294 research outputs found

    First steps in synthetic guarded domain theory: step-indexing in the topos of trees

    Get PDF
    We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, on predicates and types, which serve as guards in recursive definitions of terms, predicates, and types. In particular, we show how to solve recursive type equations involving dependent types. We propose that the internal logic of S provides the right setting for the synthetic construction of abstract versions of step-indexed models of programming languages and program logics. As an example, we show how to construct a model of a programming language with higher-order store and recursive types entirely inside the internal logic of S. Moreover, we give an axiomatic categorical treatment of models of synthetic guarded domain theory and prove that, for any complete Heyting algebra A with a well-founded basis, the topos of sheaves over A forms a model of synthetic guarded domain theory, generalizing the results for S

    The equational theory of the natural join and inner union is decidable

    Full text link
    The natural join and the inner union operations combine relations of a database. Tropashko and Spight [24] realized that these two operations are the meet and join operations in a class of lattices, known by now as the relational lattices. They proposed then lattice theory as an algebraic approach to the theory of databases, alternative to the relational algebra. Previous works [17, 22] proved that the quasiequational theory of these lattices-that is, the set of definite Horn sentences valid in all the relational lattices-is undecidable, even when the signature is restricted to the pure lattice signature. We prove here that the equational theory of relational lattices is decidable. That, is we provide an algorithm to decide if two lattice theoretic terms t, s are made equal under all intepretations in some relational lattice. We achieve this goal by showing that if an inclusion t ≤\le s fails in any of these lattices, then it fails in a relational lattice whose size is bound by a triple exponential function of the sizes of t and s.Comment: arXiv admin note: text overlap with arXiv:1607.0298

    Ultrametric and Generalized Ultrametric in Computational Logic and in Data Analysis

    Get PDF
    Following a review of metric, ultrametric and generalized ultrametric, we review their application in data analysis. We show how they allow us to explore both geometry and topology of information, starting with measured data. Some themes are then developed based on the use of metric, ultrametric and generalized ultrametric in logic. In particular we study approximation chains in an ultrametric or generalized ultrametric context. Our aim in this work is to extend the scope of data analysis by facilitating reasoning based on the data analysis; and to show how quantitative and qualitative data analysis can be incorporated into logic programming.Comment: 19 pp., 5 figures, 3 table

    The Haar Wavelet Transform of a Dendrogram: Additional Notes

    Get PDF
    We consider the wavelet transform of a finite, rooted, node-ranked, pp-way tree, focusing on the case of binary (p=2p = 2) trees. We study a Haar wavelet transform on this tree. Wavelet transforms allow for multiresolution analysis through translation and dilation of a wavelet function. We explore how this works in our tree context.Comment: 37 pp, 1 fig. Supplementary material to "The Haar Wavelet Transform of a Dendrogram", http://arxiv.org/abs/cs.IR/060810
    • …
    corecore