8,023 research outputs found

    Ultrasound Measuring of Porosity in Porous Materials

    Get PDF
    This chapter provides a temporal method for measuring the porosity and the tortuosity of air-saturated porous materials using experimental reflected waves. The direct problem of reflection and transmission of acoustic waves by a slab of porous material is studied. The equivalent fluid model has considered in which the acoustic wave propagates only in the pore-space. Since the acoustic damping in air-saturated porous materials is important, only the reflected waves by the first interface are taken into account, and the multiple reflections are neglected. The study of the sensitivity analysis shows that porosity is much more sensitive than tortuosity to reflection, especially when the incident angle is less than its critical value, at which the reflection coefficient vanishes. The inverse problem is solved using experimental data at a different incidence angle in reflection. Some advantages and perspectives of this method are discussed

    Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

    Get PDF
    We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach

    Connection between electrical conductivity and diffusion coefficient of a conductive porous material filled with electrolyte

    Get PDF
    The paper focuses on the cross-property connection between the effective electrical conductivity and the overall mass transfer coefficient of a two phase material. The two properties are expressed in terms of the tortuosity parameter which generalized to the case of a material with two conductive phases. Elimination of this parameter yields the cross-property connection. The theoretical derivation is verified by comparison with computer simulation

    Acoustic identification of a poroelastic cylinder

    Full text link
    We show how to cope with the acoustic identification of poroelastic materials when the specimen is in the form of a cylinder. We apply our formulation, based on the Biot model, approximated by the equivalent elastic solid model, to a long bone-like or borehole sample specimen probed by low frequency sound

    Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations.

    Get PDF
    Despite aggressive peri-operative antibiotic treatments, up to 10% of patients undergoing instrumented spinal surgery develop an infection. Like most implant-associated infections, spinal infections persist through colonization and biofilm formation on spinal instrumentation, which can include metal screws and rods for fixation and an intervertebral cage commonly comprised of polyether ether ketone (PEEK). We have designed a PEEK antibiotic reservoir that would clip to the metal fixation rod and that would achieve slow antibiotic release over several days, followed by a bolus release of antibiotics triggered by ultrasound (US) rupture of a reservoir membrane. We have found using human physiological fluid (synovial fluid), that higher levels (100–500 μg) of vancomycin are required to achieve a marked reduction in adherent bacteria vs. that seen in the common bacterial medium, trypticase soy broth. To achieve these levels of release, we applied a polylactic acid coating to a porous PEEK puck, which exhibited both slow and US-triggered release. This design was further refined to a one-hole or two-hole cylindrical PEEK reservoir that can clip onto a spinal rod for clinical use. Short-term release of high levels of antibiotic (340 ± 168 μg), followed by US-triggered release was measured (7420 ± 2992 μg at 48 h). These levels are sufficient to prevent adhesion of Staphylococcus aureus to implant materials. This study demonstrates the feasibility of an US-mediated antibiotic delivery device, which could be a potent weapon against spinal surgical site infection. Statement of Significance: Spinal surgical sites are prone to bacterial colonization, due to presence of instrumentation, long surgical times, and the surgical creation of a dead space (≥5 cm 3 ) that is filled with wound exudate. Accordingly, it is critical that new approaches are developed to prevent bacterial colonization of spinal implants, especially as neither bulk release systems nor controlled release systems are available for the spine. This new device uses non-invasive ultrasound (US) to trigger bulk release of supra-therapeutic doses of antibiotics from materials commonly used in existing surgical implants. Thus, our new delivery system satisfies this critical need to eradicate surviving bacteria, prevent resistance, and markedly lower spinal infection rates

    Nanostructured sonogels

    Get PDF
    Acoustic cavitation effects in sol-gel liquid processing permits to obtain nanostructured materials, with size-dependent properties. The so-called "hot spots" produce very high temperatures and pressures which act as nanoreactors. Ultrasounds force the dissolution and the reaction stars. The products (alcohol, water and silanol) help to continue the dissolution, being catalyst content, temperature bath and alkyl group length dependent. Popular choices used in the preparation of silica-based gels are tetramethoxysilane (TMOS), Si(OCH3)4 and tetraethoxysilane (TEOS), Si(OC 2H5)4. The resultant "sonogels" are denser gels with finer and homogeneous porosity than those of classic ones. They have a high surface/volume ratio and are built by small particles (1 nm radius) and a high cross-linked network with low -OH surface coverage radicals. In this way a cluster model is presented based on randomly-packed spheres in several hierarchical levels that represent the real sonoaerogel. Organic modified silicates (ORMOSIL) were obtained by supercritical drying in ethanol of the corresponding alcogel producing a hybrid organic/inorganic aerogel. The new material takes the advantages of the organic polymers as flexibility, low density, toughness and formability whereas the inorganic part contributes with surface hardness, modulus strength, transparency and high refractive index. The sonocatalytic method has proven to be adequate to prepare silica matrices for fine and uniform dispersion of CdS and PbS quantum dots (QDs), which show exciton quantum confinement. We present results of characterization of these materials, such as nitrogen physisorption, small angle X-ray/neutrons scattering, electron microscopy, uniaxial compression and nanoindentation. Finally these materials find application as biomaterials for tissue engineering and for CO2 sequestration by means the carbonation reaction.Ministerio de Ciencia y Tecnología MAT2005-158

    Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation

    Get PDF
    This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm3. The structural analyses (N2 physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m2/g and porous volumes above 4.0 cm3/g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications
    corecore