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Abstract

Following a review of metric, ultrametric and generalized ultrametric,
we review their application in data analysis. We show how they allow
us to explore both geometry and topology of information, starting with
measured data. Some themes are then developed based on the use of
metric, ultrametric and generalized ultrametric in logic. In particular we
study approximation chains in an ultrametric or generalized ultrametric
context. Our aim in this work is to extend the scope of data analysis
by facilitating reasoning based on the data analysis; and to show how
quantitative and qualitative data analysis can be incorporated into logic
programming.

1 Introduction

The applicability of metric spaces to applications related to logic has long been
known. For example Lawvere [19, 20] starts with the observation of the analogy
of the triangular inequality and a categorical composition law. A comprehensive
survey of this area can be found in [36].

Hierarchies as used in data analysis are presented in terms of finding various
forms of symmetry in data in [29]. We could describe hierarchy built from
pairwise dissimilarities as a “precision tool” for data mining; and hierarchies
built from the generalized ultrametric (see section 4) as leading to a “power
tool” for data mining. The former is (without special algorithmic speedups)
typically quadratic or O(n2) in its computational requirement. The latter can
be linear or O(n) in its computation. Here n relates to number of observations.
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We begin in section 2 with data analysis. We motivate the hierarchical struc-
turing of data, describing at a general level how the geometry and the topology
of information come into play, related respectively to metric and ultrametric
embedding of data.

In section 3 we show how hierarchy, induced from data, can be made use
of for approximating data. The latter, approximating data, is applicable and
important for computational purposes.

In logic, chains of implications or conditionals have to be analyzed. When
we consider a partial order of conditionals, then the framework of spherical
(ultrametric) completeness or inductive limit (sections 4.1 and especially 3.1)
become very useful indeed.

In section 4.1, we will look at how, [5], a “computable real number is ...
the lub [least upper bound] of a shrinking sequence of rational intervals which is
generated by a master program”, and therefore how a real number is computable
“in the interval approach to computability on the real line”.

The convergence to fixed points that are based on a generalized ultrametric
system is precisely the study of spherically complete systems and expansive
automorphisms discussed in section 3.1. As expansive automorphisms we see
here again an example of data and information symmetry at work.

2 From Metric to Ultrametric Topology

We will discuss how an ultrametric topology – a tree structuring of the data –
is induced from data, using pairwise dissimilarities.

2.1 Pairwise Dissimilarities

Given an observation set, X, we define dissimilarities as the mapping d :
X ×X −→ R+, where R+ are the positive reals. A dissimilarity is a positive,
definite, symmetric measure (i.e., d(x, y) ≥ 0; d(x, y) = 0 if x = y; d(x, y) =
d(y, x)). If in addition the triangular inequality is satisfied (i.e., d(x, y) ≤
d(x, z) + d(z, y),∀x, y, z ∈ X) then the dissimilarity is a distance.

2.1.1 From Dissimilarities to an Ultrametric

If X is endowed with a metric, then we now describe how this metric is mapped
onto an ultrametric. In practice, there is no need for X to be endowed with a
metric. Instead a dissimilarity is satisfactory.

A hierarchy, H, is defined as a binary, rooted, node-ranked tree, also termed
a dendrogram [3, 16, 21, 24]. A hierarchy defines a set of embedded subsets of a
given set of objects X, indexed by the set I. These subsets are totally ordered
by an index function ν, which is a stronger condition than the partial order
required by the subset relation. A bijection exists between a hierarchy and an
ultrametric space.

Let us show these equivalences between embedded subsets, hierarchy, and
binary tree, through the constructive approach of inducing H on a set I.
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Figure 1: The triangular inequality defines a metric: every triplet of points
satisfies the relationship: d(x, z) ≤ d(x, y) + d(y, z) for distance d.

Hierarchical agglomeration on n observation vectors with indices i ∈ I in-
volves a series of 1, 2, . . . , n− 1 pairwise agglomerations of observations or clus-
ters, with the following properties. A hierarchy H = {q|q ∈ 2I} such that (i) I ∈
H, (ii) i ∈ H ∀i, and (iii) for each q ∈ H, q′ ∈ H : q∩q′ 6= ∅ =⇒ q ⊂ q′ or q′ ⊂ q.
Here we have denoted the power set of set I by 2I . An indexed hierarchy is
the pair (H, ν) where the positive function defined on H, i.e., ν : H → R+,
satisfies: ν(i) = 0 if i ∈ H is a singleton; and q ⊂ q′ =⇒ ν(q) < ν(q′). Here
we have denoted the positive reals, including 0, by R+. Function ν is the ag-
glomeration level. Take q ⊂ q′, let q ⊂ q′′ and q′ ⊂ q′′, and let q′′ be the lowest
level cluster for which this is true. Then if we define D(q, q′) = ν(q′′), D is an
ultrametric. In practice, we start with a Euclidean or alternative dissimilarity,
use some criterion such as minimizing the change in variance resulting from the
agglomerations, and then define ν(q) as the dissimilarity associated with the
agglomeration carried out.

2.2 Metric and Ultrametric for Geometry and Topology
of Information

The geometry of information is a term and viewpoint used by [37]. The tri-
angular inequality holds for metrics. An example of a metric is the Euclidean
distance, exemplified in Figure 1, where each and every triplet of points sat-
isfies the relationship: d(x, z) ≤ d(x, y) + d(y, z) for distance d. Two other
relationships also must hold. These are symmetry and positive definiteness,
respectively: d(x, y) = d(y, x), and d(x, y) > 0 if x 6= y, d(x, y) = 0 if x = y.
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Figure 2: The query is on the far right. While we can easily determine the
closest target (among the three objects represented by the dots on the left), is
the closest really that much different from the alternatives?

We come now to a different principle: that of the topology of information.
The particular topology used is that of hierarchy. Euclidean embedding provides
a very good starting point to look at hierarchical relationships. An innovation in
our work is as follows: the hierarchy takes sequence, e.g. timeline, into account.
This captures, in a more easily understood way, the notions of novelty, anomaly
or change.

Let us take an informal case study to see how this works. Consider the
situation of seeking documents based on titles. If the target population has
at least one document that is close to the query, then this is (let us assume)
clearcut. However if all documents in the target population are very unlike the
query, does it make any sense to choose the closest? Whatever the answer here
we are focusing on the inherent ambiguity, which we will note or record in an
appropriate way. Figure 2 illustrates this situation, where the query is the point
to the right.

By using approximate similarity this situation can be modeled as an isosceles
triangle with small base, as illustrated in Figure 2. An ultrametric space has
properties that are very unlike a metric space, and one such property is that the
only triangles allowed are either (i) equilateral, or (ii) isosceles with small base.
So Figure 2 can be taken as representing a case of ultrametricity. What this
means is that the query can be viewed as having a particular sort of dominance
or hierarchical relationship vis-à-vis any pair of target documents. Hence any
triplet of points here, one of which is the query (defining the apex of the isosceles,
with small base, triangle), defines local hierarchical or ultrametric structure.
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Figure 3: The strong triangular inequality defines an ultrametric: every triplet
of points satisfies the relationship: d(x, z) ≤ max{d(x, y), d(y, z)} for dis-
tance d. Cf. by reading off the hierarchy, how this is verified for all x, y, z:
d(x, z) = 3.5; d(x, y) = 3.5; d(y, z) = 1.0. In addition the symmetry and positive
definiteness conditions hold for any pair of points.

(See [26] for case studies.)
It is clear from Figure 2 that we should use approximate equality of the long

sides of the triangle. The further away the query is from the other data then
the better is this approximation [26].

What sort of explanation does this provide for our conundrum? It means
that the query is a novel, or anomalous, or unusual “document”. It is up to us to
decide how to treat such new, innovative cases. It raises though the interesting
perspective that here we have a way to model and subsequently handle the
semantics of anomaly or innocuousness.

The strong triangular inequality, or ultrametric inequality, holds for tree
distances: see Figure 3. The closest common ancestor distance is such an ultra-
metric.

2.3 Hierarchical Agglomerative Clustering

Since pairwise dissimilarities are used in constructing the hierarchy, the com-
putation complexity of hierarchical clustering is at least O(n2). As the closest
clusters (including singletons) are agglomerated at each of n−1 agglomerations
(card X = card I = n), the newly created cluster must be related to others.
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This is part and parcel of the agglomeration criterion, and can be viewed ei-
ther as the cluster update rule, or the agglomerative criterion (e.g., based on
compactness, or connectivity).

The most efficient algorithms are based on nearest neighbor chains, which
by definition end in a pair of agglomerable reciprocal nearest neighbors. O(n2)
computation time is guaranteed. The uniqueness and acceptability of on-the-fly
agglomeration based on reciprocal nearest neighbors can be proven (respectively,
disproven) for the given agglomerative criterion. The reciprocal nearest neigh-
bor algorithm was first proposed in two articles in the journal Les Cahiers de
l’Analyse des Données in 1980 and 1982, and are now used in software packages
such as Clustan and R. Further information can be found in [22, 23, 24, 25].

2.4 Hierarchy as the Wreath Product Group expressing
Symmetries

A dendrogram like that shown in Figure 1 is invariant relative to rotation (al-
ternatively, here: permutation) of left and right child nodes. These rotation (or
permutation) symmetries are defined by the wreath product group (see [8, 9, 7]
for an introduction and applications in signal and image processing), and can
be used with any m-ary tree, although we will treat the binary case here.

For the group actions, with respect to which we will seek invariance, we
consider independent cyclic shifts of the subnodes of a given node (hence, at
each level). Equivalently these actions are adjacency preserving permutations
of subnodes of a given node (i.e., for given q, with q = q′ ∪ q′′, the permutations
of {q′, q′′}). We have therefore cyclic group actions at each node, where the
cyclic group is of order 2.

The symmetries of H are given by structured permutations of the terminals.
The terminals will be denoted here by Term H. The full group of symmetries
is summarized by the following generative algorithm:

1. For level l = n− 1 down to 1 do:

2. Selected node, ν ←− node at level l.

3. And permute subnodes of ν.

Subnode ν is the root of subtree Hν . We denote Hn−1 simply by H. For
a subnode ν′ undergoing a relocation action in step 3, the internal structure of
subtree Hν′ is not altered.

The algorithm described defines the automorphism group which is a wreath
product of the symmetric group. Denote the permutation at level ν by Pν .
Then the automorphism group is given by:

G = Pn−1 wr Pn−2 wr . . . wr P2 wr P1

where wr denotes the wreath product.
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Call Term Hν the terminals that descend from the node at level ν. So these
are the terminals of the subtree Hν with its root node at level ν. We can
alternatively call Term Hν the cluster associated with level ν.

We will now look at shift invariance under the group action. This amounts to
the requirement for a constant function defined on Term Hν ,∀ν. A convenient
way to do this is to define such a function on the set Term Hν via the root node
alone, ν. By definition then we have a constant function on the set Term Hν .

Let us call Vν a space of functions that are constant on Term Hν . Possible
bases of Vν that were considered in [27] are:

1. Basis vector with |TermHn−1| components, with 0 values except for value
1 for component i.

2. Set (of cardinality n = |TermHn−1|) of m-dimensional observation vectors.

The constant function for each node or level ν is:

L : TermHν −→ Vν

Consider the resolution scheme arising from moving from
{TermHν′ ,TermHν′′} to TermHν . From the hierarchical clustering point of
view it is clear what this represents, simply, an agglomeration of two clusters
called Term Hν′ and Term Hν′′ , replacing them with a new cluster, Term Hν .

Let the spaces of constant functions corresponding to the two cluster ag-
glomerands be denoted Vν′ and Vν′′ . These two clusters are disjoint initially,
which motivates us taking the two spaces as a couple: (Vν′ , Vν′′). In the same
way, let the space of constant functions corresponding to node ν be denoted Vν .

Let us exemplify a case that satisfies all that has been defined in the context
of the wreath product invariance that we are targeting. It is the algorithm
discussed in depth in [27]. Take the constant function on Vν′ to be fν′ . Take
the constant function on Vν′′ to be fν′′ . Then define the constant function, the
scaling function, on Vν to be (fν′ + fν′′)/2. Next define the zero mean function,
(wν′ + wν′′)/2 = 0, the wavelet function, as follows:

wν′ = (fν′ + fν′′)/2− fν′

in the support interval of Vν′ , i.e. Term Hν′ , and

wν′′ = (fν′ + fν′′)/2− fν′′

in the support interval of Vν′′ , i.e. Term Hν′′ .
Since wν′ = −wν′′ we have the zero mean requirement.

3 Approximation in an Ultrametric Topology

We now seek to use a hierarchical clustering for successively approximating an
object. In [28] we have examples of application to facial recognition and textual
analysis.
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Following a general view of hierarchical approximation in subsection 3.1,
we then proceed to an algorithm, and a data analysis framework, to support
hierarchical approximation.

3.1 Approximation from a Hierarchy: Dilation Operation
as p-Adic Multiplication by 1/p

Scale-related symmetry is very important in practice. In this subsection we
introduce an operator that provides this symmetry. We also term it a dilation
operator, because of its role in the wavelet transform on trees (see [27] for
discussion and examples).

First we introduce a p-adic encoding of a hierarchy, using Figure 4 as an
example. By means of terminal-to-root traversals, we define the following p-
adic encoding of terminal nodes, and hence objects, in Figure 4.

x1 : +1 · p1 + 1 · p2 + 1 · p5 + 1 · p7 (1)

x2 : −1 · p1 + 1 · p2 + 1 · p5 + 1 · p7

x3 : −1 · p2 + 1 · p5 + 1 · p7

x4 : +1 · p3 + 1 · p4 − 1 · p5 + 1 · p7

x5 : −1 · p3 + 1 · p4 − 1 · p5 + 1 · p7

x6 : −1 · p4 − 1 · p5 + 1 · p7

x7 : +1 · p6 − 1 · p7

x8 : −1 · p6 − 1 · p7

If we choose p = 2 the resulting decimal equivalents could be the same: cf.
contributions based on +1 · p1 and −1 · p1 + 1 · p2. Given that the coefficients
of the pj terms (1 ≤ j ≤ 7) are in the set {−1, 0,+1} (implying for x1 the
additional terms: +0 · p3 + 0 · p4 + 0 · p6), the coding based on p = 3 is required
to avoid ambiguity among decimal equivalents.

Consider the set of objects {xi|i ∈ I} with its p-adic coding considered
above. Take p = 2. (Non-uniqueness of corresponding decimal codes is not of
concern to us now, and taking this value for p is without any loss of generality.)
Multiplication of x1 = +1 · 21 + 1 · 22 + 1 · 25 + 1 · 27 by 1/p = 1/2 gives:
+1 · 21 + 1 · 24 + 1 · 26. Each level has decreased by one, and the lowest level
has been lost. Subject to the lowest level of the tree being lost, the form of the
tree remains the same. By carrying out the multiplication-by-1/p operation on
all objects, it is seen that the effect is to rise in the hierarchy by one level.

Let us call product with 1/p the operator A. The effect of losing the bottom
level of the dendrogram means that either (i) each cluster (possibly singleton)
remains the same; or (ii) two clusters are merged. Therefore the application of
A to all q implies a subset relationship between the set of clusters {q} and the
result of applying A, {Aq}.

Repeated application of the operator A gives Aq, A2q, A3q, . . .. Starting
with any singleton, i ∈ I, this gives a path from the terminal to the root node

8
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Figure 4: Labeled, ranked dendrogram on 8 terminal nodes, x1, x2, . . . , x8.
Branches are labeled +1 and −1. Clusters are: q1 = {x1, x2}, q2 =
{x1, x2, x3}, q3 = {x4, x5}, q4 = {x4, x5, x6}, q5 = {x1, x2, x3, x4, x5, x6}, q6 =
{x7, x8}, q7 = {x1, x2, . . . , x7, x8}.
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Sepal.L Sepal.W Petal.L Petal.W
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2

Table 1: First 8 observations of Fisher’s iris data. L and W refer to length and
width.

in the tree. Each such path ends with the null element, and therefore the
intersection of the paths equals the null element.

Benedetto and Benedetto [1, 2] discuss A as an expansive automorphism of
I, i.e. form-preserving, and locally expansive. Some implications [1] of the ex-
pansive automorphism follow. For any q, let us take q,Aq,A2q, . . . as a sequence
of open subgroups of I, with q ⊂ Aq ⊂ A2q ⊂ . . ., and I =

⋃
{q, Aq,A2q, . . .}.

This is termed an inductive sequence of I, and I itself is the inductive limit
([32], p. 131).

Each path defined by application of the expansive automorphism defines a
spherically complete system [34, 10, 33], which is a formalization of well-defined
subset embeddedness.

3.2 Haar Wavelet Transform of a Dendrogram

Determining successive approximations of data, based on the data itself, leads
us to the Haar wavelet transform of a hierarchy, or on a dendrogram.

The discrete wavelet transform is a decomposition of data into spatial and
frequency components. In terms of a dendrogram these components are with
respect to, respectively, within and between clusters of successive partitions.
We show how this works taking the data of Table 1.

The hierarchy built on the 8 observations of Table 1 is shown in Figure 5.
Something more is shown in Figure 5, namely the detail signals (denoted

±d) and overall smooth (denoted s), which are determined in carrying out the
wavelet transform, the so-called forward transform.

The inverse transform is then determined from Figure 5 in the following way.
Consider the observation vector x2. Then this vector is reconstructed exactly
by reading the tree from the root: s7 + d7 = x2. Similarly a path from root
to terminal is used to reconstruct any other observation. If x2 is a vector of
dimensionality m, then so also are s7 and d7, as well as all other detail signals.

This procedure is the same as the Haar wavelet transform, only applied to
the dendrogram and using the input data.
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x1 x3 x4 x6x8x2 x5x7

0
1

s7

s6

s5

s4
s3

s2
s1

-d7

-d6
-d5

-d4
-d3-d2

-d1

+d7

+d6

+d5

+d4 +d3
+d2 +d1

Figure 5: Dendrogram on 8 terminal nodes constructed from first 8 values of
Fisher iris data. (Median agglomerative method used in this case.) Detail or
wavelet coefficients are denoted by d, and data smooths are denoted by s. The
observation vectors are denoted by x and are associated with the terminal nodes.
Each signal smooth, s, is a vector. The (positive or negative) detail signals, d,
are also vectors. All these vectors are of the same dimensionality.

s7 d7 d6 d5 d4 d3 d2 d1
Sepal.L 5.146875 0.253125 0.13125 0.1375 −0.025 0.05 −0.025 0.05

Sepal.W 3.603125 0.296875 0.16875 −0.1375 0.125 0.05 −0.075 −0.05
Petal.L 1.562500 0.137500 0.02500 0.0000 0.000 −0.10 0.050 0.00

Petal.W 0.306250 0.093750 −0.01250 −0.0250 0.050 0.00 0.000 0.00

Table 2: The hierarchical Haar wavelet transform resulting from use of the first
8 observations of Fisher’s iris data as shown in Table 1. Wavelet coefficient
levels are denoted d1 through d7, and the continuum or smooth component is
denoted s7.
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The data required to define this wavelet transform, for the data in Table 1,
is shown in Table 2.

The principle of “folding” the hierarchy onto an external signal is as fol-
lows. The wavelet transform codifies the hierarchy. Having that, we apply the
“codification” of the hierarchy with the new, external signal as input.

Wavelet regression entails setting small and hence unimportant detail coef-
ficients to 0 before applying the inverse wavelet transform.

More discussion can be found in [27].

3.3 Representation of an Object as a Chain of Successively
Finer Approximations

From the wavelet transformed hierarchy we can read off that, say, x1 = d2 +
d5 + d7 + s7: cf. Figure 5. Or x8 = d6 − d7 + s7. These relationships use the
appropriate vectors shown in Table 2. Such relationships furnish the definitions
used by the inverse wavelet transform, i.e. the recreation of the input data from
the transformed data.

Thus, the Haar dendrogram wavelet transform gives us an additive decom-
position of a given observation (say, x1) in terms of a degrading approximation,
with a variable number of terms in the decomposition. The objects, or observa-
tions, are those things which we are analyzing and on which we have (i) induced
a hierarchical clustering, and (ii) further processed the hierarchical clustering in
such a way that we can derive the Haar decomposition. In this section we will
look at how this allows us to consider each object as a limit point. Our interest
lies in our object set, characterized by a set of data, as a set of limit or fixed
points.

Using notation from domain theory (see, e.g., [5]) we write:

s7 v s7 + d7 v s7 + d7 + d5 v s7 + d7 + d5 + d2 (2)

The relation a v b is read: a is an approximation to b, or b gives more
information than a. (Edalat [6] discusses examples.) Just rewriting the very
last, or rightmost, term in relation (2) gives:

s7 v s7 + d7 v s7 + d7 + d5 v x1 (3)

Every one of our observation vectors (here, e.g., x1) can be increasingly
well approximated by a chain of the sort shown in relations (2) or (3), starting
with a least element (s7; more generally, for n observation vectors, sn−1). The
observation vector itself (e.g., x1) is a least upper bound (lub) or supremum
(sup), denoted t in domain theory, of this chain. Since every observation vector
has an associated chain, every chain has a lub. The elements of the “rolled
down” tree, s7, s7 + d7 and s7 − d7, s7 + d7 + d5 and s7 + d7 − d5, and so on,
are clearly representable as a binary rooted tree, and the elements themselves
comprise a partially ordered set (or poset). A complete partial order or cpo
or domain is a poset with least element, and such that every chain has a lub.

12



Cpos generalize complete lattices: see [4] for lattices, domains, and their use in
fixpoint applications.

3.4 Approximation Chain using a Hierarchy

An alternative, although closely related, structure with which domains are en-
dowed is that of spherically complete ultrametric spaces. The motivation comes
from logic programming, where non-monotonicity may well be relevant (this
arises, for example, with the negation operator). Trees can easily represent
positive and negative assertions. The general notion of convergence, now, is re-
lated to spherical completeness ([34, 12]; see also [17], Theorem 4.1). If we have
any set of embedded clusters, or any chain, qk, then the condition that such a
chain be non-empty,

⋂
k qk 6= ∅, means that this ultrametric space is non-empty.

This gives us both a concept of completeness, and also a fixed point which is
associated with the “best approximation” of the chain.

Consider our space of observations, X = {xi|i ∈ I}. The hierarchy, H, or
binary rooted tree, defines an ultrametric space. For each observation xi, by
considering the chain from root cluster to the observation, we see that H is a
spherically complete ultrametric space.

3.5 Mapping of Spherically Complete Space into Dendro-
gram Wavelet Transform Space

Consider analysis of the set of observations, {xi ∈ X ⊂ Rm}. Through use
of any hierarchical clustering (subject to being binary, a sufficient condition
for which is that a pairwise agglomerative algorithm was used to construct
the hierarchy), followed by the Haar wavelet transform of the dendrogram, we
have an approximation chain for each xi ∈ X. This approximation chain is
defined in terms of embedded sets. Let n = card X, the cardinality of the
set X. Our Haar dendrogram wavelet transform allows us to associate the set
{νj |1 ≤ j ≤ n− 1} ⊂ Rm with the chains, as seen in section 3.3.

We have two associated vantage points on the generation of observation
i,∀i: the set of embedded sets in the approximation chain starting always with
the entire observation set, I, and ending with the singleton observation; or the
global smooth in the Haar transform, that we will call νn−1, running through
all details νj on the path, such that an additive combination of path members
increasingly approximates the vector xi that corresponds to observation i. Our
two associated views are, respectively, a set of sets; or a set of vectors in Rm. We
recall that m is the dimensionality of the embedding space of our observations.
Our two associated views of the (re)generation of an observation both rest on
the hierarchical or tree structuring of our data.

13



4 Generalized Ultrametric

4.1 Applications of Generalized Ultrametrics

As noted in the previous subsection, the usual ultrametric is an ultrametric
distance, i.e. for a set I, d : I × I −→ R (so the ultrametric distance is a
real value). The generalized ultrametric is: d : I × I −→ Γ, where Γ is a
partially ordered set. In other words, the generalized ultrametric distance is
a set. With this set one can have a value, so the usual and the generalized
ultrametrics can amount to more or less the same in practice (by ignoring the
set and concentrating on its associated value). After all, in a dendrogram one
does have a set associated with each ultrametric distance value (and this is most
conveniently the terminals dominated by a given node; but we could have other
designs, like some representative subset or other, of these terminals). Remember
that the set, Γ, is defined from the original attributes (which we denote by the
set J); whereas the sets of observations read off a dendrogram are subsets of the
observation set (which we label with the index set I). So Γ = 2J (and not 2I).

In the theory of reasoning, a monotonic operator is rigorous application of
a succession of conditionals (sometimes called consequence relations). However:
“In order to deal with programs of a more general kind (the so-called disjunctive
programs) it became necessary to consider multi-valued mappings”, supporting
non-monotonic reasoning in the way now to be described ([30], pp. 10, 13).
The novelty in the work of [30, 31] is that these authors use the generalized
ultrametric as a multivalued mapping.

(A more critical view of the usefulness of the generalized ultrametric per-
spective is presented by [18].)

The generalized ultrametric approach has been motived [35] as follows. “Sit-
uations arise ... in computational logic in the presence of negations which force
non-monotonicity of the operators involved”. To address non-monotonicity of
operators, one approach has been to employ metrics in studying some problem-
atic logic programs. These ideas were taken further in examining quasi-metrics,
and generalized ultrametrics i.e. ultrametrics which take values in an arbitrary
partially ordered set (not just in the non-negative reals). Seda and Hitzler [35]
“consider a natural way of endowing Scott domains [see [4]] with generalized ul-
trametrics. This step provides a technical tool [for finding fixpoints – hence for
analysis] of non-monotonic operators arising out of logic programs and deductive
databases and hence to finding models for these.”

A further, similar, viewpoint is [12]: “Once one introduces negation, which is
certainly implied by the term enhanced syntax ... then certain of the important
operators are not monotonic (and therefore not continuous), and in consequence
the Knaster-Tarski theorem [i.e. for fixed points; again see [4]] is no longer
applicable to them. Various ways have been proposed to overcome this problem.
One such [approach is to use] syntactic conditions on programs ... Another
is to consider different operators ... The third main solution is to introduce
techniques from topology and analysis to augment arguments based on order ...
[latter include:] methods based on metrics ... on quasi-metrics ... and finally ...
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Table 3: Example dataset: 5 objects, 3 boolean attributes.

v1 v2 v3
a 1 0 1
b 0 1 1
c 1 0 1
e 1 0 0
f 0 0 1

on ultrametric spaces.”
The convergence to fixed points that are based on a generalized ultrametric

system is precisely the study of spherically complete systems and expansive
automorphisms discussed in section 3.1. As expansive automorphisms we see
here again an example of symmetry at work.

4.2 Link with Formal Concept Analysis

In this subsection, we consider an ultrametric defined on the powerset or join
semilattice. Comprehensive background on ordered sets and lattices can be
found in [4].

As noted in section 2, typically hierarchical clustering is based on a distance
(which can be relaxed often to a dissimilarity, not respecting the triangular
inequality, and mutatis mutandis to a similarity), defined on all pairs of the
object set: d : I × I → R+. I.e., a distance is a positive real value. Usually
we require that a distance cannot be 0-valued unless the objects are identical.
That is the traditional approach.

A different form of ultrametrization is achieved from a dissimilarity defined
on the power set of attributes characterizing the observations (objects, individ-
uals, etc.) X. Here we have: d : X ×X −→ 2J , where J indexes the attribute
(variables, characteristics, properties, etc.) set.

We consider a different notion of distance, that maps pairs of objects onto
elements of a join semilattice. The latter can represent all subsets of the at-
tribute set, J . That is to say, it can represent the power set, commonly denoted
2J , of J .

As an example, consider, say, n = 5 objects characterized by 3 boolean
(presence/absence) attributes, shown in Table 3.

Define dissimilarity between a pair of objects in Table 3 as a set of 3 com-
ponents, corresponding to the 3 attributes, such that if both components are
0, we have 1; if either component is 1 and the other 0, we have 1; and if both
components are 1 we get 0. This is the simple matching coefficient [14]. We
could use, e.g., Euclidean distance for each of the values sought; but we prefer
to treat 0 values in both components as signaling a 0 contribution. We get then:
d(a, b) = 1, 1, 0
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Potential lattice vertices Lattice vertices found Level

d1,d2,d3 d1,d2,d3 3

/ \

/ \

d1,d2 d2,d3 d1,d3 d1,d2 d2,d3 2

\ /

\ /

d1 d2 d3 d2 1

The set d1,d2,d3 corresponds to: d(b, e) and d(e, f)
The subset d1,d2 corresponds to: d(a, b), d(a, f), d(b, c), d(b, f), and d(c, f)
The subset d2,d3 corresponds to: d(a, e) and d(c, e)
The subset d2 corresponds to: d(a, c)

Clusters defined by all pairwise linkage at level ≤ 2:
a, b, c, f
a, e
c, e

Clusters defined by all pairwise linkage at level ≤ 3:
a, b, c, e, f

Figure 6: Lattice and its interpretation, corresponding to the data shown in
Table 3 with the simple matching coefficient used. (See text for details.)

d(a, c) = 0, 1, 0
d(a, e) = 0, 1, 1
d(a, f) = 1, 1, 0
d(b, c) = 1, 1, 0
d(b, e) = 1, 1, 1
d(b, f) = 1, 1, 0
d(c, e) = 0, 1, 1
d(c, f) = 1, 1, 0
d(e, f) = 1, 1, 1

If we take the three components in this distance as d1, d2, d3, and considering
a lattice representation with linkages between all ordered subsets where the
subsets are to be found in our results above (e.g., d(c, f) = 1, 1, 0 implies that
we have a lattice node associated with the subset d1, d2), and finally such that
the order is defined on subset cardinality, then we see that the representation
shown in Figure 6 suffices.

In Formal Concept Analysis [4, 11, 15], it is the lattice itself which is of
primary interest. In [14] there is discussion of, and a range of examples on, the
close relationship between the traditional hierarchical cluster analysis based on
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d : I × I → R+, and hierarchical cluster analysis “based on abstract posets” (a
poset is a partially ordered set), based on d : I × I → 2J . The latter, leading to
clustering based on dissimilarities, was developed initially in [13].

5 Conclusion

Data analysis allows us to go from measured data to a computational path or a
set of approximations used to represent the objects of analysis. We have noted
that examples of application to face recognition and to documents can be seen
in [28].

Computational logic in an analogous way used metric and ultrametric em-
beddings. Within such topologies, computation is carried out. We have focused
in this article on ultrametric embedding, i.e. given as a hierarchy or tree.

It is interesting, and without question exciting, to envisage further cross-
linkage between data analysis and computational logic.
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[18] M. Krötzsch. Generalized ultrametric spaces in quantitative domain theory.
Theoretical Computer Science, 368:30–49, 2006.

[19] F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Ren-
diconti del seminario matématico e fisico di Milano, XLIII:135–166, 1973.

[20] F.W. Lawvere. Metric spaces, generalized logic, and closed categories.
Reprints in Theory and Applications of Categories, 1:1–37, 2002.

[21] I.C. Lerman. Classification et Analyse Ordinale des Données. Dunod, Paris,
1981.

[22] F. Murtagh. A survey of recent advances in hierarchical clustering algo-
rithms. Computer Journal, 26:354–359, 1983.

[23] F. Murtagh. Complexities of hierarchic clustering algorithms: state of the
art. Computational Statistics Quarterly, 1:101–113, 1984.

[24] F. Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, Hei-
delberg and Vienna, 1985.

[25] F. Murtagh. Comments on: Parallel algorithms for hierarchical clustering
and cluster validity. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14:1056–1057, 1992.

[26] F. Murtagh. On ultrametricity, data coding, and computation. Journal of
Classification, 21:167–184, 2004.

18



[27] F. Murtagh. The Haar wavelet transform of a dendrogram. Journal of
Classification, 24:3–32, 2007.

[28] F. Murtagh. On ultrametric algorithmic information. Computer Journal,
2007. In press. Advance Access online, 9 Oct. 2007.

[29] F. Murtagh. Symmetry in data mining and analysis: a unifying view based
on hierarchy. Proceedings of Steklov Institute of Mathematics, 265:177–198,
2009.

[30] S. Priess-Crampe and P. Ribenboim. Logic programming and ultrametric
spaces. Rendiconti de Matematica, Serie VII, 19:155–176, 1999.

[31] S. Priess-Crampe and P. Ribenboim. Ultrametric spaces and logic pro-
gramming. Journal of Logic Programming, 42:59–70, 2000.

[32] H. Reiter and J.D. Stegeman. Classical Harmonic Analysis and Locally
Compact Groups. Oxford University Press, Oxford, 2nd edition, 2000.

[33] A.C.M. Van Rooij. Non-Archimedean Functional Analysis. Dekker, 1978.

[34] W.H. Schikhof. Ultrametric Calculus. Cambridge University Press, Cam-
bridge, 1984. (Chapters 18, 19, 20, 21).

[35] A.K. Seda and P. Hitzler. Generalized ultrametrics, domains and an appli-
cation to computational logic. Irish Mathematical Society Bulletin, 41:31–
43, 1998.

[36] A.K. Seda and P. Hitzler. Generalized distance functions in the theory of
computation. Computer Journal, 2008. In press, Advance Access online 17
January 2008.

[37] C.J. van Rijsbergen. The Geometry of Information Retrieval. Cambridge
University Press, 2004.

19


	1 Introduction
	2 From Metric to Ultrametric Topology
	2.1 Pairwise Dissimilarities
	2.1.1 From Dissimilarities to an Ultrametric

	2.2 Metric and Ultrametric for Geometry and Topology of Information
	2.3 Hierarchical Agglomerative Clustering
	2.4 Hierarchy as the Wreath Product Group expressing Symmetries

	3 Approximation in an Ultrametric Topology
	3.1 Approximation from a Hierarchy: Dilation Operation as p-Adic Multiplication by 1/p
	3.2 Haar Wavelet Transform of a Dendrogram
	3.3 Representation of an Object as a Chain of Successively Finer Approximations
	3.4 Approximation Chain using a Hierarchy
	3.5 Mapping of Spherically Complete Space into Dendrogram Wavelet Transform Space

	4 Generalized Ultrametric
	4.1 Applications of Generalized Ultrametrics
	4.2 Link with Formal Concept Analysis

	5 Conclusion

