 


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                                                )1(0                                                      [2.12] 

 

where  is the shielding constant that is dependent on the chemical environment.  An 

example of
 
the 

1
H NMR spectrum is demonstrated in Fig. 2.3, with horizontal axis being 

the resonant frequency presented in parts per million (ppm).  The spectrum peaks appear 

at different frequencies corresponding to different chemical shifts.  In Fig. 2.3, it is shown 

that the fat peak is shifted downfield by approximately 3.5 ppm relative to the water peak.  

At 0B = 3T, the chemical shift frequency difference between fat and water, , is around 

420 Hz.  To achieve the desired image contrast, fat signal usually needs to be either sup-

pressed or separated from the water signal.  Details on the fat suppression/separation 

techniques are reviewed in Chapter 5.   

RF excitation 

 Spins precess around the longitudinal axis, as described in Eq. [2.10].  The 

ensemble of magnetic moments  forms the longitudinal magnetization, directly related 

to B0, whereas the net in-plane moment  is zero at thermal equilibrium because the 

spins are randomly distributed in the x-y plane with random phases.  In order to collect 

signal from the transverse plane, an additional field B1, also referred as RF pulse, is 

required to establish phase coherence among the spins. 

According to the Planck’s Law, electromagnetic radiation of frequency, rf , car-

ries energy  

 



csf

z

xy
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rfrf hE                                                     [2.13] 

 

In quantum mechanics, to induce a coherent transition of spins from one energy state to 

another, the quanta of energy provided by the field must be equal to the energy difference 

between the adjacent spin states (26),  

 

                                                            0γ BhEErf                                              [2.14] 

 

Referring to Eq. [2.12], we have  

 

                                                                   0 rf                                                     [2.15] 

 

indicating that the B1 field rotates at the Larmor frequency.  This condition is known as 

the resonance condition.  Generally, B1 field oscillates in the RF range and its amplitude 

is significantly smaller than the main magnetic field B0.  Typical form of the B1 field can 

be written as 

 

                                                                                  [2.16] 

 

where  is the envelope function,  is the excitation carrier frequency and  is the 

initial phase.  The spin is said to be on resonance when  is the same as the Larmor 

frequency 0 .   

)(

11 )()(
 


tie r fetBtB

eB1 rf 

rf
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The standard method to carry out an NMR experiment is to apply a short pulse of 

RF field at the Larmor frequency.  The RF pulse is characterized by the flip angle (FA) 

— the angle between the direction of the main magnetic field and the magnetization vec-

tor immediately after the excitation pulse is terminated.  For a small flip angle, the slice 

profile can be obtained by taking the Fourier transform of the temporal envelope of the 

RF pulses (27).  The frequency range of the slice profile determines the bandwidth of the 

RF excitation pulses.   

Relaxation 

 When a magnetization is perturbed from its equilibrium state by B1 field, the 

magnetized spins tend to return to the equilibrium state.  The recovery of magnetization 

along the z-direction and the decrease of the magnetization in the x-y plane are due to 

random thermal motion, and can be described by a longitudinal and a transverse 

relaxation, respectively.  Experimentally, the governing equations of the bulk 

magnetization evolution over time are expressed as  

 

                                                                                                  [2.17] 

 

Solving the equations, the bulk magnetization signal can be obtained  

                                 
11

2
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where 
0

zM  is the thermal equilibrium magnetization, )0( xyM  and )0( zM  are the mag-

netization in the transverse plane and along the longitudinal direction immediately after 

an RF pulse.  The transverse magnetization, 
xyM , decays exponentially and its signal is 

characterized by T2 — the transverse or spin-spin relaxation time constant, see Fig. 2.4 

(a). The longitudinal magnetization  exponentially recovers back to the equilibrium 

state and its signal is characterized by T1 — the longitudinal or spin-lattice relaxation 

time constant, see Fig. 2.4 (b).  T1 is determined by the rate of energy transfer between 

the spin system and its surroundings.   

The two relaxation times T1, T2, along with proton density (PD) are three essential 

parameters in MRI.  The signal intensities result from a combination of the spin density, 

longitudinal and transverse relaxation times, and the parameters of the imaging sequence 

used.  Changing the imaging parameters, such as TR, echo time (TE), and FA etc., differ-

ent signal weightings are generated in the images.  This makes MRI a very powerful im-

aging modality providing superior soft tissue contrasts compared to other imaging modal-

ities.   

Bloch equation 

 The equation that describes the interaction of the magnetization with the external 

magnetic field is commonly referred to as the Bloch equation (28),  
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where i


, j


, and k


 are unit vectors along the x, y and z-axes, respectively, and 
0

zM
 
is 

the magnetization at equilibrium.   

The external fields include the static magnetic field B0 along the z-axis and the 

time varying magnetic field B1 which oscillates at the radiofrequency  perpendicular to 

the main field, as given in Eq. [2.16].   The amplitude of the RF field is significantly 

smaller than the main magnetic field. Using this magnetic field combination, 

kBjtBitBB


00101 )sin()cos(   , the Bloch equations can be rewritten as 
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tBMBM

dt

dM x
zy
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2

010 ))cos((γ
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M
tBMBM
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0
0101 ))cos()sin((γ

T

MM
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dM z
yx

z 
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These equations can be simplified by adopting the rotating frame of reference — a coor-

dinate system whose transverse plane rotates clockwise at the frequency of the B1 field.  

In this rotating frame, the external field becomes 

 

                                                    ')γ(' 01 kBiBB rfeff


                                       [2.21] 

The unit directional vectors , and in the rotating frame are related to that of the 

stationary frame by  
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                             [2.22]         

                     

When the frequency, rf , of the oscillating RF field equals the Larmor frequency 0 , 

called on resonance condition, Eq. [2.21] is simplified to 

 

                                                          '1iBBeff


                                                     [2.23] 

 

If the relaxation processes are negligible, the Bloch equations in the rotating frame can be 

written as 
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Under the initial conditions of 0)0()0( ''  yx MM , and 
0

'' )0( zz MM  , the solutions to 

Eq. [2.24] in the rotating frame are     
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Eq. [2.25] suggests that in the rotating frame, M


 precesses about the  axis with the 

precession frequency
1γ

1
B  when an on-resonant RF pulse is applied along the i’ axis. 

Signal acquisition 

Detection 

 To obtain a signal that can be processed, it is necessary to convert the rotating 

transverse magnetization into measurable signal.  Precession of the magnetization 

),( trM


 induces a voltage in the RF receiver coil tuned at the Larmor frequency of the 

spin system.  The receiver coil is used to detect the changes of the magnetization in the x-

y plane, as illustrated in Fig. 2.5.  The voltage signal )(tV  detected by the receiver coil is 

 

rdtrMrB
tt

t
tV r


 







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object
),()(

)(
)(                            [2.26] 

 

where )(t  is the magnetic flux through the coil, )(rBr


 is the magnetic field at location  

r


.  Using the vector decomposition kBjBiBrB zryrxrr


,,,)(  ,  the voltage signal can 

be expressed as 
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     [2.27] 

 

where )(0 r


  is the free precession frequency, )0,(rMxy


 is the transverse magnetization 

at time 0, )(rr


  and )(re


  are the phase angles introduced by the receiver magnetic field 

'i
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and the RF excitation, respectively.   

 is a high-frequency signal which rapidly oscillates with frequency 0 .  It 

can be demodulated by multiplying the voltage with a reference signal with frequency 

.  The high frequency component of the signal is then removed by applying a 

low-pass filter.  Usually,   is very small and is referred to as the offset frequency from 

the Larmor frequency.  The reference signal can be sinusoid or a cosinusoid, correspond-

ing to detection of the rotating magnetization with two detectors orthogonal to each other.  

A quadrature detection of the signal demodulation process using two detectors is demon-

strated in Fig. 2.6, and is called phase-sensitive detection (PSD).  The two outputs are 

often combined together in a complex form, with one output being the real part and the 

other as the imaginary part of the signal.  The detected complex signal after combining 

data from both channels is finally given by 

 

                                 
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
object
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)(/

0 )0,()()( 2 rderMrBets tri

xyxyr

rTt  
                        [2.28] 

 

where )(, rB xyr

  is the complex conjugate of )(, rB xyr


, 

)(
)0,  ()0,(

ri

xyxy
eerMrM

 
  and 

)(

,, )()(
ri

xyrxyr
rerBrB

 
 .  This signal is called the free induction decay (FID).  Its ampli-

tude is determined by the RF excitation pulses and the density of the spins presented in 

the object being imaged.  The maximum amplitude of the received signal is achieved 

right at the time the FID is formed, and its amplitude decays exponentially with relaxa-

tion time T2 in a homogeneous magnetic field.  When field inhomogeneity presents, the 

decay rate is replaced by 


2T , a faster rate due to the interactions of the spins with the in-

)(tV

 0
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homogeneous magnetic field (29).   

 

                                                        0
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                                                [2.29] 

Signal localization 

  A linearly varying field is added to the main field 0B  to make the z-component of 

the magnetic field vary spatially as 

 

                                                       krGBrB


)()( 0                                            [2.30] 

 

where kGjGiGG zyx


  stands for the gradient field spatially varying in all three di-

rections.  Because the frequency of the imaging nuclei is proportional to the field strength, 

the resonance frequency of the nuclei thus becomes a function of position r,  

 

                                                rGrGBr

 γ)γ()( 00                                  [2.31] 

 

Ignoring the relaxation effect, the FID signal after the excitation as given in Eq. [2.28] 

can subsequently be expressed as  
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where )0,()()( ,0 rMrBr xyxyr

   is introduced as the effective spin density determined 

by the bulk magnetization.  After passing through the PSD, the resulting low frequency 

signal becomes  

 

                                                       rdertS trGi  



γ)()(                                         [2.33] 

 

A Fourier relationship can be established between the MR signal and the spin density by 

rewriting )(tS  as 

 

                                           rdertS rki  



 2)()(                                         [2.34] 

 

where 
2

γ tG
k



  is the position in the spatial frequency space, often called k-space.   The 

signal can be interpreted as the Fourier transform of )(r


  at spatial frequency k, which is 

a function of the gradient field G


.  The acquisition of MR signal therefore requires 

filling of the k-space.   

Imaging sequences 

Gradient echo 

 Gradient echo (GRE) is a type of signal frequently used in MRI.  The echo is 

generated using time-varying gradient magnetic fields.  Basic principle of the formation 

of the GRE is demonstrated through a timing diagram, shown in Fig. 2.7.  Timing 
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diagram is a graphic illustration of the waveforms of the gradients and the sequence of 

RF pulses, which are used to determine the manner in which k-space is scanned and the 

path of the k-space trajectory.  First, a gradient Gz is applied concomitantly with the RF 

pulse to excite a 2D slice of an object.  As demonstrated in Fig. 2.8, the location and the 

thickness of the slice to be excited can be determined by the RF pulse frequency and the 

slice-selective gradient zG , according to the relationships  

 

                                          
zG

zG

z

z





γ

γ




                                                     [2.35] 

 

Assuming there is no local inhomogeneity, immediately after the imaging slice 

being excited with slice selection in the z direction, all the spins in the selected slice have 

the same precession frequency.  Following a slice-selective excitation, a gradient Gy is 

turned on for a time interval y .  Spins along the y-direction will precess at a different 

frequency because of the different field strength experienced.  Using Eq. [2.35], the ac-

cumulated phase of the spins after the time interval y  should be yG yy .  The applica-

tion of the Gy gradient allows spatial phase encoding of spins, with the amount of phase 

encoding being determined by the amplitude of Gy and the interval y .  After the phase 

encoding, the frequency-encoding gradient Gx is applied to encode the x position of the 

spins.  Preceding the readout gradient, a prephasing lobe of duration  is applied during 

the phase encoding gradient to make sure the peak of the echo is formed at the center of 

the readout gradient.  Specifically, after time interval , the phase dispersion caused by 

the gradient reaches a maximum.  At this time the gradient is switched to its opposite po-




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larity.  During the second  period, the application of the opposite gradient rephases the 

spins that were dephased during the first  interval.  The phase coherence is achieved 

when the amount of dephasing and rephasing are equal.  The analog digital convertor 

(ADC) is turned on for a sampling period of 2  to readout the GRE signal.   

The play out of the RF pulses and the gradients in the slice selection, phase en-

coding and frequency encoding directions ensure the coverage of the k-space.  MR signal 

performance and other complex contrasts can be obtained by more complicated pulse se-

quences with different imaging gradients, RF and imaging parameters.   

The excitation pulse used in GRE is typically less than 90°, resulting in a small 

portion of the longitudinal magnetization being disturbed.  Therefore the T1 recovery of 

the longitudinal magnetization does not take long.  As a result, GRE sequence is com-

monly used for rapid imaging with relatively short TR.   

In a GRE sequence, the spins usually experience a series of identical excitation 

RF pulses, evenly spaced by TR.  The magnetization is said to reach a dynamic 

equilibrium steady state when the magnetization reaches the same magnitude at the end 

of each TR.  Steady state can be established in both longitudinal and transverse 

magnetization.  Depending on whether the transverse magnetization component 

contributes to the steady state magnetization or not, the GRE sequence can be further 

classified into two categories — spoiled GRE and steady state free precession (SSFP).   

Spoiled GRE 

In spoiled GRE, both gradient spoiling and RF spoiling are employed to achieve 

spatially uniform crushing of the transverse magnetization.  Applying the spoiling 




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gradient and varying the phase of RF pulses effectively destroys the transverse 

magnetization before the next RF pulse — a key condition in the derivation of the spoiled 

GRE steady state signal expression.  A schematic illustration of the longitudinal 

magnetization approaching the steady state in a spoiled GRE sequence is shown in Fig. 

2.9.  Assuming the longitudinal magnetization right before the thn   pulse is 

nM .  After 

the   pulse excitation, it becomes  

 

                                                        cos  nn MM                                                   [2.36] 

 

In the rest of the TR interval, the longitudinal magnetization experiences the T1 relaxation  

 

                                              )1( 1011 EMEMM nn  


                                       [2.37] 

 

where .  Substituting Eq. [2.36] into Eq. [2.37],  

 

                                          )1(cos 1011 EMEMM nn  

                                     [2.38] 

 

The condition of steady state is satisfied when the longitudinal components prior to the 

thn and th)1( n  pulses are equal, i.e., ssnn MMM  

1 . Therefore, at steady state,  
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Solving the equation, the steady state signal 
ssM  becomes (26) 
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Balanced steady state free precession 

Steady state free precession (SSFP) is another category of GRE sequence with 

steady states being established in both longitudinal and transverse magnetization.  The 

formation of the SSFP signal requires the fixed gradient area on all three directions 

within each TR, in order to maintain the same phase accumulation by the transverse 

magnetization in each TR interval.  This ensures the establishment of the transverse 

magnetization steady state.  When a more stringent condition — the total zero gradient 

area on any axis during each TR — is met, as shown in Fig. 2.10, the balanced SSFP 

signal is formed.  The transverse steady state signal  for the balanced SSFP can be 

expressed as (30) 

 

                                                  [2.41] 

where .  TR used in the SSFP imaging is usually less than or on the order of 

T2.  For short TR, , and .   Eq. [2.41] can thus be simplified 

to  
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                                                       [2.42] 

 

when .  Because  is in the denominator of the equation above, balanced 

SSFP signal is said to have  contrast weighting.  Fat and fluid oftentimes appear 

hyperintense in balanced SSFP images due to their high  ratio.  Additionally, the 

SSFP signal can suffer from artifacts caused by off-resonances.  The phase accumulated 

during each TR in the presence of field inhomogeneity is 

 

                                                                                                            [2.43] 

 

In voxels where this field inhomogeneity causes a  phase shift within a TR, the signal 

in the magnitude responses drops significantly.  This signal loss appears as dark bands in 

the SSFP images, usually referred to as the banding artifacts.   Since the off-resonances 

from susceptibilities are directly proportional to the field strength and TR, as shown in 

Eq. [2.43], SSFP imaging at higher field strength and longer TR tend to be affected more 

by the banding artifacts.  Comparing with the spoiled GRE, balanced SSFP provides 

higher signal, but at the cost of reduced image contrast (27).  SSFP is the base imaging 

sequence used in Chapter 5 for flow-independent breast MRA imaging.  

Inflow effect 

 The inflow effect plays an important role in the flow-dependent MRA technique.  

High contrast between the inflowing blood and the background stationary tissue allows 
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successful visualization of the blood vessels.  Flow information encoded in the MR image 

can be uncovered using the GRE sequence with short TR.  Specifically, an imaging slice 

with thickness TH can be modeled as N subslices, and N can be determined using the 

relation 

 

                                                                                                       [2.44] 

 

where  is the flow velocity.  As the flowing spins passing through the slice, flowing 

spins with different velocities sees different numbers of RF pulses.  A schematic 

illustration of the inflow effect is given in Fig. 2.11, with the shaded area indicating the 

flowing spins.  Fig. 2.11 (a) shows an example of an imaging slice composed of five sub-

slices.  After a TR, blood in the subslice E moves out of the imaging slice and is replaced 

by the incoming blood, see Fig. 2.11 (b).  Similarly in Fig. 2.11 (c), fresh blood continues 

to enter the imaging slice, resulting in the replacement of the blood in the D subslice 

before the third RF excitation.   

Hence, as image acquisition progresses, magnetizations of the spins in each sub-

region are perturbed by different number of RF pulses due to the position and the speed 

of the flow.  This provides a way to quantify the flow velocity, which is the topic of 

Chapter 4.  

Arterial spin labeling 

 Perfusion is by definition the delivery of oxygen and nutrients to tissues through 

blood flow (31).  Homeostasis and the survival of the organ depend heavily on perfusion.  

TRv
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Perfusion can be measured using MRI either by tracking the bolus of injected exogenous 

endovascular tracer, or taking the magnetically labeled water of arterial blood itself as 

endogenous tracer.  The latter completely noninvasive approach is known as arterial spin 

labeling (ASL).  Perfusion imaging using ASL has been demonstrated as biomarker in 

patients with acute stroke and chronic cerebrovascular disease (31). 

Perfusion contrasts comes from the signal difference of two successively acquired 

images: one with (label image) and one without (control image) the labeling of the 

inflowing arterial water spins.  The very first implementation of ASL was the 

continuous ASL (CASL) (32), where long RF (2–4 seconds) pulses and a slice-selective 

gradient were applied to adiabatically invert the arterial blood magnetization.  Such 

implementation can potentially induce signal difference, reflecting the magnetization 

transfer (MT) effect, instead of perfusion.  Even though a second local RF coil can be 

used to alleviate the MT effect, the complexity in implementation and limitation to 

single-slice imaging hinders the broad application of the CASL technique. 

Another category of ASL technique is pulsed ASL (PASL), which labels the in-

flowing arterial blood with a much thicker inversion slab at a more proximal distance rel-

ative to the imaging volume.  MT effect are counterbalanced between the label and con-

trol images through various designs of the labeling strategies, e.g., flow-sensitive alter-

nating inversion recovery (FAIR), uninverted flow-sensitive alternating inversion recov-

ery (UNFAIR), echo-planar imaging with signal targeting by alternating radiofrequency 

pulse (EPISTAR), proximal inversion with control of off-resonance effects (PICORE), 

etc.  In general, MT effect is less prominent in PASL comparing to CASL because of the 

reduced RF power involved.  
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For absolute quantification of cerebral blood flow (CBF) using ASL, the Bloch 

equation for the longitudinal magnetization in the presence of perfusion can be modified 

to incorporate the magnetization exchange between static tissue and inflowing arterial 

blood:  

 

𝑑𝑀

𝑑𝑡
=

𝑀0−𝑀

𝑇1
+ 𝑓𝑀𝑏 −

𝑓

𝜆
𝑀                                           [2.45] 

 

where 𝑀 is the longitudinal magnetization of the tissue with an equilibrium value of 𝑀0.  

𝑀𝑏 is the longitudinal magnetization of the inflowing arterial blood, 𝑓 is the perfusion 

rate, and 𝜆 is the partition coefficient of water molecules between tissue and blood.  Un-

der the assumption of labeled water being completely and spontaneously extracted from 

the intravascular space as it enters the tissue, general solution for PASL can be written as:  
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𝑡𝑎 + 𝛿 ≤ 𝑡

              [2.46] 

 

where  𝛼 is the labeling efficiency, 𝑡𝑎 is the arrival time of the leading edge of the tagged 

spins, and 𝜗(𝑡) is a dimensionless term that depends on 𝑡𝑎, 𝛿, 𝑇1, and 𝑇1𝑏.  

 In a typical ASL experiment, about 1–2 second is required for the magnetically 

labeled blood to perfuse into the tissue.  The resulting perfusion signal is only about 1% 

of the total tissue signal (33).  This small percentage contributes to the intrinsic low sig-

nal-to-noise ratio (SNR) of ASL signals.  Multiple measurements of the tagging and con-
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trol images and signal averaging are thus commonly used to overcome the issue.  There-

fore, imaging sequence design with improved signal efficiency as presented in Chapter 4 

is desirable, where images are acquired at multiple delay time after each arterial labeling 

magnetization preparation.  
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Figure 2.1. Zeeman splitting for a spin-half system in the B0 field. 


E  and 


E  are the 

energy levels for spin up and spin down protons. 

 

 

Figure 2.2. The clockwise precession of the magnetic moment vector about the 

direction of the main magnetic field B0.   
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Figure 2.3.

1
H NMR spectrum. 
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Figure 2.4. Relaxation of the transverse and longitudinal magnetization. (a) The 

exponential decay of the transverse magnetization characterized by T2. (b) The 

recovery of the longitudinal magnetization characterized by T1. 

 

 

 

 

Figure 2.5. The rotating transverse magnetization xyM


 induces an electromotive 

force signal in an RF receiver coil oriented to detect changes of magnetization in 

the x-y plane. 

0

zM

)(tM z

t
)0( zM

)(tM xy

)0(%37 xyM

)0( xyM

t

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 
xyM   

x y



35 

 

 

               

 
Figure 2.6. Phase senstivie detection. 

 

 

 

 

Figure 2.7. Timing diagram of a typical 2D GRE sequence. 
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Figure 2.8. Slice selective excitation. Fourier transform of the envelope of B1(t) 

leads to the slice profile of the RF pulse, with a bandwidth of .12     B1(t) 

pulse selectively excite spins between z1 and z2 in the presence of slice-selective 

gradient Gz. 

 

 

 

 
Figure 2.9. Longitudinal magnetization approaching the steady state in a spoiled 

GRE sequence. 
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Figure 2.10. Pulse sequence diagram of a balanced SSFP sequence. All the gradi-

ents are balanced to maintain steady state of longitudinal and transverse magnet-

ization. 
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Figure 2.11. Illustration of the inflow effect.  An imaging slice is divided into 

five subslices (a) for demonstration purpose.  The incoming fresh blood replace 

subslice E (b) and D (c) in the first and second TR.   Relation between the MR 

signal affected by the number of RF excitations seen by the moving spins and the 

velocity allows quantification of the flow.   
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Table 2. 1 NMR properties of nuclei used in MR imaging and spectroscopy 

 

Nucleus 

Gyromagnetic 

Ratio 

(10
8
 rad/T/s) 

Resonance Fre-

quency at 1T 

(MHz/T) 

Natural Abun-

dance (%) 

Relative Sen-

sitivity 

1
H 2.675 42.577 99.985 1.0000 

 
3
He -2.038 32.433 0.00014 0.4423 

 
13

C 0.673 10.705 1.108 0.0159 

 
17

O -0.365 5.772 0.037 0.0290 

 
19

F 2.517 40.055 100 0.8340 

 
23

Na 0.708 11.271 100 0.0925 

 
31

P 1.081 17.235 100 0.0663 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 3 

3D MULTIPARAMETRIC BREAST MRI SEGMENTATION USING                          

HIERARCHICAL SUPPORT VECTOR MACHINE WITH                                          

COIL SENSITIVITY CORRECTION 

Reprinted from Academic Radiology, 20/2, Y. Wang, G. Morrell, M. Heibrun, A. 

Payne and D. L. Parker, 3D multi-parametric breast MRI segmentation using hierarchical 

support vector machine with coil sensitivity correction, 137–47, Copyright (2013), with 

permission from Elsevier.  

Introduction 

Breast magnetic resonance (MR) imaging has become a very useful imaging 

modality for breast cancer screening and diagnosis (34).  It has been shown that 17–34 % 

of cancer foci visible on breast MRI are not detected by mammography (35).  Not only 

does breast MRI offer higher sensitivity for detection of breast cancer than x-ray 

mammography, ultrasound, clinical examination, or any combination of these, it also has 

a superior ability to delineate fatty and fibroglandular tissue (36). 

Although lesions can be detected by visual inspection of breast MRI images, in-

cluding dynamic contrast enhanced (DCE) studies, there is evidence that quantitative 
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measurements of different structures in the breast with and without contrast can assist not 

only in the detection of abnormal tissues, but also in the discrimination between fibroad-

enomas, cysts, and various types of malignancies (34,37).  In an attempt to improve the 

performance of breast computer-aided diagnosis (CAD) systems that are designed to sup-

plement visual inspection and interpretation of breast MRI, methods for fully- and semi-

automatic segmentation of lesion mass based on DCE-MR images have been developed 

(38,39).  Efforts have also been made to discriminate between benign and malignant le-

sions using quantitative morphological and feature analyses (40,41).  In addition to auto-

matic lesion detection and discrimination, breast tissue segmentation could also be used 

to determine the percentage of fibroglandular tissue present in the breast, which is direct-

ly linked to breast parenchymal patterns (42,43), where the parenchymal pattern charac-

terization parameters are taken as risk factors of developing breast cancer (36).    

Breast tissue classification is an essential initial step for breast MRI qualitative 

and quantitative analyses.  In addition, segmentation of breast tissue can also be useful in 

interventional treatments that require accurate knowledge of the internal anatomy of the 

breast, such as magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) 

therapy.  For this treatment modality, pretreatment planning, real-time control of treat-

ment, and posttreatment evaluation can be improved with accurate segmentation of fatty 

tissue, fibroglandular tissue, lesion and skin.  A primary motivation for this paper is to 

improve the accuracy of segmented models that are used to predict ultrasound field dis-

tributions in the breast and thus assist in planning focused ultrasound procedures to treat 

breast lesions.  Since the variation of the thermal and acoustic properties between differ-

ent tissue types affects both the simulated ultrasound beam pattern and the resulting 
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thermal models, it is essential to not only know the distribution of the lesion to be treated, 

but also the acoustic and thermal properties of the tissue along the proposed ultrasound 

trajectory.  Additionally, segmentation of fatty and glandular tissue is essential for MRI 

based temperature measurements because phase-based MRI thermometry works in glan-

dular tissue but not in fat (11).  

Multiparametric inputs to tissue segmentation routines have previously included 

T1, T2 and proton density (PD) weighted images (5,44).  T1-weighted (T1-w) and PD-

weighted (PD-w) images generally show clear contrast between fatty and fibroglandular 

tissue; fat-suppressed (FS) T2-weighted (T2-w) images provide good delineation of fluid 

(water)-containing structures, such as cysts, necrosis and fibroadenomas (45).  In our 

methodology, to emphasize the fatty-fibroglandular tissue contrast, three-point Dixon wa-

ter-only and fat-only contrasts are also included in the multiparametric inputs, which are 

then input into the subsequent preprocessing and segmentation routines.  Our hypothesis 

is that image pixels each represented by a five-element vector in the multidimensional 

feature space composed of T1, T2, PD, three-point Dixon water-only and fat-only con-

trasts can be accurately classified using the presented segmentation schemes.   

Prior to performing intensity-based tissue classification it may be necessary to 

correct for intensity inhomogeneity—often times called ‘bias field’—across the imaging 

field of view (FOV), which is very common in MR imaging because of the nonuniform 

coil sensitivity distribution, especially when surface coils are used.  Meyer (46) estimates 

that the intensity variation across the image FOV can be as much as 30% of image ampli-

tudes.  Although this effect of coil sensitivity on MR images can sometimes be disregard-

ed when viewed by an expert radiologist making qualitative diagnosis, the intensity varia-
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tion can be especially challenging to computerized MR segmentation (47).  The inhomo-

geneity results in broadening of the signal intensity distribution for each particular tissue 

type, which results in further ambiguity and inaccuracy when classifying different tissue 

types.  Based on whether the coil sensitivity map is obtained during or after the scan, bias 

field correction algorithms can be categorized as prospective  (48,49) or retrospective 

(43,47).   

Various algorithms have been applied for breast tissue segmentation in MR imag-

es.  Fuzzy c-mean (FCM) (50), an iterative algorithm that assigns voxels into groups ac-

cording to their distance measured in a feature space, has been used in lesion detection 

(51) and fibroglandular tissue density quantification (42).  Iterative self-organizing data 

(ISODATA) (5), as a derivation from k-mean clustering with additional features of split-

ting and merging steps to adjust the number of clusters, were investigated for differentiat-

ing benign and malignant lesions.  A hierarchical k-mean clustering procedure (52) was 

employed for lesion tissue detection in a murine model.  Spectral signature detection ap-

proaches (53,54) and conventional SVM (44) have also been studied for the classification 

of breast tissues. 

In this work, we present a hierarchical SVM-based 3D breast tissue classification 

workflow and evaluate the utility of each preprocessing and final segmentation steps.  

The importance of incorporating three-point Dixon water-only and fat-only images in the 

multiparametric inputs and the implementation of intensity inhomogeneity correction are 

demonstrated.  The performance of the presented hierarchical SVM in segmenting breast 

tissue into fatty, fibroglandular, lesion and skin components is compared with that of 

conventional SVM and FCM.  A measure of algorithm stability is made by comparing the 
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tissue classification obtained from different orientations of the 3D volumes.  Statistical 

analysis shows that the segmentation performance of the proposed methodology is re-

peatable and exceeds that of conventional algorithms.  

Materials and methods 

Subjects and image acquisition 

Imaging was performed on a Siemens MAGNETOM TIM Trio 3T MRI scanner 

(Siemens, Erlangen, Germany) using a four-channel breast coil.  With informed consent 

obtained from the volunteers, four subjects (three normal subjects and one subject with 

confirmed fibroadenoma) were examined using the following protocol: unilateral 

imaging of 88–100 sagittal slices with a FOV=192x192 mm
2
, matrix size = 192x192 and 

slice thickness = 1 mm, resulting in the 1 mm
3
 isotropic resolution.  T1-w three-point 

Dixon was performed using a 3D gradient echo (GRE) sequence with 

TR/TE1/TE2/TE3=11/4.7/5.75/6.8 ms; T2-w and PD-w images were acquired using a 2D 

turbo spin echo (TSE) sequence with bandwidth (BW) = 789 Hz/Px, echo trains per slice 

= 15, TR/TE = 13s/91ms and 13s/8.2ms, respectively.  All together, multiparametric 

combination of T1-w, FS T2-w, PD-w and three-point Dixon water-only and fat-only MR 

images were obtained. 

Preprocessing 

The multistage preprocessing routine is comprised of six steps, including co-

registration, zero-filled interpolation (ZFI), three-point Dixon reconstruction, skin 

extraction, coil sensitivity estimation, and optimal SNR reconstruction with bias field 
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correction, as detailed in the following descriptions.  All the data analyses were 

performed using Matlab (The MathWorks, Natick, MA, USA).   

Coregistration 

The total image acquisition time for a subject using the protocol mentioned above 

is 20–30 minutes.  During the course of the data acquisition, motion may occur due to 

subject movement and other physiological activities, such as respiratory and cardiac 

movement.  Coregistration was therefore performed by manually adjusting the 

displacement to correct for the misalignment between different scans.  All the images 

from the five MR multiparametric inputs needed to be coregistered, and a T1-weighted 

image was selected as the reference sequence.  Specifically, since the water-only and fat-

only are derived from the T1-weighted images, the only registration needed for the Dixon 

images was to correct for the relative fat-water shift due to the chemical shift.  The 

amount of the shift could be calculated using the readout bandwidth and the 420 Hz 

frequency shift between fat and water at 3T.  Further, T2-w and PD-w images were 

registered to the T1 sequence, where a single slice from each volumetric data were 

overlaid on the T1-w image with the same slice location.  The same amount of adjustment 

was then applied to the whole image volume. 

Zero filled interpolation 

ZFI creates reduced voxel spacing by filling zeros surrounding the original k-

space measurements.  Even though this processing does not change the spatial resolution 

of the original data, the denser imaging grid smoothes out the images and alleviates the 
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partial volume effects (55).  To study the impact of ZFI on segmentation, a factor of two 

ZFI was applied and the segmentation performance with ZFI was compared to the 

performance without ZFI.  

Three-point Dixon reconstruction 

In three-point Dixon (56), the small frequency difference between the fat and 

water signal, and the resulting phase difference as a function of TE, make it possible to 

separate the fat and water signal by acquiring images at different values of TE.  In our 

technique, images were acquired with fat and water in phase at TE = 4.7 and 6.8ms, and 

with fat and water 180° out of phase at TE=5.75ms.   The phase difference between the 

two in-phase images was used to obtain the phase evolution due to other factors, such as 

the magnetic field inhomogeneity.  Furthermore, by averaging the magnitude signal from 

the two in-phase images, the signal approximates the same effective T2* decay as that of 

the opposed-phase images because of the sequential acquisition of in-phase (TE = 4.7ms), 

out-of-phase (TE = 5.75ms), and again in-phase (TE = 6.8ms) images (57).  Water-only 

and fat-only images can thus be obtained based on the opposed-phase and averaged in-

phase images.  To overcome any phase wrap that appeared in the phase images, an 

unwrapping algorithm based on a solution of the Poisson equation (58) was used.  The 

separated water-only and fat-only images guarantee a clear separation of fibroglandular 

and fatty tissues.  Moreover, three-point Dixon reconstruction provides excellent 

delineation of skin facilitating skin extraction in the multistage preprocessing procedure, 

as explained following.  
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Skin extraction 

In breast MRI, skin and fibroglandular tissue commonly share similar signal 

intensities.  The impact of skin segmentation on quantitative measurement of breast 

density was studied by Nie et al. (59).  Due to the overlap of the signal intensity from 

skin and that from fibroglandular tissue in the multispectral feature space, we separate out 

the skin segmentation from the SVM process.  Based on three-point Dixon water-only 

images, where the bright signal of skin is sharply delineated from the surrounding 

background and breast tissues, a Canny filter (60) was used as an edge detector and pixels 

in between the boundaries were assigned as skin component.  

Coil sensitivity estimation 

To correct for the intensity inhomogeneity, the sensitivity for each individual coil 

was estimated retrospectively using the algorithm developed by P. Vemuri et al. (61).  

The algorithm does not require an increase in imaging time and eliminates the possible 

discrepancies between the estimated and true coil sensitivity profiles.  Assuming that the 

sensitivity varies slowly as a function of position, sensitivity magnitude profiles of the 

individual coil elements were obtained by fitting a lower order polynomial function to the 

image intensity occupied by a dominant tissue type.  In our application, depending on 

whether fatty or fibroglandular tissue was the dominant tissue in the breast, three-point 

Dixon fat-only or water-only images were used to determine the pixels for the 

polynomial fitting.   
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Optimal SNR reconstruction 

With the estimated coil sensitivity map, the optimal SNR images were calculated 

where each coil was reconstructed separately and combined with weights that are a func-

tion of voxel location (62).  Mathematically, optimal SNR reconstructed image  can 

be calculated by:   

 

                                               [3.1] 

 

where r denotes the position in the image space;  is the row 

vector of coil images;  is the row vector of coil sensitivities 

estimated from above step;  is an L by L matrix which describes the coupling and noise 

correlations between the coil elements.  The noise matrix was assumed to be an identity 

matrix in the actual calculation for simplicity, and it was shown by Roemer et al. (62) 

that there was only a 10% SNR loss when assuming there is no noise correlation. 

Tissue segmentation using hierarchical SVM 

  The supervised learning algorithm, SVM (63,64), uses training data to construct 

hyper-planes to minimize the margin between classes.  The program learns behavior by 

using a small amount of the input data to train the SVM algorithm and then applies this 

learned behavior to the rest of the dataset.  Instead of segmenting breast tissue into a 

specified number of target tissues types by applying SVM once as in the conventional 

manner, the SVM processing was divided into hierarchical stages where in each stage 
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only two tissue types were classified.  We decompose the one-time multiclass 

segmentation into hierarchical binary-class segmentation.  Fig. 3.1 shows the schematic 

structure of the hierarchical SVM with corresponding multiparametric inputs and target 

output tissue types.  Different combinations of multiparametric images were assigned at 

each level of SVM.  In the first stage (level), the entire dataset was classified into 

background vs. breast tissue using the PD-w images.  After excluding the background 

pixels, the second stage of SVM was applied to the tissue pixels only.  T1-w and three-

point Dixon fat-only and water-only images were selected as the input features to 

segment out fatty tissue from the nonfatty tissues, including fibroglandular tissue, skin 

and lesion (if present).  In the third stage, lesion vs. nonlesion pixels (i.e., fibroglandular 

tissue and skin) were classified with inputs being T1-w, T2-w and PD-w images.  In the 

final step, outputs from all three stages were combined and presented in a final color map 

with each color representing a single tissue type.  The multiclass classification problem 

was decomposed into multiple binary-class classification problems.  Better performance 

is expected because designing a classifier for separating two classes is easier than 

designing a classifier to separate multiple classes simultaneously (65).  For comparison, 

we evaluated segmentation using conventional SVM and one of the most widely used 

unsupervised learning algorithms — fuzzy c-mean clustering with identical multi-

parametric input.  All the human volunteer studies were approved by the local 

institutional review board.                                                                                                                  
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Statistical analysis 

 The performance of the proposed hierarchical SVM along with conventional 

SVM and FCM were evaluated by comparing with the manual classification performed 

by an experienced breast radiologist blinded to the segmentation results.  Specifically, 

about 100 points were selected on each slice in a spatially random manner to which the 

radiologist assigned different tissue types.  Even though random sampling results in 

unbalanced sampling points for different tissue types, complete randomness avoids any 

potential bias in the interpretation of radiologists who are blinded to the segmentation 

results.  The classification accuracy of the algorithms on the 3D volumetric datasets was 

evaluated by measuring the overlap ratio of segmentation results with the manual 

classification as the gold standard.  The overlap ratio is defined as the ratio of the points 

that are correctly classified by the computer program based on the radiologist’s 

classification to the total number of pixels that are randomly chosen for the radiologist to 

classify.  The impacts of the preprocessing steps, including coregistration, ZFI and coil 

sensitivity correction, were quantitatively accessed by comparing the overlap ratio from 

segmentation with and without these procedures.  Additionally, consensus reading is 

attained on one subject by adding a second breast radiologist, to quantify the expected 

interobserver variability of manual segmentation.  Lastly, a measure of algorithm stability 

was made by comparing the segmentation obtained using sagittal and axial views of the 

3D volumes. 
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Results 

 Fig. 3.2 (a) shows an example slice from a 3D multiparametric input of a subject 

with a confirmed fibroadenoma (circled).  Image contrasts of T1-w, T2-w, PD-w, three-

point Dixon fat-only and water-only are shown from left to right.  In Fig. 3.2 (b), image 

intensities from region of interest on fatty tissue, fibroglandular tissue, skin, 

fibroadenoma and background are plotted in a 3D feature space composed of T1, T2 and 

PD contrast.  It is noticeable in Fig. 3.2 (b) that the signal of skin overlaps with that of the 

fibroglandular tissue, which makes the classification problem non-separable.  Therefore, 

we take skin extraction as an independent step from the final tissue classification.    

To show the range of the datasets included in this study, the central slice of T1-w 

images from each dataset is displayed in Fig. 3.3.   The scaling is included in the figure to 

indicate the relative size of the breasts.  These four datasets represent a wide range of 

breast volumes, shapes and densities.  

The necessity of coregistration is illustrated in Fig. 3.4.  Due to the motion, PD-w 

image in the multiparametric input was off to the right by two pixels relative to the rest of 

the dataset.  After the translational shift was manually corrected, the one-side misclassifi-

cation at the tissue boundary of the fibroglandular tissue island and the surrounding fatty 

tissue (see Fig. 3.4 (a)) is reduced, as shown in Fig. 3.4 (b).   

Fig. 3.5 (a, b) shows an example sagittal slice of three-point Dixon water-only 

image and the edge detection results after applying a Canny filter.  Pixels between the 

inner and outer boundary of the skin were assigned as skin component, presented in Fig. 

3.5 (c).  

A slice of PD-w images from a healthy subject is displayed in Fig. 3.6 (a) with 
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clear bias field inhomogeneity across the imaging FOV.  The signal intensity varies as the 

proximity of breast to the phased-array coils changes.  Fig. 3.6 (b) and (c) show the esti-

mated coil sensitivity and the optimal SNR reconstructed image with corrected bias field, 

respectively.  The corrected image shows good intensity uniformity, which improves the 

accuracy of the breast tissue segmentation.  

Histograms of breast tissue signal intensity of the example shown in Fig. 3.6 are 

plotted in Fig. 3.7.  The narrowing of the histogram after coil sensitivity correction indi-

cates the importance of intensity inhomogeneity correction in computerized tissue seg-

mentation, because the histogram width depends greatly on image intensities.  

Lateral projection through the 3D volumetric segmentation output of the hierar-

chical SVM for the subject with confirmed fibroadenoma is demonstrated in Fig. 3.8.  A 

slice of segmentation output from hierarchical SVM, conventional SVM and FCM with 

identical multiparametric input is displayed in Fig. 3.9.  It is evident that hierarchical 

SVM outperforms the conventional SVM and FCM in terms of the least misclassification 

error, referring to the anatomical input shown in Fig. 3.2 (a).  The observation is further 

confirmed by the statistical analysis performed based on the complete 3D volumes, where 

the overlap ratios were calculated for each algorithm in comparison to radiologist’s man-

ual classification, as listed in Table 3.1. 

To get more insight into the statistics given in Table 3.1, the performances of 

segmentation for each individual tissue type are presented in Tables 3.2–3.6.  Specifical-

ly, for each tissue type that was manually classified by the radiologist, the corresponding 

classification outputs from the hierarchical SVM are listed.  Pixels that were correctly 

classified, incorrectly classified and the resulting overlap ratios for dataset #1–4 are pre-
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sented in Tables 3.2–3.6, respectively.   

To further understand the performance of segmentation from hierarchical SVM 

along axial and sagittal directions, the tissue specific overlap ratios from the two orienta-

tions are calculated based on the combined data from subject #1 and #2, as listed in Table 

3.7.   

Discussion 

A 3D hierarchical SVM-based segmentation algorithm was proposed for breast 

MRI tissue segmentation, with special emphasis on the inclusion of three-point Dixon 

images in the multiparametric MR inputs and coil sensitivity correction as one of the 

critical preprocessing steps.  The segmentation output from hierarchical SVM was 

compared with other algorithms —conventional SVM and FCM.  It was shown that the 

proposed breast MRI classification workflow segments tissue with the highest accuracy.  

In our technique, the binary hierarchical SVM decomposes the four-class classifi-

cation problem into three subproblems, each separating two classes, as illustrated in Fig. 

3.1.  Since each classifier is simpler, better classification performance is expected, as 

confirmed by the statistics from Table 3.1.  The average computational time for a com-

plete 3D volume was 6 minutes on a desktop PC with Intel Core 2 Duo CPU and 2.98GB 

of RAM.    

The primary motivation of the presented methodology is to provide a segmented 

breast tissue model as input to ultrasound beam simulations in MRgHIFU treatments.  

However, this technique may also be useful for other purposes such as diagnostic evalua-

tion.  Segmentation of tissue types does not remove information from the images, but ra-
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ther classifies by tissue type.  Segmentation of skin may be helpful for clinical evalua-

tion; a segmented image depicting the skin alone might make abnormal skin thickening 

more easily visible.  

The unsupervised learning algorithm FCM has been used for lesion segmentation 

on localized areas successfully (51).  However, for larger FOV data sets, one tissue type 

could end up being classified into multiple clusters.  When a predetermined number of 

tissue types are specified in FCM, as in the presented case, the dominant tissue is likely to 

be classified into more than one cluster, while a tissue type with fewer pixels could be 

overlooked in the clustering process.  Therefore, while the FCM algorithm is completely 

data driven, human intervention is required during postprocessing to assign the misclassi-

fied voxels to the desired target tissue type.  

The importance of the three preprocessing steps on the accuracy of segmentation 

was evaluated as shown in Table 3.1.  Performance degradation is clearly seen when the 

image intensity inhomogeneity caused by the coil sensitivity is not considered.  However, 

ZFI did not provide significant improvement in the classification output statistically.  

This may be because, due to the complete randomness in choosing the sampling points, 

the calculated overlap ratios may not fully represent the advantage of ZFI, because one 

would expect the improvement from ZFI to appear mostly on the tissue boundaries.  

Based on the overlap ratios with and without coregistration, improved accuracy by apply-

ing coregistration can be seen from dataset #1 and 4, but not dataset #2 and 3.  This could 

possibly be explained by the different degree of motion associated with different datasets.  

In dataset #1 for example, the PD-w images need to be shifted four pixels relative to the 

T1-w due to movement of the subject between image acquisitions, as compared to one 
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pixel in dataset #2.  Therefore, more significant improvement is anticipated from apply-

ing coregistration on these datasets.  

The statistics for individual tissue type suggest that for certain tissue types, such 

as skin and lesion, the overlap ratios are lower in comparison to other tissue types, as 

shown in Tables 3.2–3.6.  Spatially, the misclassified pixels mostly appear at the tissue 

boundary.  For example, the fibroadenoma in dataset #1 is surrounded by fibroglandular 

tissue, and the misclassified fibroadenoma pixels were all incorrectly assigned as fibro-

glandular tissue in Table 3.2.  Based on the manual classification from the two radiolo-

gists, individual tissue segmentation of dataset #1 was evaluated in Tables 3.2 and 3.3.  A 

good correlation is found between the two radiologists’ segmentation because of a rea-

sonably consistent overlap ratios across various tissue type.  The correlation coefficient 

between the two readers is 90.23%.  Detection of lesions and delineation from normal 

fibroglandular tissue is difficult, and in clinical practice requires administration of intra-

venous contrast.  Therefore, it is not surprising that any method using only noncontrast 

images, whether automated or manual, is less effective at classifying fibroglandular tissue 

vs. solid breast lesions.  Future work will investigate the potential improvement of tissue 

classification accuracy with the incorporation of contrast-enhanced scans as an input to 

the algorithm. 

The consistency of the presented results in both the sagittal and axial orientations, 

shown in Tables 3.1 and 3.7, indicates the stability of the proposed segmentation routine 

and also implies the robustness to the possible variations in the generation of training da-

ta.  This suggests that the proposed algorithm could be applied in longitudinal follow-up 

studies to detect changes, e.g., the change of breast density evaluation for risk assess-
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ment, and for posttreatment evaluation of neoadjuvant chemotherapy.  

 Currently, the targeted segmentation tissue types include only fatty tissue, fibro-

glandular tissue, skin, and lesions.  Components such as blood vessels were not consid-

ered.  Efforts are being made to visualize blood vessel while suppressing the fibroglandu-

lar tissue so that the segmentation could be further improved by incorporating more tissue 

types.  Investigation into this improvement is ongoing and will be evaluated in both nor-

mal subjects and those with confirmed breast lesions. 

Conclusions 

 Breast tissue classification of MRI data may be useful to aid in the diagnosis of 

breast cancers and to assess breast cancer risk based on breast density.  In this work, a 

hierarchical SVM algorithm along with a series of preprocessing schemes was presented 

to automatically segment breast tissues using 3D multiparametric breast MRI.  The 

importance of multiparametric MRI contrasts and coil sensitivity correction was 

investigated.  Results show that more accurate breast MRI segmentation can be obtained 

using the hierarchical SVM with proper preprocessing compared to other available 

algorithms.   
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Figure 3.1. Schematic structure of hierarchical SVM process with corresponding 

input feature and output segmented tissue type. 
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(a) 

 

(b) 

Figure 3.2. Multiparametric input of a subject with confirmed fibroadenoma (ci r-

cled). (a) An example sagittal slice from the multiparametric input.  Contrasts 

displayed from left to right: T1, FS T2, PD, three-point Dixon fat-only and water-

only images.  (b) Region of interest based image intensities from fatty tissue, f i-

broglandular tissue, skin, fibroadenoma and background are plotted in a 3D fea-

ture space composed of T1, T2 and PD contrast. 
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Figure 3.3. The central slice of T1-w images from dataset 1–4 is displayed in (a)–(d), re-

spectively.  The axes units are in mm.  The four datasets in this study represent a wide 

range of breast volumes, shapes and densities.   

 

 

 

 

Figure 3.4. Segmentation output (a) without and (b) with coregistration. Fatty 

tissue, fibroglandular tissue, skin and fibroadenoma are presented in dark blue, 

light blue, yellow and red, respectively.  The misclassification appears on the 

border of the fibroglandular tissue island (light blue) and the surrounding fatty 

tissue (dark blue) drops considerably after coregistration, as pointed by the ar-

row.    

 



60 

 

 

 

Figure 3.5. Skin extraction using (a) three-point Dixon water-only image; (b) 

Canny filtering output; (c) final skin pixels extracted from the water-only image.   

 

 

 

 

Figure 3.6. Coil sensitivity correction on an example PD-w sagittal image of a 

healthy subject. (a) Original image, (b) estimated coil sensitivity, and (c) optimal 

SNR reconstructed image with coil sensitivity correction. 
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Figure 3.7. Line plot of histograms of image intensity before and after coil sens i-

tivity correction, based on the example from Fig. 3.6.   

 

 

 

 

Figure 3.8. Lateral projection through the 3D volumetric segmentation output of 

the hierarchical SVM algorithm for the subject with confirmed fibroadenoma.   

Fatty tissue, fibroglandular tissue, skin and fibroadenoma are presented in blue, 

green, yellow, and red, respectively.   
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Figure 3.9. Segmentation output of (a) hierarchical SVM, (b) conventional SVM, 

and (c) FCM from the subject with a confirmed fibroadenoma.  Fatty tissue, f i-

broglandular tissue, skin and fibroadenoma are presented in dark blue, light blue, 

green and red, respectively.  The corresponding multiparametric input was shown 

in Fig. 3.2. 

 

 

 

 

Figure 3.10. Bar diagram illustration of the overlap ratios from hierarchical SVM 

along saggital and axial directions, conventional SVM, and fuzzy c-mean algo-

rithms for four datasets, according to Table 3.1.  The overlap ratios are calculat-

ed by comparing the performance of the methods to manual segmentation by r a-

diologist.  Consistently higher overlap ratios from the hierarchical SVM along 

both directions indicate the superior performance and stability of the hierarchical 

SVM than other algorithms.   
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Table 3.1 Overlap ratios of various algorithms with radiologist's manual classif i-

cation as ground truth 

Overlap 

Ratio 
h-SVM 

(sag-

gital) 

h-SVM 

(axial) 
c-SVM FCM h-SVM 

w/o CSC 
h-SVM w/o 

ZFI 
h-SVM w/o 

co-

registration 

dataset #1 90.94% 90.47% 86.97% 75.96

% 
82.09% 90.69% 88.81% 

dataset #2 94.08% 93.92% 90.30% 80.58

% 
83.42% 94.50% 93.67% 

dataset #3 93.90% 93.90% 81.68% 91.02

% 
95.45% 94.41% 95.38% 

dataset #4 93.25% 92.79% 92.28% 80.06

% 
81.39% 92.76% 81.12% 

Hierarchical SVM (h-SVM) offers highest overlap ratio than the conventional 

SVM (c-SVM) and the FCM algorithm.  Three preprocessing steps, coil sensitiv i-

ty correction (CSC), zero-filled interpolation (ZFI), and coregistration are also 

evaluated. 

 

 

 

Table 3.2 Tissue type analysis of dataset #1 segmentation from Radiologist #1  

            Hierarchical SVM                  

Radiologist 

Fat Fibroglandular Skin Lesion Air Overlap 

Ratio 

Fat 3877          165 45 4 116 92.16% 
Fibroglandular 222    467 17 2 1 65.87% 

Skin 8       37 180 2 91 56.60% 
Lesion 0 8 0 8 0 50.00% 

Air 6           30 14 0 3401 98.55% 

Correctly classified, incorrectly classified and overlap ratios of hierarchical SVM for 

each individual tissue type, comparing to the manual classification from Radiologist #1. 
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Table 3.3 Tissue type analysis of dataset #1 segmentation from Radiologist #2  

            Hierarchical SVM 

Radiologist 

Fat Fibroglandular Skin Lesion Air Overlap 

Ratio 

Fat 3483 122 22 0 112 93.15% 
Fibroglandular 445 467 211 1 0 50.00% 

Skin 73 40 200 2 15 46.51% 
Lesion 0 1 0 7 0 87.50% 

Air 19 33 14 0 3378 98.08% 

Correctly classified, incorrectly classified and overlap ratios of hierarchical SVM for 

each individual tissue type, comparing to the manual classification from Radiologist #2. 

 

 

 

Table 3.4. Tissue type analysis of segmentation for dataset #2 

             Hierarchical SVM 

Radiologist 

Fat Fibroglandular Skin Air Overlap 

Ratio 

Fat 3279          180 33 45 92.71% 
Fibroglandular 142    632 9 3 80.41% 

Skin 6    83 143 56 49.65% 
Air 2            7 12 5443 99.62% 

Correctly classified, incorrectly classified and overlap ratios of hierarchical SVM in sag-

ittal orientation for each individual tissue type in dataset #2.   

 

 

 

Table 3.5. Tissue type analysis of segmentation for dataset #3  

Hierarchical SVM 

Radiologist 

Fat Fibroglandular Skin Air Overlap 

Ratio 

Fat 3006 40 0 28 97.79% 
Fibroglandular 115 379 0 2 76.41% 

Skin 27 85 110 39 42.15% 
Air 123 4 2 4046 96.91% 

Correctly classified, incorrectly classified and overlap ratios of hierarchical SVM in sag-

ittal orientation for each individual tissue type in dataset #3.   
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Table 3.6. Tissue type analysis of segmentation for dataset #4   

          Hierarchical SVM 

Radiologist 

Fat Fibroglandular Skin Air Overlap 

Ratio 

Fat 1223 52 12 180 83.37% 
Fibroglandular 26 1340 1 57 94.10% 

Skin 9 78 145 38 53.70% 
Air 3 22 29 4517 98.82% 

Correctly classified, incorrectly classified and overlap ratios of hierarchical SVM in sag-

ittal orientation for each individual tissue type in dataset #4.   

 

 

 

Table 3.7. Overlap ratios of hierarchical SVM at two orientations (sagittal and axial) for 

each individual tissue type 
              Saggital 

SVM 

Axial SVM 

Fat Fibroglan-

dular 

Skin Lesion Air Total 

Points 

Overlap 

Ratio 

Fat 4,532,681 156,116 3,926 967 19,280 4,712,970 96.17% 

Fibroglandular 50,442 1,027,900 0 1,178 7,192 1,086,712 94.59% 

Skin 1,629 0 268,830 252 1,330 272,041 98.82% 

Lesion 18 994 110 4,123 18 5,263 78.34% 

Air 6,807 8,440 52 0 5,482,907 5,498,206 99.72% 



 

 

 

 

 

CHAPTER 4

FLOW MEASUREMENT IN MRI USING ARTERIAL SPIN LABELING               

WITH CUMULATIVE READOUT PULSES                                                                     

– THEORY AND VALIDATION 

This chapter is based on a paper entitled “Flow measurement in MRI using 

arterial spin labeling with cumulative readout pulses — theory and validation” written by 

Y. Wang, S-E. Kim, E. DiBella and D. L. Parker, published in Medical Physics. 2010, 

37(11): 5801–5810. 

Introduction 

 Arterial spin labeling (ASL) is a perfusion magnetic resonance imaging (MRI) 

technique that generates flow-sensitive signal by manipulating the endogenous water 

spins in the flowing arterial blood (66).  The flow contrast in ASL flow-sensitive signal is 

usually created by a relative inversion between inflowing spins and stationary in-slice 

nonflowing spins.  For example, by acquiring tag and control images, preceded by 

inflow-magnetization-inversion and inflow-magnetization-noninversion preparation, 

respectively, the difference between the two reflects only the signal from inflowing 

magnetization with static magnetization being subtracted out.   
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Since the flow contrast comes from the freely diffusible water without any con-

trast agent administration, ASL techniques are safe and repeatable.  This property allows 

multiple (repeated) flow assessments, which could be especially useful for procedures 

such as thermal therapy treatment where tissue perfusion affects the procedure and may 

change due to the procedure.  For MRI guided high intensity focused ultrasound 

(MRgHIFU) in particular, the widely used Pennes’ bioheat transfer equation (BHTE) is 

used as the fundamental governing equation to model the effects of heat deposition and 

dissipation in tissues.  The formulation includes terms for thermal conductivity and an 

effective perfusion, which represents the rate at which blood flow removes heat from a 

local tissue region.  However, tissue properties, particularly perfusion, are known to 

change over the course of a thermal therapy treatment (67,68). Detecting perfusion 

changes during a thermal therapy treatment would enable adjustment of treatment param-

eters to achieve a more efficacious therapy.   

After the initial introduction of ASL by Detre and William (66,69), various tech-

niques (70-74) have been developed over the past decade to improve the performance, 

including pulsed ASL (pASL) which employs short pulses proximal to the imaging slice 

to label the blood magnetization in the feeding artery.  Of the different pASL techniques, 

flow-sensitive alternating inversion recovery (FAIR) (75) is one of the most frequently 

used tagging strategies.  A FAIR flow-sensitive image is obtained by performing an in-

version-recovery sequence twice — once with and once without a slice-selection gradient 

to label the arterial spins.  As a derivative of FAIR, uninverted flow-sensitive alternating 

inversion recovery (UNFAIR) (76) keeps static signal noninverted in the volume of inter-

est by applying an additional inversion pulse right after the first inversion pulse.  A simi-
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lar technique, called in-plane slice-selective double inversion (IDOL)-prepared ASL, was 

proposed recently by Jahng et al. (77) to minimize the flow-sensitive signal contamina-

tion from residual static signal and compensate for potential magnetization transfer (MT) 

effects.  Generally, multiple signal averages are needed to overcome the intrinsic low 

signal-to-noise ratio (SNR), which has been the major limiting factor that hampers the 

extensive application of ASL.  To overcome this issue, methods involving a Look-

Locker-like acquisition following the labeling magnetization preparation to monitor the 

temporal dynamics of blood inflow have been proposed (78,79).  In inflow turbo-

sampling (ITS)-FAIR (78), FAIR preparation was combined with Look-Locker image 

readout by acquiring a series of images after each labeling pulse using echo planar imag-

ing (EPI) readouts.   Quantitatively, images at multiple inversion times are required to 

improve the accuracy of the perfusion quantification, especially for patients with athero-

sclerosis where the distribution of transit times varies greatly in brain (79).  Blood vol-

ume could also be estimated using LL-EPI readout as reported by Brookes et al. [26].  

EPI is the most widely used imaging pulse-sequence to measure cerebral blood 

flow (CBF) in ASL due to its ability to perform single-shot fast image acquisition and its 

high SNR for a given imaging time (77).  However, artifacts, including susceptibility and 

Nyquist ghosting, limit its application in imaging other tissues.  Other fast imaging se-

quences such as balanced steady-state free precession (SSFP) and partial-Fourier fast spin 

echo (FSE) have also been implemented in conjunction with ASL (80).  In addition, cen-

tric-ordered turbo-FLASH (TFL) imaging readout (77,81,82) has been investigated be-

cause of its insensitivity to susceptibility effects and reasonably fast imaging time.  Cen-

tric-ordered readout has been used (81-83) to obtain the highest weighting in the recon-
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structed image on the data points at the beginning of the acquisition.  In this work, instead 

of centric ordering, a linear phase encoding scheme (center of k-space being acquired in 

the midway) is employed to estimate flow velocity. 

In addition to obtaining cerebral perfusion parameters for the study of vascular re-

lated diseases and functional MRI, the flow-sensitive signal from ASL can also be mod-

eled to obtain quantities that indicate the flow velocity in the tissue of interest (80).  The 

quantification results from various ASL magnetization preparation and modeling 

schemes should yield, in principle, the same perfusion values because perfusion is a bio-

logical parameter.  However, as recently reported by Cavusoglu et al. (84), the different 

tagging strategies can result in perfusion measurement variations by as much as 18%. The 

correspondence between measured and actual perfusion can be limited by several con-

founding factors, such as transit delay, fluid spin-lattice relaxation time, and flow-

sensitive difference signals (85).  Moreover, the flow-sensitive difference signals ac-

quired using different imaging parameters or imaging sequences can lead to greater errors 

if conventional, but inappropriate, flow models are used.  Conversely, the quantification 

process should avoid dependence on imaging sequences or parameters by incorporating 

the characteristic of the sequences and parameters in the modeling.   

ASL has been mostly demonstrated in the brain (73-79), where localized changes 

in CBF are estimated to study the physiological status of brain tissue.  Other in vivo ap-

plications include cardiac (86), lung (87) and kidney (88) perfusion imaging.  Although 

ASL techniques have been validated extensively in human studies, and some animal stud-

ies (81), application to a tissue-mimicking flow phantom with varying flow rates has rare-

ly been performed.  To our knowledge, only one paper was published on analytical vali-
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dation of perfusion imaging on a phantom composed of a syringe filled with plastic beads 

and small plastic tubes using the Q2TIPS sequence and a kinetic model (89).   

In this work, we present a new pulse sequence design that combines TFL imaging 

and Look-Locker-like (78,79) readout at multiple inversion times in a single scan, and 

validate the measurements using a hemodialyzer as a tissue-mimicking flow phantom.  

Taking advantage of multiple images along the inversion recovery curve and using a 

linear phase-encoding acquisition order for each image, the rate at which flow passes 

through a point can be determined.  The general low SNR of the ASL images will be 

improved by the higher time-efficiency of the Look-Locker readout strategy.  A matching 

result is found between simulation and flow distribution in the hemodialyzer at varying 

flowing conditions.  A human brain flow velocity mapping was obtained as well. 

Theory 

Imaging sequence 

ASL magnetization preparation is performed using IDOL (77). Specifically, two 

slice-selective inversion pulses centered on the imaged slice are utilized to invert the 

spins in the inflowing blood while leaving spins in the slice noninverted.  These pulses 

consist of a global inversion followed by a slice-selective inversion over the imaging 

slice to achieve spin tagging, see Fig. 4.1(a).  For the control scan, two equivalent slice-

selective inversion pulses are applied on the imaging slice to compensate for potential 

MT effects and to leave the static spins noninverted for both tagging and control.  The 

contamination of residual static signal in the resulting difference signal is therefore 

minimized.  As the tagged spins flow into the imaging slice, a sequence of TFL images 
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are acquired separated by a fixed time delay (TD).  For each TFL image, the k-space 

phase-encoding lines are acquired with excitation by a train of   excitation pulses.  The 

delay, TD is selected as the wait time between each image to allow the washout of the 

tagged spins that have experienced the excitation pulses from the previous image readout.  

However, for ultra-slow flow, the TD required for complete washout is too long, such 

that the ASL contrast is diminished by the T1-recovery process. In this ultra-slow-flow 

case, the memory from prior pulses needs to be considered for later readouts.   

The schematic diagram of (a) the imaging pulse sequence along with (b) the 

corresponding signal evolution of longitudinal magnetization from both tag and control 

inflow fluid is presented in Fig. 4.1.  In Fig. 4.1 (b), the signal plotted is the normalized 

longitudinal magnetization at velocities of 10, 20 and 40 mm/s obtained using the 

simulation parameters: imaging slice thickness = 5mm, TD = 200ms, T1 = 1450ms and 

flip angle )(  = 15°.  After tagging, images are acquired while the inverted flowing 

magnetization recovers towards the fully relaxed state.  Similarly, the control signal 

evolution due to the excitation RF pulses is demonstrated in Fig. 4.1 (b) as well, with the 

initial magnetization being fully relaxed.  Flow signal differs as a function of velocity 

because signal saturation depends upon the number of excitation pulses experienced as 

the magnetization passes through the slice, which in turn depends upon the flow velocity.  

Fast flow (40mm/s in Fig. 4.1 (b)) guarantees that the initial magnetization originates 

from the inversion recovery curve; whereas the initial magnetization of ultra-slow flow 

(10mm/s in Fig. 4.1 (b)) is determined by signal evolution from previous readouts.  

Under this particular condition, 20mm/s appears to be the critical velocity, above which 

the memory from the RF pulses from the previous readout need not be considered.  The 
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flow information encoded in the train of readout excitation pulses is captured by linear k-

space ordering.  In Fig. 4.1 (b), a marker is placed in the center of each image readout, at 

the point where the signal from the center of k-space is acquired with linear phase 

encoding ordering.   

Modeling 

With TFL imaging readout, the theoretical expression of the magnetization 

evolution of the inflowing ASL control and tagging signals are derived based on the 

Bloch equations.  The fluid signal behavior can be modeled by considering the impact of 

a varying number of   excitation pulses on the freshly inflowing magnetization as a 

function of flow velocity.  Since the number of   excitation pulses experienced by the 

fluid changes with different flow velocities, the derivation of an expression for the inflow 

signal provides a model to estimate velocity quantitatively.  Mathematically, the effects 

of excitation pulses on the flow signal in each repetition time (TR) are modeled by three 

processes: excitation, longitudinal magnetization recovery and flow shifting.  In the 

modeling, each slice is subdivided into K partitions, where 
TRv

D
K


 , D is the slice 

thickness, v is the estimated flow velocity, and TR is the time interval between the 

excitation pulses.  K is therefore the number of RF pulses seen by the spins passing 

through the slice.  For each TR, starting with the initial magnetization )( 0tM
jz

, 

j =1,2,...,K, the fluid magnetization goes through the following processes: 

 At j
th

 excitation 
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 Magnetization recovery and flow shifting after j
th

 excitation  
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 for j = 2,…,K                           [4.2] 
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where 

  

E1 = exp(-TR /T1blood ), 0M   is the fully relaxed longitudinal magnetization, and 

)(_ tM bloodz  is the flow(blood) magnetization outside imaging slice but within the global 

inversion region, and j is the spatial index of the number of subslices.  The routine is then 

iterated Ny times until all the phase encoding k-space lines are acquired, with image 

readout time of TRNy   for each image.  The difference between tagging and control sig-

nals lies in the expression for the initial magnetization )( 0tM
jz

, i.e., 
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Flow-sensitive signal is obtained by taking the difference of control and tag images, 

where each signal is formed by averaging from all K subslices.   

Because of the existence of fluid exchange between intra- and extra-fiber com-

partments in a hemodialyzer, which is demonstrated in the simulation, a two-
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compartment model that provides estimation of the two velocities in the hemodialyzer is 

developed.  Mathematically,  

 

)sin(])()1()([ extraextraintraintra   vSvSSASL                          [4.5] 

 

where intraS and 

   

Sextra
 represent the signal of intra- and extra-fiber, respectively, intrav  and 

intrav  are the flow velocities in the intra- and extra-fiber, respectively,   is the relative 

proportion of the extra-fiber compartment, and  is the flip angle.  

Methods 

Simulations 

 All the simulations were made and displayed using algorithms developed in Matlab 

(The MathWorks, Natick, MA, USA).  Simulations were performed to assess the 

behavior of the flow-dependent ASL signal as a function of varying imaging parameters.  

First of all, the impact of varying flow rates, i.e., K in Eq. [4.1-2], on inflowing tag and 

control signals was studied.  Signal evolution of longitudinal magnetization of flowing 

spins were simulated at three flow rates ranging from 20 mm/s to 60 mm/s.  The 

simulation imaging parameter were TR = 3 ms,   = 15°, TD = 200 ms, Ny = 64,  
Tblood

T
31  

= 1.45 s, slice thickness = 5 mm, number of images along the curve = 8.  The ASL signal 

was then obtained as the difference between control and tag signals.  The impacts of 

different parameters, such as   in Eq. [4.1] and T1 in Eq. [4.2] on resulting flow-

sensitive signals were explored.  To determine the effects of  , signals corresponding to 
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four  ’s varying from 5° to 20° were simulated at the flow velocity of 40mm/s and 

120mm/s.  The remaining parameters were kept the same as the previous simulation.  

Similarly, the flow-sensitive signal evolutions were simulated at four T1 ranging from 

500ms to 2000ms.  Furthermore, the sensitivity of the flow-sensitive ASL signal to 

varying flow velocity was further visualized as a function of inversion time (TI), and a 

comparison to the actual hemodialyzer experimental results was presented.  Based on the 

simulations, optimal parameters can be selected to maximize the flow signals of the 

hemodialyzer and in vivo experiments. 

Hemodialyzer imaging 

 A hemodialyzer, which has thousands of fibers, each with a diameter on the order 

of hundreds of microns, has properties that may be useful in mimicking human tissue 

flow and can be tested with a wide range of flow rates.  In this study, all images were 

acquired on a Siemens MAGNETOM TIM Trio 3 T MRI scanner with 40 mT/m 

gradients and a slew rate of 200 mT/m/ms.  A commercially available hemodialyzer 

(Baxter Xenium-190) with Gd-BOPTA  water pumped through the fibers unidirectionally 

was imaged using a 12-channel head coil (Siemens, Erlangen, Germany).  To validate the 

complete cancellation of static signal between tag and control, a static water phantom was 

set next to the dialyzer and imaged in the same field of view.  A nonpulsatile pump 

circulated doped water (T1 = 1.45 s) at pumping rates of [45, 90, 135, 180] cc/min 

through the semipermeable fibers in the hemodialyzer.  Using the proposed imaging 

sequence, single-slice 2D transversal images of the hemodialyzer were acquired at a 

series of TI = [200, 600, 1000, 1400, 1800, 2200, 2600, 3000] ms in one scan with the 
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following parameters: TR = 3 ms,  =15°, TD = 200ms, voxel size = 3.1x3.1x5 mm
3
.  

Tagging and control scans were interleaved.  Furthermore, a leading edge method was 

used to estimate the flow rates within the hemodialyzer by measuring the leading edge of 

the fluid as a function of TI.  A single coronal slice was acquired using the same pulse 

sequence to validate the quantification result.  Two 180° hyperbolic-secant adiabatic 

inversion pulses with duration of 20 ms were used for tagging and control preparation.  

To avoid any contamination from imperfection in the inversion pulse slice profile, 4.5 

mm extra inversion thickness on each side was applied on the imaging slice in the IDOL 

preparation.  A region of interest (ROI) was drawn over the hemodialyzer cross-sectional 

flow-sensitive image at each TI to obtain an averaged ASL signal.   

The resulting flow-sensitive ASL time series data were input into a nonlinear 

least-squares fitting routine written in Matlab.  The model could provide simultaneous 

estimation of both flow velocities for the intra- and extra-fiber compartments in a single 

measurement.  A comparison of simulation and experiment was made to indicate that the 

flow velocities in the two compartments are different.  It was shown that the 

hemodialyzer cross-section is composed of 30% intrafiber area and 70% extrafiber area. 

Therefore, an averaged velocity can be determined based on the estimated intra- and 

extra-fiber velocities. 

In vivo imaging 

  This study was approved by the institutional review board.  One healthy subject 

was imaged using the same pulse sequence at a series of TI = [700, 1000, 1300, 1600, 

1900, 2200]ms in a single scan.  Single-slice 2D transversal images of the brain were 
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scanned with the following imaging parameters: TR = 3ms,   = 15°, matrix size = 

128x128, pixel size = 2x2x3.5 mm
3
, BW = 490 Hz/Px, tagging thickness = 10mm.  The 

imaging slice was located at the corpus callosum while the tagging of the inflow was 

centered on the neck so that the heart was included in the inversion region.  An 8 second 

time interval was introduced between the interleaved tag/control scans to avoid any 

impact from previous pulses.  Altogether, four measurements of tag/control pairs were 

acquired in 1 minute.  Pair-wise subtraction between tagging and control images was 

performed to obtain the averaged flow-sensitive images.  In addition, a nonlinear least-

squares fitting routine was applied to the measured data series of difference signals to 

estimate flow velocities.  An estimate of fully relaxed magnetization of arterial blood M0 

is obtained by acquiring a proton density-weighted (PD-w) gradient echo sequence with 

TR = 3000ms and TE = 8ms, and a correction for proton density and relaxation rate of 

gray matter was applied (19). A literature T1 value of blood 1684ms (19) is used in the 

modeling.  

Results 

Simulation 

 Fig. 4.2 illustrates the normalized longitudinal magnetization evolution of 

inflowing tag and control signals at three flow velocities with the assumption of the 

lowest velocity being fast enough that each time the imaging starts with freshly inflowing 

spins.  It is clear that the inversion recovery of tagging magnetization and the non-

inverted control magnetization are the source of the contrast.  As the flow rate changes, 

the impact of the series of   excitation pulses on the inflowing spins is visualized as 
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different trajectories corresponding to different velocities.  The tag signal of the lower 

velocity tends to deviate further from the inversion recovery curve, while the tag signal of 

the faster velocity tends to eventually stay closer to the inversion recovery curve.  In 

other words, spins with higher flow rate are less affected by the excitation pulse train than 

those with a slower flow rate since fast moving spins experience fewer excitation pulses.  

A similar situation is found for the control signals.  This flow-dependency property of the 

signal is the principal foundation of the proposed technique.   

The effect of  on flow-sensitive signal is demonstrated in Fig. 4.3.  At extra-

fiber velocities of 40 mm/s and 120 mm/s, the maximum ASL signal is achieved at  of 

10° and 15°, respectively.  It is evident that the optimal   varies as a function of velocity.   

In Fig. 4.4, normalized flow-sensitive signal with different T1 are shown.  The normalized 

flow-sensitive signal increases as T1 increases accordingly, which demonstrates that the 

ASL signal gains as T1 lengthens.  This indicates that the ASL signal could benefit from a 

higher magnetic field. 

Hemodialyzer imaging 

 Images from a transverse slice of the hemodialyzer and static water phantom 

acquired at TI = [200, 600, 1000, 1400, 1800, 2200, 2600, 3000]ms are shown in Fig. 

4.5.  Tag, control and difference images are represented in the top, middle and bottom 

rows, respectively.  Within each image, the largest area corresponds to the cross-section 

of the static water phantom; the cross-section of the hemodialyzer with flow into the 

magnet bore is located at the upper left corner, while the cross-section of the thin tubing 

with fluid flowing out of the magnet bore appears in the upper right of each image.  The 
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complete cancellation of static signal shown in the bottom row indicates that the ASL 

signal shown is purely flow-dependent.  The general signal drop off within the 

hemodialyzer indicates that the flow direction in the hemodialyzer is from left to right in 

the figure.  The flow is in the opposite direction in the thin tubing. 

To estimate flow velocity, the ROI-based averaged signal intensities from the cross-

section of the hemodialyzer were evaluated and are shown in Fig. 4.6 as solid lines.  The 

signals show an approximately proportional relationship to the corresponding pumping 

rates.  Compared to the simulated ASL signal (dashed lines), the simulations agree rea-

sonably well with the experimental results except for the initial signal increment. Since a 

distance was introduced between the tagging and imaging regions to minimize the effect 

of imperfect inversion near the edges, the signal drop in the initial period is believed to be 

caused by the incomplete inflow of tagged spins.   

In Fig. 4.7, curve fitting on the experimental signals plotted in Fig. 4.8 are pre-

sented. The initial three data points were excluded from the fitting to avoid the influence 

from incomplete inflow.  Corresponding to the four pumping rates [45, 90, 135, 180] 

cc/min, the estimated flow velocities for the intra- and extra-compartment are [5.00, 

11.36, 17.90, 22.68] mm/s and [0.13, 0.23, 0.47, 0.80] mm/s, respectively.  Therefore, the 

averaged flow velocities are [1.59, 3.57, 5.69, 7.36] mm/s.  

To validate the results, images from a coronal slice of the hemodialyzer and static 

water phantom acquired at TI = [500, 1000, 1500, 2000, 2500, 3000, 5000] ms are shown 

in Fig. 4.8.  Tag, control and difference images are represented in the top, middle and 

bottom rows, respectively.  Within each image, the largest area corresponds to the coro-

nal view of the static water phantom; the coronal views of the hemodialyzer and thin tube 
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are located to the left and right of the static water phantom, respectively.  A linear curve 

fitting of the progression of the front edge of fluid in the hemodialyzer as a function of TI 

provide a way to estimate the flow velocity.  

The calculated values using the two methods, transverse slice with Bloch-equation-

based modeling and coronal slice with leading edge velocity modeling, are listed in Table 

4.1.  A matched estimation on averaged velocities at four flow rates is found between the 

two methods.  The greater deviation in matches at comparatively lower flow rates could 

be caused by the invalid assumption of plug flow in the hemodialyzer and the saturation 

of Look-locker readouts. 

In vivo imaging 

 Flow-sensitive images at one slice location acquired at TI of [700, 1000, 1300, 

1600, 1900, 2200] ms are shown in Fig. 4.9.  The wash-out of bolus is visible as TI 

increases.  The large vein located at the bottom (red circle) appears bright because the 

venous blood is labeled in IDOL tagging schemes.  

The fitted velocity mapping is shown in Fig. 4.10.  A higher velocity is found in 

the superior sagittal sinus (SS) and slower velocities can be seen in gray matters.  The 

flow mapping in Fig. 4.10 is scaled to the range of 0–5 to emphasize the signal at lower 

flow rates.  The ROI based flow rates estimation of gray matter, white matter and sagittal 

sinus are 2.04, 0.89 and 22.09 mm/s, respectively.  The flow velocity in the SS is lower 

than the velocity reported by others (27).  This is because IDOL preparation was used 

where both artery and venous blood were tagged. The accuracy of flow quantification in 

the veins drops due to the fact that the tagged blood passing through the imaging slice has 
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time to enter the SS and pass again through the imaging slice during the ASL measure-

ments.  The signal from this twice-imaged blood is saturated and results in an error in the 

flow measurement.   

Discussion 

 In this paper, we have presented the theory as well as simulation and experimental 

verification of a quantitative method to measure through-slice flow velocity using 

multiple TFL image readouts after IDOL preparation of a single slice.  By using linear k-

space ordering in the TFL images, the image intensities are a function of the local flow 

dynamics coupled with the IDOL tagging or control magnetization preparation.  

Through-plane flow assessment is achieved through Bloch equation modeling.  Fitting 

the signal intensities in these multiple images provides an intrinsic decrease in 

measurement noise.   

Computer simulations based on the Bloch equations, designed to model the situa-

tion of unidirectional flow in a hemodialyzer, demonstrated that the ASL signals are se-

quence parameter-dependent.  The characteristic of the sequences and parameters were 

incorporated in the quantification modeling.  Flow experiments were performed with the 

hemodialyzer and consistently matched values were found between the simulation and 

the hemodialyzer experiments.   

The hemodialyzer and human brain MR images acquired using the proposed nov-

el TFL-based imaging pulse sequence suggest that our technique could yield fairly accu-

rate through-plane fluid flow estimation.  De to the two-compartment flow distribution in 

the hemodialyzer, phase contrast (PC) flow velocity measurement was not considered to 
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be a feasible flow quantification technique in our study scenario. It is therefore, not likely 

that PC flow measurements would be accurate, but would instead be biased by partial 

volume artifacts. 

Certain assumptions and limitations apply to the quantification process involved 

in this study.  Only the flow passing into and out of the imaged slice could provide meas-

urable signal.  Thus, for the case where flowing magnetization remains in the imaging 

slice, the method could possibly introduce errors by underestimating the flow.  In addi-

tion, the net fluid passing through the thin slice in the hemodialyzer is assumed to be plug 

flow instead of laminar flow.  This could explain the imperfect match between the two 

methods at slower flow rates of 45cc/min and 90cc/min as listed in Table 4.1.  Other po-

tential error sources include deviations between the desired and actual flip angle, imper-

fections at the edges of the inversion pulses, and the general variation in the tag and con-

trol signals during image acquisition.  

Although only single-slice imaging was used in this study, the fact that multiple 

acquisitions of the single slice are acquired during a single tagging (or control) makes the 

technique relatively efficient.  This could easily be extended to multiple slices by serial 

acquisitions.  At the same time, SNR can be improved by increasing the number of pairs 

of tag-control image sequences acquired.  For example, the brain images shown were 

based on averages over four repetitions, and more repetitions will lead to a higher SNR.   

As implemented, this technique was designed to assess all flow passing through 

the slice, including vessels of all sizes down to capillary beds unlike other techniques that 

use a preacquisition spoiler gradient pulse to suppress the flow signal from large vessels.  

By including all types of flow through the slice, the perfusion value obtained with this 
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technique should match the perfusion term used in the Pennes’ BHTE.  It is possible that 

thermal therapy techniques, such as MRgHIFU could use measurements from this newly 

developed imaging technique in thermal modeling based on the Pennes’ equation.  Since 

the goal is to estimate the Pennes’ perfusion term which depends on what carries heat 

outside the heated volume, the flow assessment on the feeding arteries and veins are de-

sirable in this scenario.  This method is independent of MR thermometry, decoupling the 

blood flow measurement from the MR temperature maps, allowing the perfusion changes 

to be monitored throughout the thermal therapy session.  Currently, we are only showing 

blood flow in brain.  The existence of the blood brain barrier makes the blood transfer 

time between the vasculature and the tissue longer.  In other words, the flow could be 

captured before the tagged spins in the tissue become saturated by the excitation pulse 

trains.  This application might become limited when extending to flow assessment in oth-

er tissues, e.g., kidney, liver etc.  

Further investigation including more subjects is necessary.  The tradeoff between 

the image acquisition time and the accuracy of flow rate quantification needs to be opti-

mized such that the scan could be interleaved in an actual MRgHIFU study.  When deal-

ing with flow quantification and modeling, the distribution of static and flowing spins 

within each voxel and how flow-sensitive signal changes as velocity varies are two im-

portant aspects that need to be addressed.  In this work, velocity dependence of flow sig-

nal is obtained with linear phase encoding ordering.  In the future, by modifying the tim-

ing of the acquisition of k-space center to be centric-ordering, the blood flow distribution 

of perfusion signal can be obtained. 
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Conclusions 

 Multiple-image readout after a single ASL preparation, along with the linear 

acquisition ordering in the phase encoding direction in TFL imaging enable estimation of 

through-plane flow.  The experiments provide evidence that the proposed pulse sequence 

design is able to measure the average velocity of fluid flowing through the image plane.  

Accuracy is decreased for venous blood that passes through and returns to the imaging 

slice during the time between tagging and signal readout.  This measurement provides an 

estimate of total fluid flow when the voxel fraction of static magnetization is known. 
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Figure 4.1. Schematic diagrams of the tagging imaging pulse sequence along 

with the evolution of the longitudinal magnetization of tag and control inflowing 

fluid. (a) IDOL tagging inversion is followed by a series of TFL image readouts.  

Depending on the fluid (blood) T1, TD and the number of images acquired along 

the curve can be adjusted. (b) Longitudinal magnetization of tag (bottom lines) 

and control (top lines) inflowing fluid.  With the simulation parameters:  imaging 

slice thickness = 5mm, Time Delay (TD) = 200ms, T1 = 1450ms and flip angle = 

15°, fast flow 40mm/s (dash dotted line) guarantees the initial magnetization 

originates from the inversion recovery curve; whereas the initial magnetization 

of slow flow 10 mm/s (dashed line) must incorporate the signal evolution f rom 

previous readouts.  For these parameters, 20 mm/s (solid line) seems to be the 

critical velocity below which the impact of preceding readout pulses needs to be 

taken into account. Eight images are acquired after each single ASL preparation.  

A marker is indicated at the point where the signal from the center of k-space is 

acquired with linear phase encoding ordering.    

(a) 

 

 

 

 

 

 

 

 

 

(b) 
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Figure 4.2. Evolution of longitudinal magnetization for tagging (bottom lines) 

and control (top lines) scans, respectively.  The simulation parameters were 

TR=3ms,  =15°, TD=200ms, Ny=64, T1=1.45s, slice thickness=5mm, matrix 

size=64x64, number of images along the curve=8.   At each TI, three velocities, 

[20, 40, 60] mm/s were simulated.  The case with highest velocity stays closest 

to the main magnetization curve, while the flow with the lowest velocity deviates 

further away from the main magnetization curve.   It is assumed that the lowest 

velocity being fast enough, that each time the imaging starts with freshly inflow-

ing spins. 
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(a)                                                              (b) 

Figure 4.3. Simulation of normalized flow-sensitive signals at an extra-fiber ve-

locity of (a) 40mm/s and (b) 120mm/s.  The maximum flow signal is achieved at 

  of 10° and 15°, respectively.  The rest of the parameters were kept the same as 

in Fig. 4.2.  At different flow velocities,   can be adjusted to obtain the maxi-

mum flow-sensitive signal.  

 

 

 

 

Figure 4.4. Simulated flow-sensitive signals as a function of fluid spin-lattice 

relaxation time T1 = [1000, 1500, 2000, 2500]ms. Using the same parameters, 

maximum flow-sensitive signal for an extra-fiber flow velocity of 40mm/s & 

4mm/s ,  =10° is achieved at T1 of 1450ms. 
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Figure 4.5. Representative eight single-slice images acquired at [200, 600, 1000, 

1400, 1800, 2200, 2600, 3000]ms after the ASL magnetization inversion with a 

pumping rate of 200cc/min.  Three rows correspond to tag (upper row), control 

(middle row), and difference (lower row) images.  Within each image, cross -

sections of a Siemens water phantom (biggest cross-section), the hemodialyzer 

(arrow head) and thin tube (arrow) are depicted.  Static water signals cancel out 

completely in the flow-sensitive difference images.  The dialyzer signal cancels 

in the first image because it took longer than 200ms for the tagged flow to enter 

the imaged slice.   

 

 

 

 

Figure 4.6. Comparison of simulated ASL signal (dashed lines) and experimental 

results (solid lines). Experimental flow-sensitive signals were averaged over the 

cross-sections of hemodialyzer at four pumping rates [45, 90, 135, 180] cc/min at 

a TD of 200ms and  of 15°.  Simulated flow-sensitive signal is calculated as the 

difference of control and tagging signal (see Fig. 4.2) using the same parameters 

as in the experiment.  Overall there is a reasonably good agreement between the 

two and the only discrepancy lies in the initial signal increment which is due to 

the incomplete inflow of tagged spins.  
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Figure 4.7. Curve fittings at four pumping rates [45, 90, 135, 180] cc/min from 

two-compartment fitting. The resulting averaged velocities are [1.59, 3.57, 5.69, 

7.36] mm/s, respectively. The calculated correlation coefficient between the data 

and the fitting does decrease as the flow rates decrease.  

 

 

 

 

Figure 4.8. Representative coronal single-slice images acquired at [500, 1000, 

1500, 2000, 2500, 3000, 5000]ms after the ASL magnetization inversion at a 

pumping rate of 180cc/min.  Three rows correspond to tag (upper row), control 

(middle row), and difference (lower row) images.  Within each image, coronal 

views of a Siemens water phantom (largest area), the hemodialyzer (arrow head) 

and thin tube (arrow) are depicted.  The progression of the front edge of fluid in 

hemodialyzer as TI increases (dashed line) provides a way to estimate the flow 

velocity, as presented by the dotted line.  
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Figure 4.9. Flow-sensitive images acquired at TI of [700, 1000, 1300, 1600, 

1900, 2200]ms.  Bolus wash-out is visible as TI increases.  The superior sagittal 

sinus located at the bottom (red circle) appears bright because the venous blood 

is labeled in IDOL tagging schemes. 

 

 

 

 

Figure 4.10. Brain velocity mapping (unit: mm/s).  A high velocity is found in 

the superior sagittal sinus and slower velocities can be seen in gray matter. 
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Table 4. 1 Flow velocity estimation 

Flow rate Intra-fiber 

velocity 

Extra-fiber 

velocity 

Fitting cor-

relation co-

efficient 

Average 

velocity 

Leading 

edge veloci-

ty 

45cc/min 5.00 0.13 0.863 1.59 1.3 

90cc/min 11.36 0.23 0.834 3.57 1.7 

135cc/min 17.90 0.47 0.990 5.69 5.0 

180cc/min 22.68 0.80 0.998 7.36 7.5 

Estimated flow velocity at four pumping rates [45, 90, 135, 180] cc/min from two-

compartment fitting using Bloch equation and leading edge velocity modeling. (Unit: 

mm/s)   

 

 



 

 

 

 

 

CHAPTER 5

BREAST MR ANGIOGRAPHY USING TWO-POINT                                               

DIXON SSFP 

Introduction 

  Magnetic resonance angiography (MRA) is a noninvasive imaging technique for 

visualizing the blood vascular system (90,91).  It has been applied throughout the body 

by identifying vessel abnormalities and assisting in the diagnosis of the vascular diseases.  

In addition, information on blood vessel anatomy, such as locations and flow rates, can 

also be important for thermal therapy.  The association of increasing vascularity and the 

development of breast cancer has been demonstrated using breast dynamic contrast 

enhanced (DCE)-MRA studies (92,93).  However, there have been limited studies on 

noncontrast-enhanced (NCE) breast MRA (94,95).  This chapter focuses on developing a 

NCE MRA technique for visualizing blood vessel in the breast to assist in magnetic 

resonance guided high-intensity focused ultrasound (MRgHIFU) therapy for the breast.    

Breast MRA can be achieved with and without the injection of contrast agent.  

Clinically, intravenous injection of T1-shortening contrast agent is commonly used to help 

boost MR signal of blood (96).  Concerns about nephrogenic systemic fibrosis associated 

with contrast agent injection, especially for patients in renal failure, has led to increased 
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attention in developing NCE MRA techniques (80).  Because blood vessels in the breast, 

like other peripheral vessels, are characterized by lower flow rates and thinner blood ves-

sels (97), flow-independent peripheral imaging technique (98,99) that use intrinsic MR 

properties becomes an appropriate option for the breast MRA. 

Initial results on NCE breast MRA have been reported by Miyasaki (94) and Sa-

ranathan et al. (95).  In the work of Miyasaki et al., a peripheral pulse triggered inversion 

prepared half-Fourier turbo spin echo (TSE) sequence is used to image blood vessels in 

the breast.  The progression of blood inflow as a function of inversion time was shown 

using chemical selective pulses for fat suppression.  Saranathan et al. (95) compared 

breast MIP images using a dual-echo balanced steady state free precession (SSFP) se-

quence to those obtained using TSE sequences.  In the same imaging time, more blood 

vessel details were found from SSFP images because of its greater acquisition efficiency.  

Fat suppression/separation plays an important role in visualizing blood vessel in 

breast MRA.  The unique T2/T1 contrast of SSFP causes tissue with high T2/T1, e.g., blood 

and fat, to appear hyper-intense.  High blood signal is favorable in blood vessel visualiza-

tion; however, bright fat signal needs to be suppressed to uncover information that might 

otherwise be obscured by fat, e.g., breast lesions and blood vessels.  Taking advantage of 

the in-phase and out-of-phase signal characteristics at various echo times (TE), fat and 

water signal can be separated using multipoint Dixon techniques (100-102).  Compared 

to other fat suppression techniques, Dixon methods not only offer robust water-only im-

ages in the presence of B0 and B1 inhomogeneity, quantified information on fat also has 

diagnostic value for diseases, such as diabetes and obesity (103).   

In this chapter, fat-water separation using 3D dual-echo SSFP sequences are 
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broadly investigated.  Simulation of the in-phase and out-of-phase signal for both fat and 

fibroglandular tissues are performed, from which imaging parameters are obtained and 

applied to phantom, ex vivo pork and in vivo breast imaging.  In particular, 3D dual-echo 

SSFP sequence designs with variations in the readout gradients are examined.  

Comparisons among results from the two-point Dixon fat-water separation are made for 

all the pulse sequences.  Issues including the k-space misalignment, bidirectional 

chemical shift induced misregistration, motion created by the imaging sequence and the 

image acquisition time are considered.   

Theory 

In this section, the two-point Dixon method for fat water separation is reviewed.  

Details on the three-point method can be found elsewhere (102).  Various methods for 

implementing the two-point Dixon method in an SSFP sequence are also presented. 

Two-point Dixon fat-water separation 

Relying on the phase shifts created by fat-water resonance frequency differences, 

the two-point Dixon technique separates water from fat in the presence of field inhomo-

geneity.  Specifically, two acquisitions, one with TE chosen to have fat and water in-

phase (0-image) and another with TE chosen to have fat and water out-of-phase ( -

image), are performed and combined to obtain water-only and fat-only images.  Suppos-

edly, the only phase difference accumulated between the two acquisitions is due to the 

chemical shift.  However, in reality, many other sources can also contribute to the phase 

shifts.  These factors include the inhomogeneous penetration of the RF pulses, unknown 
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spatial dependent phase shifts associated with the magnetic field inhomogeneity and oth-

er system imperfection (100).  Mathematically, the in-phase 1I  and out-of-phase 2I  sig-

nal can be expressed as: 
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where 0 is a constant spatially dependent phase error due to the RF field inhomogeneity 

and other system imperfections,  is the phase shift for a pixel caused by the local field 

inhomogeneity, and 
'

2T  is the field inhomogeneity loss component of 
*

2T  (see Eq. [2.29]).  

Ignoring 
*

2T decay and choosing the timing of the image acquisition following the rela-

tionships 
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allows for simplification of Eq. [5.1]:   

 

                                                      
)(

2

1

0

0

)(

)(













i

i

eFWI

eFWI
                                                [5.3] 

 

In Eq. [5.3], the four unknowns W, F, 0  and   can be solved based on the two complex 



96 

 

 

measurements 1I and 2I .  Specifically, the phase term   can be calculated by the follow-

ing relationship  
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Even though the prediction of whether a pixel is water or fat dominant is usually difficult, 

the ambiguity in the sign of 2I  can be resolved by squaring 2

*

1 II , as given in Eq. [5.4].  

Further, because the phase shift   is not restricted to the interval of 2 , a phase unwrap-

ping procedure is therefore necessary to correct for 2  phase jumps.  A method based on 

Poisson equation proposed by Moon-Ho Song et al. (104) was used in our reconstruction 

algorithm.  This phase unwrapping strategy has the advantages of robust performance and 

no initial seed point is required.  After the phase unwrapping step, followed by halving by 

two, the estimated phase map   can be used to simplify Eq. [5.3]:  
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Rearranging Eq. [5.5], expressions for W and F are obtained: 
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Bipolar readout gradient 

 Multi-echo acquisition in a single TR is an efficient image readout method for 

Dixon-based fat-water separation.  Two echoes required for the two-point Dixon fat-

water separation can be acquired using a bipolar gradient — switching gradient polarity 

between the multi-echo readout in each TR.  Advantages of the bipolar gradient include 

shorter scan time, higher SNR efficiency, more robust field map estimation and reduced 

motion-induced artifacts (105).  

Challenges associated with the bipolar readout gradient include k-space 

misalignment and bidirectional chemical shift.  Specifically, k-space misalignment 

between the two echoes causes a linear phase error in the in-phase and out-of-phase 

difference image, which affects the field map estimation and fat-water separation (106).  

In addition, in the two echoes acquired using the bipolar gradient, the opposite polarity of 

the readout gradients leads to chemical shift in opposite directions, as graphically 

demonstrated in Fig. 5.1.  

TR/TE selection 

 The amplitude of SSFP signal varies periodically as a function of offset frequen-

cy, with a period of 1/TR.  To successfully separate fat from water signal, reasonable 

amount of signals from both chemical components are required in the Dixon source im-

ages.  The criteria for choosing TR should follows the relationship 
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where n is an integer greater than zero.  Given 420 csf Hz at 3T, TR of 2.3, 4.5, 6.8, 

…ms guarantee that both fat and water signal are acquired at its maximum signal ampli-

tude.  The magnitude and phase of SSFP signal depend on the phase accumulated during 

each TR due to magnetic field inhomogeneity. As discussed in Section 2.5.3, a prolonged 

TR can aggravate the banding artifacts.   

        Criteria for selection of TE are obtained by rearranging Eq. [5.2]:  
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The in-phase and out-of-phase signals can be acquired at 1TE  and TE2, respectively.  

Given 420 csf Hz at 3T, 1TE = 0, 2.3, 4.6, 6.9, …ms, and 2TE = 1.2, 3.5, 5.8, 8.1, 

…ms.   

Methods 

Pulse sequence design 

  As discussed in Section 5.2.2, higher signal efficiency can be achieved with bipo-

lar readout gradient in the multi-echo acquisitions.  However, issues associated with the 

bipolar readout, such as k-space misalignment and chemical shift induced misregistration, 

need to be addressed.  In this study, four variations of the 3D SSFP sequence for two-

point Dixon are designed, and their performances in fat-water separation are examined.  

First is single-echo readout in each TR.  The in-phase and out-of-phase images are ac-
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quired in two separate scans at different TEs.  A pulse sequence diagram is demonstrated 

in Fig. 2.10.  Second is dual-echo readout with a bipolar gradient polarity.  The in-phase 

and out-of-phase images are acquired at different TEs in a single TR, as illustrated in Fig. 

5.2.  Third is dual-echo readout with alternating bipolar gradient polarity in adjacent TR, 

as shown in Fig. 5.3.  Two sets of in-phase and out-of-phase images are acquired in total.  

To reconstruct fat-only and water-only images, in-phase images from one TR are com-

bined with out-of-phase images from the adjacent TR.  Finally is a complete acquisition 

with dual-echo bipolar readout gradients, followed by a complete acquisition with dual-

echo bipolar readout bipolar gradients with the opposite polarity.  Similar to sequence 3, 

two sets of in-phase and out-of-phase images are acquired in total.  The only difference 

between sequence 3 and 4 resides in whether the bipolar readout gradients with opposite 

polarities are interleaved or not.   

Simulations 

 In-phase and out-of-phase SSFP signals for both fat and fibroglandular tissues 

were simulated.  Specifically, the amplitude of the SSFP signal was simulated at TR = 

5.7 and 6.8ms, and FA = [10°, 30°, 50°, 70°, 90°] to study how sensitive the steady state 

signal is to TR and FA.  In addition, the phase of the SSFP signal at TE1/TE2 = 2.3/3.4ms 

was also simulated to confirm the in-phase and out-of-phase condition required in the 

two-point Dixon reconstruction.  In the simulation, T1/T2 for fat and fibroglandular tissue 

was set to be 423/154 and 1680/71ms, respectively (107).  Imaging parameters yielding 

the highest water signal were chosen for the following phantom, ex vivo and in vivo 

imaging experiments.  
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Phantom imaging 

 All the phantom, ex vivo, and in vivo imaging were performed on a 3T TIM Trio 

MRI scanner (Siemens Ag, Erlangen, Germany).  First, as shown in Fig. 5.4 (a), two 

bottles each filled with pure vegetable oil and water were used to investigate the effect of 

k-space misalignment and chemical-shift induced misregistration of a bipolar readout.  

The phantoms were imaged in the same field of view (FOV) using sequences 2 and 3.  

Further, five vials with varying concentration of mayonnaises were mixed in water to ob-

tain concentrations of 20%, 40%, 60%, 80% and 100% mayonnaises.  The sixth vial was 

filled with pure vegetable oil.  All the vials were then placed in a pure water bath, as 

demonstrated in Fig. 5.4 (b).  All four sequence designs were tested on this phantom with 

the following imaging parameters: TR = 6.8ms, TE1/TE2 = 2.3/3.4ms, FA =30°, FOV = 

200x200 mm, matrix size = 192x192, 16 slices, slice thickness = 2mm, and BW = 

800Hz/Px.     

Ex vivo pork imaging 

 Sequences 1, 2 and 4 were examined on an ex vivo pork sample, imaged using a 

11-channel RF coil (108) designed for the breast MRgHIFU treatment (109).  The effects 

of FA and the acceleration factor, generalized autocalibrating partially parallel acquisi-

tion (GRAPPA), were studied by imaging at FA = [10°, 30°, 50°, 70°] and GRAPPA fac-

tor = [1, 2, 3, 4].  Further, the performances of fat-water separation from SSFP-based 

two-point Dixon and GRE-based three-point Dixon were compared.  In SSFP, TR = 

6.8ms, and TE1/TE2 = 2.3/3.4ms; for GRE imaging, TR = 11ms, and TE1/TE2/TE3 = 

4.7/5.75/6.8ms.  Other common imaging parameters are FOV = 160x160 mm, matrix size 
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= 128x128, 32 slices, slice thickness = 1mm, leading to a voxel size of 0.9x0.9.x1mm
3
.     

In vivo imaging 

 With informed consent obtained from the volunteers, four subjects (three healthy 

subjects and one subject with fibroadenoma) were examined in air or water using the 

Siemens 4-channel breast coil or the 11-channel RF coil designed specifically for breast 

MRgHIFU.  Images from all four subjects were acquired using sequence 2 (Fig. 5.2).  In 

addition, sequences 1, 3, and 4 were also applied on one healthy volunteer.  The unilat-

eral imaging protocols were as follows: TR/TE1/TE2 = 6.8/2.3/3.4 ms, FA=30°, matrix 

size = 192x192x72–192x192x104, FOV = 168x168x108–287x287x120 mm
3
, BW = 766–

1530 Hz/Px, giving an in plane pixel size of 0.9x0.9x1.5–1.5x1.5x1.5 mm
2
.  The image 

acquisition time was 2–4 minutes without any acceleration, and the asymmetric echo was 

turned on for partial readout acquisition to achieve the desired TE.  Thin-slab MIP of the 

water-only images was used for blood vessels visualization.  To improve the image visual 

appearance, zero filled interpolation (ZFI) by a factor of two was performed on all the 

images before the two-point Dixon reconstruction, resulting in a voxel spacing of 

0.45x0.45x0.75mm
3 

– 0.75x0.75x0.75mm
3
.    

Results 

Simulations 

  Fig. 5.5 (a) and Fig. 5.5 (b) show the simulated SSFP magnitude signal at TR = 

5.7 and 6.8ms, respectively, for both fat and fibroglandular tissue.  It is observed that, at 

TR = 5.7ms, the signal of fibroglandular tissue reaches maximum when fat is at its 
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minimum.  On the other hand, at TR = 6.8ms, both fat and fibroglandular tissue reaches 

their maxima at the same time.  Referring to Eq. [5.6], to satisfy the condition of both fat 

and water signal being acquired at their maximum signal intensities for correction fat-

water separation, possible TRs are 2.3ms, 4.6ms, 6.8ms.  Also taking into account the 

matrix size for the desired image resolution, and TE for the required Dixon in-phase and 

out-of-phase images, TR of 6.8ms is selected for this study.   

The effect of FA on SSFP signal is demonstrated in Fig. 5.6, where the ampli-

tudes of fat and fibroglandular tissue are plotted as a function of offset frequency.  The 

maximum signals for fibroglandular tissue and fat are achieved at 30° and 70°, respec-

tively.  FA of 30° is used in the following experiments, since high water signal is desira-

ble.  In Fig. 5.7, the simulated phase signals at echo center as a function of offset fre-

quency for both fat and fibroglandular tissue are presented at TE1=2.3ms (Fig. 5.7 (a)) 

and TE2 = 3.4ms (Fig. 5.7 (b)).  The signals follow the expected in-phase and out-of-

phase characteristics between fat and glandular tissue. 

Phantom imaging 

 An example image of the water and oil phantom (Fig. 5.4), acquired using 

sequence 2, 3D SSFP sequence with dual-echo bipolar readout, is shown in Fig. 5.8.  The 

magnitude and phase images of in-phase and out-of-phase signals are acquired at TE1 = 

2.3ms (Fig. 5.8 (a, b)) and TE2 = 3.4ms (Fig. 5.8 (c, d)), respectively.   

Fig. 5.9 demonstrates the calculated phase map, fat-only and water-only image, 

without phase unwrapping.  It is noted that the fat and water signals are separated 

incorrectly due to the phase discrepancy appeared in the calculated phase map, see Fig. 
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5.9 (a).  To better understand the source of the large phase difference seen in Fig. 5.9 (a), 

a line passing through the center of k-space from the two echoes is plotted in Fig. 5.10 

(a).  A three-pixel shift between the two echoes is clearly observed which is believed to 

be related to the delays in the acquisitions of the two echoes.  Fig. 5.11 shows the results 

of fat-water separation after correcting the k-space misalignment (Fig. 5.10 (b)).  From 

the fat-only images, as illustrated in Fig. 5.11 (b), the edges of the water bottle are clearly 

visible, especially along the readout direction (left to right), as indicated by the arrows.  

This can be explained by the misregistration from the bidirectional chemical shift due to 

the opposite polarity in the bipolar readout gradient.  Since the imaging (receiver) 

frequency is centered on fat, no misregistration error is observed from the bottle filled 

with the oil.  Similarly, the separated fat-only and water-only images using sequence 2 

with imaging frequency centered on water is displayed in Fig. 5.12.  The edge of the 

bottle filled with oil is visible in the water-only image (Fig. 5.12 (c)).  Fat-water 

separation performance from sequence 3, 3D dual-echo SSFP sequence with alternating 

bipolar readout gradient polarity in adjacent TR, is illustrated in Fig. 5.13.  In the fat-only 

(Fig. 5.13 (b)) and the water-only (Fig. 5.13 (c)) images, no visible error appears on the 

edges of the phantom.  This is because the images acquired with the same polarity from 

adjacent TR are used for two-point Dixon reconstruction; therefore, there is no presence 

of the chemical shift induced misregistration errors.  

The fat-water separation using the four sequence designs are further tested on 

vials filled with varying fat/water concentration (Fig. 5.4 (b)).  An example image slice 

acquired using sequences 1–4 are displayed in Fig. 5.14 – Fig. 5.17, respectively.  In each 

figure, magnitude and phase images acquired at TE1 = 2.3ms (a, b) and TE2 = 3.4ms (c, 
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d) for in-phase and out-of-phase images are displayed.  Based on these source images, the 

resulting two-point Dixon fat-water separated images are shown in Fig. 5.18 (a–d), 

respectively.   

Ex vivo imaging 

 An example image of a piece of pork acquired using sequence 1 is demonstrated 

in Fig. 5.19.  The magnitude and phase images acquired at TE1 = 2.3ms (Fig. 5.19 (a, b)) 

and TE2 = 3.4ms (Fig. 5.19 (c, d)) are shown for the in-phase and out-of-phase cases, 

respectively.  Fig. 5.20 illustrates the results of fat-water separation from sequences 1, 2 

and 4.  Excellent fat-only and water-only images are reconstructed from the three 

sequences. 

The effect of FA is explored by implementing two-point Dixon fat-water 

separation at FA of 10°, 30°, 50°, and 70°.  As shown in Fig. 5.21, FA 30º and 50º offer 

higher water signal compared with that from FA 10º and 70º.  Because of the linear 

relationship between FA of the RF pulses and the energy deposited into the imaged object, 

FA 30 º is the best of the series of FA tested.  This finding is consistent with the 

simulation study, as illustrated in Fig. 5.6.  

The acceleration imaging ability of the 11-channel RF coil is accessed by imaging 

at various GRAPPA factors, ranging from one to four.   The results of the separated fat-

only and water-only images are shown in Fig. 5.22 (a–d) correspondingly.  It appears that 

the performance of the fat-water separation is acceptable with a GRAPPA factor of two, 

or even three.    

Comparisons of the fat-water separation using the GRE-based three-point Dixon 
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and the SSFP-based two-point Dixon are demonstrated in Fig. 5.23 (a, b).  Comparable 

fat-only and water-only images are obtained from the two techniques.  

Fig. 5.24 illustrates SSFP image acquired with and without chemical selective fat 

saturation pulses.  Compared with the water-only images obtained from Dixon methods, 

fat saturation pulses are less effective in fat suppression, as shown in Fig. 5.24 (b).   

In vivo imaging 

The four sequences were applied on a healthy volunteer, imaged in air using the 

Siemens 4-channel breast coil.   Due to the restriction of the specific absorption rate 

(SAR), the highest image resolution for the four sequences was achieved with a FOV of 

247 mm, 287 mm, 267 mm, and 274 mm, resulting in a pixel size of 1.3 mm, 1.5mm, 

1.4mm, and 1.4mm, respectively.  An example image from sequences 1–4 is demonstrat-

ed in Fig. 5.25–5.28.  Banding artifacts are observed, especially around the regions that 

are close to the tissue/air interface.  A large signal intensity variation across the object 

imaged is seen from images acquired using sequence 3 (Fig. 5.27).  The banding artifacts 

appeared in Fig. 5.25–5.28 directly affect fat-water separation, as demonstrated in Fig. 

5.29 (a–d).  Moreover, Fig. 5.29 (c) indicates that incorrect fat-only and water-only imag-

es are obtained due to the severe image artifact in the source images acquired by se-

quence 3 (Fig. 5.27).  The findings can be further confirmed by the thin-slab MIP of the 

water-only images, as shown in Fig. 5.30.  Due to the erroneous fat-water separation (Fig. 

5.29 (c)), little blood vessel information is available in Fig. 5.30 (c).  On the other hand, 

images acquired using sequences 1, 2 and 4 present comparable amount the details for the 

blood vessels, as shown in Fig. 5.30 (a, b, d).   
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Because the total image acquisition time for sequence 2 is half of that from se-

quences 1 and 4, the motion occurs during the image acquisition can thus be minimized 

by using sequence 2.  Also due to the imperceptible error of chemical shift induced mis-

registration, sequence 2 becomes the optimal sequence for in vivo imaging application.  

Sequence 2 is validated on three more subjects, each with different experimental setup.  

Fig. 5.31–5.32 show results from a healthy subject, imaged in a water bath using the 

MRgHIFU system without heating.  An example sagittal slice of the magnitude and phase 

for the in-phase and out-of-phase signal is demonstrated in Fig. 5.31.  Fig. 5.32 (a–c) rep-

resents the sagittal slice of the water-only image, fat-only image, and thin-slab MIP, re-

spectively.  Despite the banding and motion-induced artifact at the water/air interface, 

fibroglandular tissues and blood vessels (arrow) are clearly visualized in the thin-slab 

MIP image, as shown in Fig. 5.32 (c).  Fig. 5.33 and Fig. 5.34 show results from another 

healthy subject, imaged in air using the Siemens 4-channel coil.  An example sagittal 

slice of the magnitude and phase image for the in-phase and out-of-phase signal is 

demonstrated in Fig. 5.33.  The reconstructed sagittal slice of the water-only image, fat-

only image, and thin-slab MIP is given in Fig. 5.34 (a–c), respectively.  Blood vessels 

(arrow) are clearly visible in the thin-slab MIP image (Fig. 5.34 (c)).  The fourth subject 

with fibroadenoma was imaged in the air using the 11-channel coil.  Fig. 5.35 shows an 

example sagittal slice of the magnitude and phase images for the in-phase and out-of-

phase signal.  The reconstructed sagittal slice of the water-only image, fat-only image, 

and thin-slab MIP is shown in Fig. 5.36 (a–c), respectively.  Details of the blood vessels 

are seen in the thin-slab MIP image (Fig. 5.36 (c)).  It is noticeable that, in Fig. 5.36, sig-

nal from fat (arrow) shows up in the water-only image.  This is because the phase un-
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wrapping fails at the dark banding artifact, referring to the sources images shown in Fig. 

5.35.   

Discussion 

 In this chapter, a comprehensive examination of the two-point Dixon fat-water 

separation technique using 3D SSFP sequence is presented.  The advantages and 

disadvantages of various sequence designs with variations in the readout gradients are 

investigated through a series of phantom, ex vivo and in vivo experiments.  The MIP of 

the reconstructed water-only breast images shows details of the blood vessels that would 

otherwise be obscured by fat.  Overall, the potential of two-point Dixon fat-water 

separation based on 3D dual-echo SSFP sequence for breast MRA imaging is 

demonstrated. 

Signal characteristics of the four pulse sequence designs have been studied in this 

work.  Particularly, results from both phantoms (Fig. 5.16) and subjects (Fig. 5.27) 

suggest that the images acquired using sequence 3 — dual-echo readout with alternating 

bipolar gradient polarity in adjacent TR — suffer from severe artifacts, possibly due to 

the motion caused by the interleaved alternating polarity in the readout gradient design.  

Sequence 2 — dual-echo readout with a bipolar gradient polarity — is associated with 

intrinsic chemical-shift-induced misregistration error between the in-phase and out-of-

phase images, as explained in Fig. 5.1.  This error can be resolved by the design in 

sequence 4 — complete dual-echo readout with a bipolar gradient polarity, followed by 

the dual-echo readout with an opposite bipolar gradient polarity.  However, the doubled 

image acquisition time in the sequences 1 and 4 make them prone to motion artifacts due 
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to breathing motion from the subjects, and the water movement in the MRgHIFU system.  

Further, because of the high readout BW used in our experiments, the bidirectional 

chemical shift from the bipolar readout gradient is generally less than the size of a pixel.  

In the results presented in Section 5.4, the chemical shift induced misregistration is only 

identified from the phantom composed of the water and the vegetable oil (Fig. 5.4 (a)).  

In vivo results show that dual-echo SSFP with a bipolar readout is the most consistent 

imaging sequence of the four sequences tested for the breast MRA application.    

 It is noticeable that the in vivo water-only images given in Section 5.4.4 show re-

sidual fat signal, as only two chemical species with unique Larmor frequencies can be 

separated using the two-point Dixon.  In reality, fatty tissue may appear in multiple peaks 

in an NMR spectrum.  In this case, extra images acquired at additional TE (110) are 

needed for the separation among fat with different frequencies.  For breast MRA applica-

tion, the residual fat signal in the water-only images is not very problematic, as long as 

there is good contrast between blood and the background tissue.    

     Compared to the phantom and ex vivo experiments, image quality from the in vivo 

studies suffers more from the banding artifacts, resulting in intensity variations in the fat-

only and water-only images.  In the presence of these artifacts, the visibility of the vascu-

lature can be degraded.  For example, in Fig. 5.25–5.30, the banding artifacts are clearly 

seen.  This can be explained by the improper shimming during the image acquisition.  

Moreover, the stability of the phase unwrapping can also be affected by the dark band, as 

shown in Fig. 5.36 (b, c).  

In the future, approaches can be undertaken to reduce or alleviate the banding arti-

facts.  One effective strategy is to reduce the field inhomogeneity across the region of im-
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aged object, by applying local shimming and second order shimming.  Another way is to 

introduce extra scans with different phase cycling strategy to spatially move the bands 

around (111).  The images are further combined to reduce the signal inhomogeneity in-

duced by the banding artifact.  In addition, the performance of the flow-independent 

MRA technique can be compared to the contrast-enhanced studies to further validate the 

presented technique. 

Summary 

 In this chapter, we demonstrate the feasibility of using dual-echo SSFP based 

sequence for breast MRA imaging.  The characteristics of various sequence designs in the 

readout gradient are discussed.  Results show that breast vasculature can be visualized 

from the thin-slab MIP images using the SSFP sequence combined with the two-point 

Dixon. 
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Figure 5.1. Bidirectional chemical shift using gradient with opposite polarit ies. 

(a) Relative chemical shift using readout gradient with one polarity; (b) relative 

chemical shift using readout gradient with the opposite polarity.  In this demon-

stration, the imaging frequency is assumed to be centered on water, therefore the 

position of water component (blue) is fixed in (a) and (b). However, the shift of 

fat component (black) appears on opposite side relative to water.     
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Figure 5.2. Schematic diagram of the dual-echo SSFP sequence with a bipolar 

gradient polarity.  In-phase and out-of-phase images are acquired by choosing 

appropriate TEs, as explained in Eq. [5.8].  Blue and black arrows represent wa-

ter and fat, respectively.   
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Figure 5.3. Schematic diagram of the dual-echo SSFP sequence with alternating 

bipolar readout gradients in an interleaved fashion.  

 

 

 

 
          (a)                                                            (b) 

Figure 5.4. Axial image of phantoms: (a) two bottles each filled with pure water 

and pure vegetable oil; (b) six vials with varying water/fat concentration in a wa-

ter bath (#7).  Vial #1–#5 contain 20%, 40%, 60%, 80% and 100% of mayonnaise, 

and vial #6 is filled with pure vegetable oil.   
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Figure 5.5. Simulated SSFP signal of fat and fibroglandular tissue as a function of fre-

quency offset at (a) TR=5.7 and (b) TR=6.8ms. Signal of fat and fibroglandular tissue 

reach maximum value at the same time at TR=6.8ms, but not at TR=5.7ms.  

 

 

 

 
Figure 5.6. Simulated SSFP magnitude signal as a function of frequency offset 

for fat (red) and fibroglandular tissue (blue) at FA of 10°, 30°, 50°, 70°, 90°.  

TR= 6.8ms. Maximum fibroglandular signal is achieved at FA of 30°.   
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Figure 5.7. Simulated dual-echo SSFP (a) in-phase (TE1 = 2.3ms) and (b) out-of-

phase (TE2 = 3.4ms) signal as a function of frequency offset.   

 

 

 

 
Figure 5.8. An example image acquired using sequence 2—3D SSFP sequence 

with dual-echo bipolar readout.  The magnitude and phase images for in-phase 

and out-of-phase are acquired at (a, b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms, re-

spectively.   
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Figure 5.9. Two-point Dixon reconstruction without phase unwrapping pro-

cessing, based on the source images given in Fig. 5.8. (a) Phase map, (b) fat-only 

and (c) water-only images.  The phase map was calculated using Eq. [5.4].   

 

 

 

 
Figure 5.10. A line profile of the center of the k-space from the two echoes ac-

quired using 3D SSFP sequence with dual-echo bipolar readout. (a) Before k-

space adjustment, there is a three-pixel shift between the k-space peaks; (b) after 

correcting the k-space misalignment, the k-space peak from the two echoes over-

lap. 
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Figure 5.11. Two-point Dixon reconstruction based on the source images shown 

in Fig. 5.8, with k-space misalignment correction. (a) Phase difference, (b) fat-

only and (c) water-only images.  The imaging frequency is centered on fat.  As 

pointed by the arrows, the edges of the water bottle were incorrectly separated as 

fat-only signal.  The intrinsic error caused by the bidirectional chemical shift be-

tween fat and water using the bipolar readout gradient polarity.   

 

 

 

 
Figure 5.12. Two-point Dixon reconstruction using sequence 2, the 3D SSFP se-

quence with dual-echo bipolar readout.  The imaging frequency is centered on 

water.  (a) Phase difference, (b) fat-only and (c) water-only images.  As pointed 

by the arrows, the edges of the fat bottle are incorrectly separated as water-only 

signal.  The intrinsic error caused by the bidirectional chemical shift between fat 

and water using the bipolar readout gradient polarity.   

        (a)                                             (b)                                            (c) 

         (a)                                              (b)                                               (c) 
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Figure 5.13. Two-point Dixon reconstruction using sequence 3, 3D SSFP se-

quence with alternating dual-echo bipolar readout polarity in adjacent TR. (a) 

Phase difference, (b) fat-only and (c) water-only images.  The error caused by 

the bidirectional chemical shift as shown in Fig. 5.12 and Fig. 5.13 disappears.   

 

 

 

 
Figure 5.14. An example image acquired using sequence 1, 3D SSFP sequence 

with separate single-echo readout.  The magnitude and phase images at (a, b) TE1 

= 2.3ms and (c, d) TE2 = 3.4ms for in-phase and out-of-phase, respectively.    

         (a)                                            (b)                                             (c) 
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Figure 5.15. An example image acquired using sequence 2, 3D SSFP sequence 

with bipolar dual-echo readout.  The magnitude and phase images acquired at (a, 

b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase and out-of-phase, respective-

ly.    
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Figure 5.16. An example image acquired using sequence 3, 3D SSFP sequence 

with alternating dual-echo bipolar readout polarity in adjacent TR.  The magni-

tude and phase images at (a, b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase 

and out-of-phase, respectively.    
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Figure 5.17. An example image acquired using sequence 4, 3D SSFP sequence 

with consecutive readout at one dual-echo bipolar polarity followed an opposite 

dual-echo bipolar polarity.  The magnitude and phase images at (a, b) TE1 = 

2.3ms and (c, d) TE2 = 3.4ms for in-phase and out-of-phase, respectively.  
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Figure 5.18. Two-point Dixon reconstruction based on the sources images given 

in (a) Fig. 5.14, (b) Fig. 5.15, (c) Fig. 5.16, and (d) Fig. 5.17, respectively.  

Phase maps, water-only images, and fat-only images are shown in the first, sec-

ond and third column, respectively.  
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Figure 5.19. Example magnitude and phase images of pork acquired at (a, b) TE1 

= 2.3ms and (c, d) TE2 = 3.4ms for in-phase and out-of-phase, respectively.     
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Figure 5.20. Two-point Dixon reconstruction based on the images acquired using 

(a) sequence 1, (b) sequence 2, and (c) sequence 4.  The phase map, water-only 

and fat-only images are displayed in the first, second and third column, respec-

tively.   
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Figure 5.21. Two-point Dixon reconstruction based on the images acquired at FA 

of (a) 10º, (b) 30º, (c) 50º and (d) 70º.  The phase map, water-only and fat-only 

images are displayed in the first, second and third column, respectively.   
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Figure 5.22. Two-point Dixon reconstruction based on the images acquired with 

a generalized autocalibrating partially parallel acquisition (GRAPPA) factor of 

(a) one, (b) two, (c) three and (d) four.  The phase maps, water-only and fat-only 

images are displayed in the first, second and third column, respectively. 
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Figure 5.23. Comparison of fat-water separation from (a) GRE-based three-point 

Dixon and (b) SSFP-based two-point Dixon reconstruction.  The water-only and 

fat-only images are displayed in the first and second column, respectively.   

 

 

 

 
Figure 5.24. An example SSFP image (a) without and (b) with the chemical se-

lective fat saturation pulses. 
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Figure 5.25. An example image acquired using sequence 1.  The magnitude and 

phase images acquired at (a, b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase 

and out-of-phase, respectively.    
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Figure 5.26. An example image acquired using sequence 2.  The magnitude and 

phase images acquired at (a, b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase 

and out-of-phase, respectively.    
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Figure 5.27. An example image acquired using sequence 3.  The magnitude and 

phase images acquired at (a, b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase 

and out-of-phase, respectively.    
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Figure 5.28. An example image acquired using sequence 4.  The magnitude and 

phase images at (a, b) TE1 = 2.3 ms and (c, d) TE2 = 3.4 ms, corresponding to in-

phase and out-of-phase, respectively.     
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Figure 5.29. Two-point Dixon fat-water separation based on the sources images 

given in (a) Fig. 5.25, (b) Fig. 5.26, (c) Fig. 5.27 and (d) Fig. 5.28.  The phase 

maps, fat-only and water-only images are shown in the first, second and third 

column, respectively.    
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Figure 5.30. Thin-slab MIP of the water-only images acquired using (a) sequence 

1, (b) sequence 2, (c) sequence 3 and (d) sequence 4.  Slices with the same ana-

tomical coverage were chosen for the MIP display.  
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Figure 5.31. An example image acquired using sequence 2—3D SSFP sequence 

with bipolar dual-echo readout.  The magnitude and phase images acquired at (a, 

b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase and out-of-phase, respective-

ly.    
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Figure 5.32. Two-point Dixon reconstruction based on the source images shown 

in Fig. 5.31, (a) water-only image, (b) fat-only image and (c) thin-slab MIP of 

water-only images.  The bright signal in the background shown in (a) and (c) 

comes from water which is used for acoustic coupling.  A tensioning device was 

attached to the nipple for stabilizing the breast.  

 

 

 

 

               (a)                                               (b)                                            (c) 
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Figure 5.33. An example image acquired using sequence 2—3D SSFP sequence 

with bipolar dual-echo readout.  The magnitude and phase images acquired at (a, 

b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase and out-of-phase, respective-

ly.    

 

 

 

 
Figure 5.34. Two-point Dixon reconstruction based on the sources images shown 

in Fig. 5.33, (a) water-only image, (b) fat-only image, and (c) thin-slab MIP of 

the water-only images. 
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Figure 5.35. An example image acquired using sequence 2—3D SSFP sequence 

with bipolar dual-echo readout.  The magnitude and phase images acquired at (a, 

b) TE1 = 2.3ms and (c, d) TE2 = 3.4ms for in-phase and out-of-phase, respective-

ly.  

 

 

 

 
Figure 5.36. Two-point Dixon reconstruction based on the sources images shown 

in Fig. 5.35, (a) water-only image, (b) fat-only image, and (c) thin-slab MIP of 

the water-only images
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CHAPTER 6

CONCLUSION 

Scientific contributions 

  This dissertation focuses on developing advanced MRI techniques for 

determining tissue parameters that can assist in MRgHIFU therapy for breast cancer 

treatment.  The identified tissue parameters — volumetric segmented tissue models, the 

blood vasculature and the perfusion rate — can be beneficial to various stages of the 

thermal therapies, including patient pretreatment planning, treatment optimization, and 

posttreatment evaluation. 

Before initiation of an MRgHIFU therapy, it is essential to perform pretreatment 

planning where ultrasound beam trajectory is predicted using individual patient 

information.  In this dissertation, the proposed hierarchical SVM-based algorithm 

provides 3D volumetric breast tissue models, which can then be fed to the ultrasound 

beam simulation to determine the optimal treatment plan for each individual patient.  As 

part of the tissue classification workflow, the importance of multiparametric MR contrast 

inputs and coil sensitivity correction are demonstrated.  Comparing with conventional 

segmentation algorithms FCM and SVM, the presented technique offers classification 

performance with highest accuracy.  The consistency of the segmentation results along 
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both the sagittal and axial orientations indicates the stability of the proposed 

segmentation routine.  This suggests that the proposed algorithm could be applied for 

longitudinal follow-up studies to detect tissue changes, e.g., the change of breast density 

in breast cancer risk assessment, and posttreatment evaluation of neoadjuvant 

chemotherapy.   

In MRgHIFU thermal therapies, local temperature distribution can be greatly 

influenced by the tissue-dependent property — blood perfusion.  Unique MR imaging 

sequence designs are presented in this dissertation to visualize blood vessels and also 

estimate the blood perfusion rates.  With these MR properties, it is possible to 

compensate for the dissipative effects of the flowing blood and ultimately improve the 

efficacy of the MRgHIFU therapies.  The developed contrast-agent-free MR techniques 

allow multiple measurements before, during and after the treatment without the limitation 

of washout of the injected contrast agent.   

A 3D dual-echo SSFP sequence based two-point Dixon technique is presented in 

this dissertation to image blood vessels in the breasts.  The success of the noncontrast-

enhanced breast vasculature imaging relies heavily on the suppression of the fat signal.  

Hence, the performances of the fat-water separation with various dual-echo readout gra-

dient designs are evaluated on the water/oil phantom, ex vivo pork and in vivo breast.  In 

particular, k-space misalignment and bidirectional chemical shift induced misregistration 

artifacts are discussed. As demonstrated in Chapter 5, the maximum intensity projection 

of the water-only images reveal details of the blood vessels that would otherwise be ob-

scured by the bright signal from fat.  

Flow quantification is achieved using an ASL magnetization-prepared turbo-
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FLASH sequence with a Look-Locker-like readout scheme.  Such sequence design 

enables estimation of the blood perfusion rates based on the time course of the perfusion-

weighted signals; meanwhile, it overcomes the intrinsic low signal efficiency associated 

with the conventional ASL techniques.  Experimental validation on the hemodialyzer 

indicates that the proposed pulse sequence design can be used to measure the average 

velocity of fluid flowing through an imaging plane.  As implemented, this technique is 

designed to assess all flow passing through the slice, including vessels of all sizes down 

to capillary beds, unlike other techniques that use a pre-acquisition spoiler gradient pulse 

to suppress the flow signal from large vessels.  By including all types of flow through the 

slice, the perfusion value obtained with this technique should match the perfusion term 

used in the Pennes’ BHTE.  It is possible that MRgHIFU could use measurements from 

this imaging technique in thermal modeling based on the Pennes’ equation.  Moreover, 

this method is independent of MR thermometry, decoupling the blood flow measurement 

from the MR temperature maps, allowing the perfusion changes to be monitored 

throughout the thermal therapy session.  

Future work 

 The tissue classification algorithm presented in Chapter 3 provides a segmented 

breast tissue model composed of fat, fibroglandular tissue, skin and lesions.  Because 

flowing blood could carry heat away from the heated volume, it would be ideal to include 

blood vessel as another tissue type in the model.  Using the 3D dual-echo SSFP sequence 

proposed in Chapter 5, blood vasculature information is retrieved from the two-point 

Dixon reconstructed water-only images.  However, the presence of fibroglandular tissue 
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hinders the direct usage of these water-only images in the segmentation routine.  In order 

to incorporate blood vessel in a segmented breast tissue model, suppression of the signal 

from the fibroglandular tissue is thus necessary.  This can be achieved by applying 

background suppression where nonselective inversion pulses are used to null the 

background tissue (112).  

In addition to the blood vasculature, the two-point Dixon reconstructed fat-only 

and water-only images can also serve as input to the tissue segmentation routine, as 

presented in Chapter 3.  One major advantage of the two-point SSFP imaging technique 

over the three-point GRE-based method is its fast image acquisition speed.  However, the 

signal loss caused by the banding artifact can lead to error in simulating the interactions 

of the ultrasound with tissue, due to the large difference in ultrasound attenuation 

between breast fat and fibroglandular tissue.  This banding artifact can be reduced by 

combining images acquired with multiple phase cycling (111).  Furthermore, the blood 

vessel images obtained from the dual-echo SSFP sequence need to be compared with the 

DCE-MRI scan for validation purposes. 

Presently, the ASL flow quantification technique is only demonstrated on brain 

imaging.  The flow assessment on the breast tissue is less successful, even though the 

original intention was to develop the ASL technique for the breast.  This might be due to 

the intrinsic low perfusion rates (less than 1.5 kg/m
3
/s) of the breast tissue (113).  In order 

to improve the SNR of the perfusion-weighted signal, a pseudo-continuous ASL 

(pCASL) labeling strategy can be employed to achieve continuous labeling of the blood 

(114). 
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