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HIGHLIGHTS 

• Homogeneous SiO2–carbon nanotube monolithic aerogels were obtained by rapid controlled 

gelation 

• The carbon nanotubes were homogeneously dispersed in the highly porous silica matrix 

• The hybrid aerogels kept outstanding structural features and densities below 80 mg/cm3 in all 

cases 

• The Si-O-C covalent bonding between carbon nanotubes and silica matrix was prompted by 

FTIR 

• The carbon nanotubes turned the aerogels into 100% stiffer and 60% more deformable 

materials 

 

ABSTRACT 

This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid 

aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly 

porous silica matrix was performed by a two-step sol-gel process, resulting in samples with densities 

below 80 mg/cm3. The structural analyses (N2 physisorption and SEM) revealed the hierarchical 

structure of the porous matrix formed by nanoparticles arranged in clusters of 100 nm and 300 nm in 

size, specific surface areas around 600 m2/g and porous volumes above 4.0 cm3/g. In addition, a 

relevant increase on the mechanical performance was found, and an increment of 50% for the 

compressive strength and 90% for the maximum deformation were measured by uniaxial compression. 

This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica 

matrix and the formation of Si-O-C bridges between nanotubes and silica matrix, as suggested by 

FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of 

highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, 

which remain available for a variety of technological applications. 

KEYWORDS 

Silica hybrid aerogel; carbon nanotube; controlled gelation; structure; reinforcement; 

mechanical properties. 
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1. INTRODUCTION 

Silica aerogels present outstanding characteristics as host matrix for the performance of the 

physical or chemical applications of very different embedded phases. The rapid formation of a metal-

oxide solid porous network, namely, the formation of the gel or gelation, acts as a glue that 

immobilizes solid functional phases dispersed into the liquid sol, such as particles, fibres, or 

nanotubes, that will provide specific applications to the final hybrid material.1-3 The subsequent 

supercritical extraction of the liquid preserves the original structure of the solid network of the gel, 

which results in materials with very low bulk densities (as low as some mg/cm3), and avoids network 

changes due to capillary tensions averting solvent exchanges or the use of surfactants which can lead 

to composite densification due to volume shrinkage.4,5 These kind of highly porous matrices do not 

chemically alter their embedded guests and they are stable under very different chemical 

environments.  Besides, silica aerogels exhibit a good thermal stability, typically retain the optical 

transparency and is featureless throughout most of the UV-vis region. 

However, the inherent fragility of the silica aerogels has encouraged large research efforts to 

increase their mechanical properties and improve their manageability. This has been pursued by 

chemical additions, but these strategies usually lead to a limitation in the working temperature, an 

increase in the extreme low density, or a modification of the nanometre-sized hierarchical porosity.6-8 

More recently, aerogel reinforcement has been achieved by embedding solid phases into the silica 

matrix, such as fibres9-12 or carbon nanotubes (CNT), which have been frequently considered as a 

reinforcing phase given that CNT are among the stiffest and strongest fibres known, with Young’s 

moduli as high as 1 TPa and tensile strengths of up to 150 Gpa.13-15 But, typically, high loads of carbon 

nanotubes are hindered because they tend to form aggregates owing to string van der Walls force 

interactions, having this inhomogeneous dispersions a negative effect on the properties of CNT-loaded 

composites. Nevertheless, the use of basic solutions, the chemical functionalisation, or sonocatalysis16 

(the use of high-power ultrasounds) procedures have improved the dispersion of the CNT in the liquid 

precursors of the composite facilitating more homogeneous liquid sols and, subsequently, better spatial 

distributions of the CNT within the porous solid matrix.14,17-20 In addition, functionalisation could also 

facilitate the covalent link of the CNT to the silica matrix through the formation of Si-O-C bridges, a 

relevant issue given that the lack of chemical bonding reduces the effectiveness of the 

reinforcement.21-23 

A vast landscape of applications have emerged for CNT thanks to their good versatility of 

functionalisation, and the sol-gel process has been considered as one of the most common techniques 

to synthesize CNT-inorganic hybrid composites.18 Additionally, the structure of the aerogel matrix 

ensures access for external fluids since it consists of a hierarchical disordered assembly of 
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nanoparticles in a wide open 3D structure.10,24-26 Thus, CNT have been encapsulated in functional 

composites for very different applications, such as optical, thermal, electronic, sensors, biophysics, or 

environmental.17,27-32 

Despite the hundreds of articles related to silica-CNT hybrid composites present in the literature, 

such as glasses,17 and xerogels,19,30 or aerogel-like criogels and ambigels,29,33 just a handful of recent 

papers focused on aerogels, strictly speaking (obtained by supercritical drying), can be found.34-37 The 

aim of this work is to introduce a synthesis procedure to easily obtain monolithic homogeneous silica 

hybrid aerogels that host functional CNT which may remain available for different applications. In 

addition, this work deeply researches the structural and mechanical properties of the obtained 

composites as a function of the CNT content.  

 

2. MATERIALS AND METHODS 

2.1 Synthesis procedure 

Sols were prepared via acid/basic-catalysed sol-gel two-step process, in an attempt to exert 

better control over the rates of the hydrolysis and condensation reactions to achieve a rapid controlled 

gelation procedure that prevents nanotube agglomeration. In Fig. 1, a flow chart summarizes the 

process. Firstly, 2.5 mL of tetraethoxysilane (TEOS) (Merck, Germany; purity ≥ 99%) were mixed 

with 2.0 mL of absolute ethanol (Panreac, >99.5%). The mixtures were hydrolysed in acidic water at 

pH = 1 (HNO3, Panreac, 60%) under the catalyst effects of ultrasounds, by supplying ultrasonic power 

for one minute (50 W) Afterwards, 6.5 mL of additional absolute ethanol was added. Next, 3.25 mL of 

basic solution (pH = 12.00, NH4OH, Panreac, 30%) were added during 30 s of ultrasound power. This 

3.25 mL of basic solution carried the adequate mass of dispersed carbon nanotubes (CNT) 

corresponding for the targeted CNT wt.% content. This way, the total volume of the sample was kept 

constant in all samples, regardless the CNT content, in order to build similar silica matrix. Multiwalled 

CNT (MWCNT) were used (NANOLAB, 15 nm in diameter and 5 μm in length, -COOH 

functionalised, 95% purity). The basic solutions were prepared with ammonia and 1 h of ultrasound 

power. All chemical reactions were carried out at room conditions, in a flask immersed in a thermal 

bath to keep the temperature below 50 ºC during all the process. 

Afterwards, the sols gelled in less than five minutes, so the liquid sol is easily poured into 

cylindrical vials and then closed during this time. The gels were aged at 80 ºC for 48 h, and then the 

samples were washed daily by soaking in absolute ethanol for 7 days in order to remove traces of 

unreacted TEOS, nitric acid and ammonia.  
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Fig. 1 Flow chart of the synthesis procedure 

 

Finally, the samples were supercritically dried in an autoclave of 600 mL adding extra ethanol. 

During this process, temperature was raised at a rate of 1 ºC/min to prevent crossing the vapour-liquid 

equilibrium line, until T = 260 ºC, which resulted in an increase in pressure to 8 Mpa, ensuring 

supercritical conditions of ethanol. These conditions were maintained for 30 min, and then the ethanol 

was isothermally evacuated. Cylinder-shaped hybrid monolithic aerogels with homogeneous 

embedded CNT were obtained. 75 samples batches were synthesised, for statistics purposes and to 

check reproducibility, covering a range of CNT content from 0.00 wt.% (pure silica) to 2.50 wt.%.  

 

2.2 Characterization techniques 

Density was obtained by measuring the mass and size of the cylindrical samples with a calliper 

and a microbalance (precision ±0.1 mg). The nanostructural changes occurring in the silica aerogel 

due to the incorporation of the CNT were investigated by means of N2 physisorption experiments 

(Micromeritics ASAP2010, working at 77 K and equipped with pressure transducer resolution of 10-4 

mm Hg) and by scanning electron microscopy (SEM-FEG, Hitachi S5200), using an acceleration 

voltage of 5 kV. Prior to N2 physisorption analyses, samples were milled in an agate mortar and 

degasified at 150 ºC for 2 h under a N2 flux. Specific surface area, specific pore volume, pore size and 

pore size distribution (PSD) were determined considering standard models for the analysis (BET and 

BJH, respectively). The study on Si-O-C bond formation in the synthesised aerogels were analysed by 

Fourier transformer infrared spectrophotometry (FTIR). The spectra were recorded in the region from 

2000 to 400 cm-1 by means of a Bruker Tensor 37 spectrophotometer.  

Theoretical structural models have been built according to the works of Esquivias and 

Rodríguez-Ortega,24 in order to find a representative geometrical description of the submicrostructure, 

namely, structural features below 1 μm and above 10 nm. These models are built on the basis of 

random close packing (RCP) premises, where contact distance and extra porosity can be tuned. They 

are validated by comparing the experimental PSD with those calculated from models built up using the 

Monte-Carlo technique, among other strategies. The theoretical PSD are calculated from the largest 

sphere radius inscribed within the interstices. And the interstice size distribution, p(K), is obtained as 

function of a reduced variable K = r/R, where r is the radius of the largest inscribed sphere and R the 

particle radius in the hypothesis of hard-sphere approximation. The fitting of the theoretical curves to 

the experimental data allows characteristic structural parameters such as the characteristic particle size 
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of a mono-disperse system or the hierarchical levels to be calculated, by simply converting the reduced 

variable K to the real space. Detailed information can be found in the referred article.  

Mechanical properties were characterized by uniaxial compression (Shimadzu AG-I Autograph 

5 kN) within a ± 1% of indicated test force at 1/250 load cell rating, with a load cell of 500 N using a 

sample deformation rate of 0.05 mm/min. The mechanical parameters were obtained by unconfined 

compression from 4 to 5 cylindrical samples ~16.00 mm in height and ~8.00 mm in diameter, fulfilling 

the ASTM D7012 standard.38 The flat faces of the cylinders were carefully polished, if necessary. The 

failure points and the maximum deformation were estimated from the maximum supported load prior 

to sample failure. The elastic modulus was obtained by the linear slope of the stress-strain loading 

curve.   

 

3. RESULTS AND DISCUSSIONS 

The procedure designed in this work was intended to synthesise homogeneous hybrid gels with a 

perfect homogenisation of the carbon nanotubes. To achieve this goal, three tools were jointly 

considered to help a proper dispersion: the use of functionalised CNT within basic solutions, and the 

use high power ultrasounds, which also helped to enhance the gelation kinetics. Thus, the control of 

the gelation kinetics with the pH thanks to the addition of the CNT suspensions within the about-to-gel 

liquid sol involved the formation of homogeneous gels in between 1 and 5 min. Slight decrease of the 

pH was observed in the basic suspensions, from 12.00 to 11.10, as the CNT concentrations rose. 

Nevertheless, they were not critical to achieve the rapid controlled gelation and homogeneous gels. 

3.1 Physical characterization of the aerogels 

Monolithic optically homogeneous samples were obtained up to 2.50 wt.% of CNT content. The 

designed procedure of rapid gelation has proven to be an effective route to synthesise optically 

homogeneous CNT-hybrid silica aerogels. In Fig. 2, a sample set is shown.  

  

Fig. 2 Left: the absence of large agglomeration of CNT and the optical grade of their 

dispersion throughout the whole sample can be validated in translucent wet hybrid 0.05 wt.% 

gel; right: samples series just taken out from the supercritical drying ethanol autoclave, with 

increasing content of CNT, 0.00 wt.%; 0.05 wt.%; 0.50 wt.%; 1.00 wt.% and 2.50 wt.% 

 

The progressive inclusion of the CNT in the silica porous matrix did not drastically affect the 

bulk density of the aerogels. Nevertheless, a smooth increase of the density up to 10% upon increasing 

CNT content, as can be seen in Fig. 3-top, from 68±5 mg/cm3 for the pure silica samples to 76±15 
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mg/cm3 for samples with 2.50 wt.% CNT content. Detailed values can be found in Table 1. This 

increase can not be explained just in terms of the added CNT mass to the same sample value, given 

that the maximum loaded sample (2.50 wt.%) would give a density of ~70 mg/cm3. Therefore, some 

small densification of the silica matrix was found, most likely due to the presence of increasing CNT 

contents in the sols that slightly acidified the pH of the CNT basic suspension, from 12.00 down to 

11.10 for the highest CNT content. The possible presence of some minor interfacial region of slightly 

denser silica matrix surrounding the nanotubes13 was not confirmed by SEM (see next section). In all 

cases, the density values behaved with increasing CNT content in a similar way to other values 

reported for silica-CNT aerogels.35 They remained below the densities of other silica hybrid aerogels,11 

and did not experienced significant increases as reported for ambigels.27,29 

  

[CNT] (wt.%) ρ  (mg/cm3) SBET (m2/g) Vp (cm3/g) Pore size (nm) 

0.00 68 ± 5 520 ± 40 4.3 ± 0.3 20 ± 2 

0.10 63 ± 13 480 ± 50 3.9 ± 0.2  23 ± 6 

0.50 69 ± 9 540 ± 90 4.1 ± 0.6 20 ± 2 

1.00 77 ± 10 650 ± 70 4.0 ± 0.4 17 ± 4 

2.00 69 ± 14 570 ± 40 4.4 ± 0.4 20 ± 2 

2.50 76 ± 15 630 ± 40 4.6 ± 0.2 19 ± 1 

 

Table 1 Densities, specific surface area and specific porous volume obtained for the samples 

series with increasing content of CNT. Pore size stands for the average typical pore size. 

Error bars represent the standard deviation in all cases. Uncertainties below 20% confirm 

an acceptable moderate degree of reproducibility  

Thus, the two-step sol-gel procedure permits to exert control on the rates of hydrolysis and 

condensation reactions, and to design a rapid synthesis procedure for the fabrication of hybrid samples 

with an outstanding CNT dispersion. Firstly, the acidic hydrolysis takes place in ~1 min in presence of 

ethanol as homogenizing solvent. And the subsequent addition of the basic CNT-bearing suspension 

upon high power ultrasound serves a two-fold objective: the stabilisation of the CNT suspension for 

their homogeneous dispersion within the sol, and the raise of the pH, which increases the gelation 

kinetics and, along with sonocatalysis, leads to the gelation in a few minutes (between 1 and 5 min) 

preventing the formation and precipitation of the CNT agglomerates. 

3.2 Nanostructure 

N2 physisorption experiments revealed the structural features of the sample series. In Table 1, 

the values of the specific surface area, specific porous volume and averaged pore size are listed. As a 

general conclusion, it can be stated that the submicrostucture of the aerogels is not dramatically altered 
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due to the inclusion of the CNT, regardless the content. Hence, structural parameters such as the 

specific surface area (Fig. 3-middle and Table 1), specific porous volume or typical pore size (Table 

1), do not show neither major changes nor steep trends. Nevertheless, the specific surface area showed 

a smooth increasing trend upon increasing CNT content, which rose from 520 m2/g to 630 m2/g and 

remained in the typical values for silica aerogels. The negligible contribution of the bare CNT to the 

SBET was verified by N2-physisorption experiments to the raw CNT (6 m2/g for their specific surface 

area). Therefore, the mentioned small pH variations of the final sol can be responsible of these slight 

variations.  

Fig. 3 Top: bulk density of the samples for different CNT contents; middle: specific 

surface area (SBET) vs. CNT content; bottom: pore size distribution of two 

representative samples with different CNT contents (discontinuous lines), and best 

fitted theoretical curves (light solid lines) from the hierarchical structural models 

based on random close packings (sketched in inset) 

 

Special attention has been paid to the pore size distribution (Fig. 3-bottom). These distributions 

curves revealed the mesoporous character of the sample, and they also exhibit a well defined peak that 

indicates a typical pore size of ~16 nm. In addition, this pore size distribution is well explained by the 

hierarchical structures that describes the silica matrix of the aerogels. This premise was assessed by 

fitting theoretical PSD curves from structural models (light solid lines in Fig. 3-bottom; see section 

'Materials and methods' for details). First of all, no significant changes were observed due to the 

inclusion of the CNT. Except for small mesopores (<10 nm), for which no good fitting was found, the 

distribution was successfully described in terms of the composition of theoretical porous distributions 

from two different hierarchical levels of random packings of sphere-shaped aggregates. Hence, it can 

be deduced that the structure, below 10 nm, is not well described by arrangements of monosized hard 

spheres. Instead, basic building particles are far away from the spherical shape and the pores are 

conformed by particles of different sizes. Finally, the convolution of two of the structural models 

catalogue24 was found adequate to satisfactorily fit the distributions between 10 and ~80 nm, 

indicating that the basic building particles are arranged in a first structural level with clusters of 70.9 

mn in size, in an open structure with more than 60% of level porosity with a low coordination number 

of 3.73. These clusters are subsequently arranged in a third hierarchical level, a denser arrangement 

with clusters of 211 nm in size and high coordination number (Ncoord = 8.53). These models were 

labelled DP20 and HP0, the characteristics of them appear in Table 2.  
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MODEL 
Contact 

distance 

Added  

Porosity 

(%) 

Kmax 

Particle 

size 

(nm) 

Φ (%) NCoord 

DP20 0.99 18 0.46 70.9 62 3.73 

HP0 0.95 0 0.26 211 40 8.53 

 

Table 2 Geometrical parameters of the selected structural models which fit the experimental pore size 

distributions. Kmax: peak position of the theoretical PSD in reduced units. Particle size is obtained by 

deconvolution of the peak position. Φ: occupation fraction. Ncoord stands for coordination number, that is, the 

average number of first neighbours of the particles in the model 

 

On the other hand, scanning electron microscopy micrographs revealed submicrostructural 

features in the morphology of the samples with different CNT contents. In Fig. 4a, the 0.00 wt.% 

sample presented the well-known disordered hierarchical structure of the porous matrix of the acid-

catalysed silica aerogels, in which nanometre non-spherical particles formed clusters subsequently 

arranged in larger clusters and so on. These features are in coherence with pore size distributions 

plotted in Fig. 3-bottom and supported the characteristic cluster sizes revealed by the structural models 

(highlighted in Fig. 4a by dashed circles).  

The inclusion of the CNT in the silica matrix can be seen in the micrographs series of Fig. 4b-d. 

The embedded nanotubes were frequently found linking silica clusters (Fig. 4b), emerging from within 

the bulk (Fig. 4c), or standing alone (Fig. 4d). At these magnifications, no differences were found 

between bulk silica matrix and silica of the interfacial region surrounding the nanotubes. In addition, 

the width of the nanotubes could be checked by analysing high magnification images (inset in Fig. 4d), 

and sizes below 20 nm were always found, in accordance with the supplier's data. Despite the presence 

of unwished large agglomerates of CNT cannot be discarded by SEM imaging, they were not found 

after several SEM imaging sessions. This is in accordance with the excellent optical homogeneity 

achieved by this original synthesis procedure (Fig. 2). 

 

Fig. 4 SEM micrographs from samples with different CNT contents: a)  texture of the pure silica 

aerogel matrix, white circles highlight the two typical cluster sizes in the hierarchical arrangement 

revealed by structural models (see text); b) shows several clusters of nanoporous silica with an 

embedded single carbon nanotube (pointed by the arrow); c) several nanotubes coated by silica 

matrix emerged from the bulk; d) a single nanotube is bridging two separated silica clusters; inset: 

the diameter of the nanotube was verified to be below 20 nm with the help of the ImageJ software. 

No relevant CNT agglomerates were found. Scale bar stands for 500 nm in all cases, except inset 
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3.3 Chemical characterization (FTIR) 

FTIR spectra of the samples (Fig. 5) showed the typical SiO2 vibration bands in range of 400-

1100 cm-1, specifically, the band of vibration of Si-O-Si units appears at 472 cm-1 (δ(Si-O-Si)), 804 cm-

1 (ν(Si-O-Si)), 1086 cm-1 (ν(Si-O-Si))  and 1107 cm-1 (νas(Si-O-Si)). The band at 966 cm-1 could be 

assigned to Si-OH vibration39 (ν(Si-OH)). But the relevant differences due to the inclusion of the CNT 

in the silica matrix are expected in the range of 1000-1100 cm-1. Hence, FTIR spectra exhibited a 

substantial increase with increasing CNT content at 1096 cm-1 (inset in Fig. 5), which suggest the 

presence of the Si-O-C bonding.22,23 Despite these FTIR analyses are not conclusive to unambiguously 

discern the formation of Si-O-C , these evidences strongly suggest the presence of the formation of 

covalent bonds between the silica matrix and the functionalised carbon nanotubes. 

 

Fig. 5 Normalized curves of the measured absorbance by FTIR analyses of the pure 

silica sample (black line) and hybrid silica-CNT samples with the following CNT 

contents: 0.05 wt.%; 1.00 wt.% and 2.50 wt.% (grey, blue and yellow lines, 

respectively). Insets magnify the content of the dashed boxes and are focused where 

evidences of Si-O-C bonds are expected 

 

3.2 Mechanical properties 

The uniaxial compression test revealed the mechanical properties and their dependence with the 

increasing CNT contents. In Fig. 6, the effect of the inclusion of the CNT in the mechanical properties 

of the silica aerogel can be observed. Fig. 6a shows four stress-strain representative curves, where it 

can be observed how the inclusion of the CNT within the silica matrix drastically changes the 

mechanical behaviour of the samples under uniaxial compression. In contrast to the brittle behaviour 

of the pure silica aerogel, a stiffening effect in deformations above 50% was found in hybrid samples. 

The Young's moduli measured at the beginning of the curve revealed a significant stiffening of the 

samples with 1 wt.% of CNT, and a value of 0.42 Mpa was measured, that is, a ~100% stiffer than 

pure silica aerogel (0.20 MPa). In addition, these values are one order of magnitude higher than other 

reported for similar samples32 remarking the relevance of this new fabrication procedure. Nevertheless, 

larger contents yielded to a reduction of the Young's modulus (Fig. 6b).  

 

Fig. 6 Stress-strain curves for selected representative samples (a); 

dependence of the mechanical parameters determined by uniaxial 

compression tests with increasing CNT contents (b-d) 
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On the other hand, the brittle silica matrix collapsed upon 0.2 Mpa stress and bore less than 50% 

of deformation (Fig 6c y d) whereas the hybrid samples exhibited an increase of these mechanical 

parameters reaching compressive strength and maximum deformation values up to 0.9 MPa and 74%, 

respectively. Hence, they bore up to 6-fold higher loads and 60% larger deformations, an increase 

close to other reported results for reinforced silica aerogels with silica nanowires.11 It can be concluded 

that, regarding the enhancement of the mechanical properties, there is an optimal range of CNT 

content, between 0.50 and 1.00 wt.%, which leads to the best mechanical performance of the hybrid 

samples, achieving maximum values of Young's modulus, compressive strength and maximum 

deformation. Additionally, higher loads of CNT do not imply higher upon uniaxial compression 

experiments as it occurs in other type of CNT-reinforced materials. 

To sum up, the CNT-reinforced silica aerogels have displayed a significant enhancement of the 

mechanical behaviour in comparison to its pure silica counterpart. The prominent homogeneous 

dispersion throughout the silica matrix and the bonding between the silica matrix and the carbon 

nanotubes are making possible the increase of these mechanical values, enabling a route towards the 

reduction of the extreme fragility of silica aerogels. 

 

4. CONCLUSIONS 

Homogeneous silica-CNT hybrid aerogels can be easily obtained by the two-step sol-gel 

synthesis procedure introduced in this work, thanks to a rapid gelation by controlling pH and the use 

of high power ultrasounds, which prevent CNT agglomeration. The nanostructure and the density of 

the samples are not critically affected by the inclusion of nanotubes within the silica porous matrix. 

Thus, the silica matrix keeps its singular properties after the incorporation of the CNT, such as very 

low density (below 80 mg/cm3) and specific surface area (close to 600 m2/g in all cases) and the open 

3D hierarchical nanoparticulate structure. Besides, the good dispersion of the embedded CNT and the 

intimate structural relationship between CNT and silica characterized by the formation of Si-O-C 

bridges prompted by FTIR resulted in enhancements greater than 100% of mechanical properties such 

as the elastic modulus, the maximum deformation or the compressive strength. 

In summary, this work introduced a versatile procedure to easily fabricate host porous silica 

matrices with immobilized CNT as hybrid aerogels, which can be prepared with targeted physical 

properties beyond structure or mechanical properties, such as thermal, optical or electrical properties, 

in the view of different applied technological aims. 
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