633 research outputs found

    Ultrafilter convergence in ordered topological spaces

    Full text link
    We characterize ultrafilter convergence and ultrafilter compactness in linearly ordered and generalized ordered topological spaces. In such spaces, and for every ultrafilter DD, the notions of DD-compactness and of DD-pseudocompactness are equivalent. Any product of initially λ\lambda-compact generalized ordered topological spaces is still initially λ\lambda-compact. On the other hand, preservation under products of certain compactness properties are independent from the usual axioms for set theory.Comment: v. 2: some additions and some improvement

    Convergence and quantale-enriched categories

    Get PDF
    Generalising Nachbin's theory of "topology and order", in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these V\mathcal{V}-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) codirected completeness of the underlying quantale enriched category

    The enriched Vietoris monad on representable spaces

    Full text link
    Employing a formal analogy between ordered sets and topological spaces, over the past years we have investigated a notion of cocompleteness for topological, approach and other kind of spaces. In this new context, the down-set monad becomes the filter monad, cocomplete ordered set translates to continuous lattice, distributivity means disconnectedness, and so on. Curiously, the dual(?) notion of completeness does not behave as the mirror image of the one of cocompleteness; and in this paper we have a closer look at complete spaces. In particular, we construct the "up-set monad" on representable spaces (in the sense of L. Nachbin for topological spaces, respectively C. Hermida for multicategories); we show that this monad is of Kock-Z\"oberlein type; we introduce and study a notion of weighted limit similar to the classical notion for enriched categories; and we describe the Kleisli category of our "up-set monad". We emphasize that these generic categorical notions and results can be indeed connected to more "classical" topology: for topological spaces, the "up-set monad" becomes the upper Vietoris monad, and the statement "XX is totally cocomplete if and only if XopX^\mathrm{op} is totally complete" specialises to O. Wyler's characterisation of the algebras of the Vietoris monad on compact Hausdorff spaces.Comment: One error in Example 1.9 is corrected; Section 4 works now without the assuming core-compactnes

    Some notes on Esakia spaces

    Full text link
    Under Stone/Priestley duality for distributive lattices, Esakia spaces correspond to Heyting algebras which leads to the well-known dual equivalence between the category of Esakia spaces and morphisms on one side and the category of Heyting algebras and Heyting morphisms on the other. Based on the technique of idempotent split completion, we give a simple proof of a more general result involving certain relations rather then functions as morphisms. We also extend the notion of Esakia space to all stably locally compact spaces and show that these spaces define the idempotent split completion of compact Hausdorff spaces. Finally, we exhibit connections with split algebras for related monads

    A categorical approach to the maximum theorem

    Get PDF
    Berge's maximum theorem gives conditions ensuring the continuity of an optimised function as a parameter changes. In this paper we state and prove the maximum theorem in terms of the theory of monoidal topology and the theory of double categories. This approach allows us to generalise (the main assertion of) the maximum theorem, which is classically stated for topological spaces, to pseudotopological spaces and pretopological spaces, as well as to closure spaces, approach spaces and probabilistic approach spaces, amongst others. As a part of this we prove a generalisation of the extreme value theorem.Comment: 45 pages. Minor changes in v2: this is the final preprint for publication in JPA

    Approximation in quantale-enriched categories

    Full text link
    Our work is a fundamental study of the notion of approximation in V-categories and in (U,V)-categories, for a quantale V and the ultrafilter monad U. We introduce auxiliary, approximating and Scott-continuous distributors, the way-below distributor, and continuity of V- and (U,V)-categories. We fully characterize continuous V-categories (resp. (U,V)-categories) among all cocomplete V-categories (resp. (U,V)-categories) in the same ways as continuous domains are characterized among all dcpos. By varying the choice of the quantale V and the notion of ideals, and by further allowing the ultrafilter monad to act on the quantale, we obtain a flexible theory of continuity that applies to partial orders and to metric and topological spaces. We demonstrate on examples that our theory unifies some major approaches to quantitative domain theory.Comment: 17 page

    Survey on the Tukey theory of ultrafilters

    Full text link
    This article surveys results regarding the Tukey theory of ultrafilters on countable base sets. The driving forces for this investigation are Isbell's Problem and the question of how closely related the Rudin-Keisler and Tukey reducibilities are. We review work on the possible structures of cofinal types and conditions which guarantee that an ultrafilter is below the Tukey maximum. The known canonical forms for cofinal maps on ultrafilters are reviewed, as well as their applications to finding which structures embed into the Tukey types of ultrafilters. With the addition of some Ramsey theory, fine analyses of the structures at the bottom of the Tukey hierarchy are made.Comment: 25 page
    corecore