753 research outputs found

    Discovery of the accretion-powered millisecond pulsar SWIFT J1756.9-2508 with a low-mass companion

    Get PDF
    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar, SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 solar masses, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 solar masses (95% confidence level). Such a low mass is inconsistent with brown dwarf models, and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts, dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approximately 13 days and no earlier outbursts were found in archival data.Comment: 13 pages, 2 figures, accepted by Astrophysical Journal Letter

    Investigating dark matter substructure with pulsar timing: I. Constraints on ultracompact minihalos

    Get PDF
    Small-scale dark matter structure within the Milky Way is expected to affect pulsar timing. The change in gravitational potential induced by a dark matter halo passing near the line of sight to a pulsar would produce a varying delay in the light travel time of photons from the pulsar. Individual transits produce an effect that would either be too rare or too weak to be detected in 30-year pulsar observations. However, a population of dark matter subhalos would be expected to produce a detectable effect on the measured properties of pulsars if the subhalos constitute a significant fraction of the total halo mass. The effect is to increase the dispersion of measured period derivatives across the pulsar population. By statistical analysis of the ATNF pulsar catalogue, we place an upper limit on this dispersion of logσP˙17.05\log \sigma_{\dot{P}} \leq -17.05. We use this to place strong upper limits on the number density of ultracompact minihalos within the Milky Way. These limits are completely independent of the particle nature of dark matter.Comment: 9 pages, 5 figues, includes erratum published in MNRA

    Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704

    Get PDF
    We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation implying an orbital period of ~46 minutes and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597-3704 an ultra-compact X-ray binary system. We estimated a minimum companion mass of 0.0065 solar masses, assuming a neutron star mass of 1.4 solar masses, and an inclination angle of <75 degrees (suggested by the absence of eclipses or dips in its light-curve). The broad-band energy spectrum of the source is well described by a disk blackbody component (kT ~1.4 keV) plus a comptonised power-law with photon index ~2.3 and an electron temperature of ~30 keV. Radio pulsations from the source were searched for with the Parkes observatory and not detected.Comment: 4 pages, 4 images, Accepted for publication in A&

    Transverse Explosive Shock-Wave Compression of Nd₂Fe₁₄B High-Energy Hard Ferromagnets: Induced Magnetic Phase Transition

    Get PDF
    Investigations of the magnetic phase state of Nd2Fe14B high-energy hard ferromagnets under the action of an explosive shock wave traveling across the magnetization vector, M, have been performed. We demonstrate that the transverse shock-wave compression of an Nd2Fe14B hard ferromagnet with pressure at the shock wave front of P = 22.3 GPa causes a hard ferromagnet — to — weak magnet phase transition. Due to this phase transition, the magnetostatic energy stored for an indefinite period of time in the Nd2Fe14B ferromagnet is released within a short time interval and can be transformed into pulsed primary power. Based on this effect we have developed a new type of ultracompact (volumes from 9 to 50 cm3) autonomous explosive-driven source of primary power that is capable of powering a magnetic flux compression generator with current up to 4 kA, and of charging high-voltage Arkadiev-Marx type generator capacitor banks

    Cost effective power amplifiers for pulsed NMR sensors

    Get PDF
    Sensors that measure magnetic resonance relaxation times are increasingly finding applications in areas such as food and drink authenticity and waste water treatment control. Modern permanent magnets are used to provide the static magnetic field in many commercial instruments and advances in electronics, such as field programmable gate arrays, have provided lower cost console electronics for generating and detecting the pulse sequence. One area that still remains prohibitively expensive for many sensor applications of pulsed NMR is the requirement for a high frequency power amplifier. With many permanent magnet sensors providing a magnetic field in the 0.25T to 0.5T range, a power amplifier that operates in the 10MHz to 20MHz rage is required. In this work we demonstrate that some low cost commercial amplifiers can be used, with minor modification, to operate as pulsed NMR power amplifiers. We demonstrate two amplifier systems, one medium power that can be constructed for less than Euro 100 and a second much high power system that produces comparable results to commercial pulse amplifiers that are an order of magnitude more expensive. Data is presented using both the commercial NMR MOUSE and a permanent magnet system used for monitoring the clog state of constructed wetlands

    EXOSAT guest observer program. Binary parameters of the X-ray Pulsar 4U1626-67

    Get PDF
    The pulsing X-ray source 4U1626-67 is an accreting neutron star in a binary system with a very low mass companion. The source was observed with EXOSAT continuously for 23 hr on 30 to 31 March 1986 UT. These observations allowed the setting of a stringent upper limit on the projected semimajor axis of the orbit of the neutron star of approx. 10 light msec for the 2485-s orbital period found by Middleditch et al., and a limit of approx. 13 light msec for any other plausible orbital period. The corresponding upper limit on the mass function for the 2485-s orbital period is 1.3 x 0.000001 solar mass. It was concluded that if the orbital inclination angle, i, equals 90 deg, then the optical companion star has a mass greater than 0.02 solar mass. However, it was found that a companion star mass greater than 0.06 solar mass is required if gravitational radiation is responsible for driving the mass transfer in this system. Only for i less than 16 deg can a companion star mass this large be accommodated by the limits set on the orbital amplitude. Also presented are results on the flaring activity in 4U1626-67 on time scales of approx. 1000 s, the energy dependent pulse profiles, and the pulse period history over the past decade

    Completely Explosive Autonomous High-Voltage Pulsed-Power System Based on Shockwave Ferromagnetic Primary Power Source and Spiral Vector Inversion Generator

    Get PDF
    Novel explosive and conventional pulsed-power technologies were combined, and a series of explosive-driven high-voltage power supplies was designed, built, and tested. The power supply contained an explosive-driven high-voltage primary power source based on the fundamental physical effect of shockwave demagnetization of Nd2 Fe14B high-energy ferromagnet and a power-conditioning stage. The volume of the energy-carrying ferromagnetic elements in the shockwave ferromagnetic generators (FMGs) was 8.75 cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The combined FMG-VIG system demonstrated successful operation and good performance. The output-voltage pulse amplitude of the combined FMG-VIG system exceeded 40 kV, with a rise time of 6.2 ns. The methodology was developed for digital simulation of the operation of completely explosive FMG-VIG system. Experimental results obtained are in a good agreement with the results of digital calculations performed

    Torque Reversal and Spin-Down of the Accretion-Powered Pulsar 4U 1626-67

    Get PDF
    Over 5 yr of hard X-ray (20-60 keV) monitoring of the 7.66 s accretion-powered pulsar 4U 1626-67 with the Compton Gamma Ray Observatory/BATSE large-area detectors has revealed that the neutron star is now steadily spinning down, in marked contrast to the steady spin-up observed during 1977-1989. This is the second accreting pulsar (the other is GX 1+4) that has shown extended, steady intervals of both spin-up and spin-down. Remarkably, the magnitudes of the spin-up and spin-down torques differ by only 15%, with the neutron star spin changing on a timescale |ν/dot ν| ≈ 5000 yr in both states. The current spin-down rate is itself decreasing on a timescale |dot ν/bar ν| ≈ 26 yr. The long-term timing history shows small-amplitude variations on a 4000 day timescale, which are probably due to variations in the mass transfer rate. The pulsed 20-60 keV emission from 4U 1626-67 is well-fitted by a power-law spectrum with photon index γ = 4.9 and a typical pulsed intensity of 1.5 × 10^(-10) ergs cm^(-2) s^(-1). The low count rates with BATSE prohibited us from constraining the reported 42 minute binary orbit, but we can rule out long-period orbits in the range 2 days lesssim Porb lesssim 900 days. We compare the long-term torque behavior of 4U 1626-67 to other disk-fed accreting pulsars and discuss the implications of our results for the various theories of magnetic accretion torques. The abrupt change in the sign of the torque is difficult to reconcile with the extremely smooth spin-down now observed. The strength of the torque noise in 4U 1626-67, ~10^(-22) Hz^2 s^(-2) Hz^(-1), is the smallest ever measured for an accreting X-ray pulsar, and it is comparable to the timing noise seen in young radio pulsars. We close by pointing out that the core temperature and external torque (the two parameters potentially relevant to internal sources of timing noise) of an accreting neutron star are also comparable to those of young radio pulsars

    CHANDRA Detection of the AM CVn binary ES Cet (KUV 01584-0939)

    Full text link
    We report on CHANDRA ACIS observations of the ultracompact AM CVn binary ES Cet. This object has a 10.3 minute binary period and is the most compact of the confirmed AM CVn systems. We have, for the first time, unambiguously detected the X-ray counterpart to ES Cet. In a 20 ksec ACIS-S image a point-like X-ray source is found within 1'' of the catalogued optical position. The mean countrate in ACIS-S is 0.013 cts/s, and there is no strong evidence for variability. We extract the first X-ray spectrum from ES Cet, and find that it is not well described by simple continuum models. We find suggestive evidence for discrete spectral components at about 470 and 890 eV, that can be modelled as gaussian emission lines. In comparison with recent X-ray detections of nitrogen and neon in another AM CVn system (GP Com), it appears possible that these features may represent emission lines from these same elements; however, deeper spectroscopy will be required to confirm this.Comment: AASTeX preprint, 13 Pages, 3 Figures, 2 Tables. Version accepted for the Astrophysical Journa
    corecore