314 research outputs found

    Cross-View Image Matching for Geo-localization in Urban Environments

    Full text link
    In this paper, we address the problem of cross-view image geo-localization. Specifically, we aim to estimate the GPS location of a query street view image by finding the matching images in a reference database of geo-tagged bird's eye view images, or vice versa. To this end, we present a new framework for cross-view image geo-localization by taking advantage of the tremendous success of deep convolutional neural networks (CNNs) in image classification and object detection. First, we employ the Faster R-CNN to detect buildings in the query and reference images. Next, for each building in the query image, we retrieve the kk nearest neighbors from the reference buildings using a Siamese network trained on both positive matching image pairs and negative pairs. To find the correct NN for each query building, we develop an efficient multiple nearest neighbors matching method based on dominant sets. We evaluate the proposed framework on a new dataset that consists of pairs of street view and bird's eye view images. Experimental results show that the proposed method achieves better geo-localization accuracy than other approaches and is able to generalize to images at unseen locations

    Semantic Cross-View Matching

    Full text link
    Matching cross-view images is challenging because the appearance and viewpoints are significantly different. While low-level features based on gradient orientations or filter responses can drastically vary with such changes in viewpoint, semantic information of images however shows an invariant characteristic in this respect. Consequently, semantically labeled regions can be used for performing cross-view matching. In this paper, we therefore explore this idea and propose an automatic method for detecting and representing the semantic information of an RGB image with the goal of performing cross-view matching with a (non-RGB) geographic information system (GIS). A segmented image forms the input to our system with segments assigned to semantic concepts such as traffic signs, lakes, roads, foliage, etc. We design a descriptor to robustly capture both, the presence of semantic concepts and the spatial layout of those segments. Pairwise distances between the descriptors extracted from the GIS map and the query image are then used to generate a shortlist of the most promising locations with similar semantic concepts in a consistent spatial layout. An experimental evaluation with challenging query images and a large urban area shows promising results

    Disparate View Matching

    Get PDF
    Matching of disparate views has gained significance in computer vision due to its role in many novel application areas. Being able to match images of the same scene captured during day and night, between a historic and contemporary picture of a scene, and between aerial and ground-level views of a building facade all enable novel applications ranging from loop-closure detection for structure-from-motion and re-photography to geo-localization of a street-level image using reference imagery captured from the air. The goal of this work is to develop novel features and methods that address matching problems where direct appearance-based correspondences are either difficult to obtain or infeasible because of the lack of appearance similarity altogether. To address these problems, we propose methods that span the appearance-geometry spectrum in terms of both the use of these cues as well as the ability of each method to handle variations in appearance and geometry. First, we consider the problem of geo-localization of a query street-level image using a reference database of building facades captured from a bird\u27s eye view. To address this wide-baseline facade matching problem, a novel scale-selective self-similarity feature that avoids direct comparison of appearance between disparate facade images is presented. Next, to address image matching problems with more extreme appearance variation, a novel representation for matchable images expressed in terms of the eigen-functions of the joint graph of the two images is presented. This representation is used to derive features that are persistent across wide variations in appearance. Next, the problem setting of matching between a street-level image and a digital elevation map (DEM) is considered. Given the limited appearance information available in this scenario, the matching approach has to rely more significantly on geometric cues. Therefore, a purely geometric method to establish correspondences between building corners in the DEM and the visible corners in the query image is presented. Finally, to generalize this problem setting we address the problem of establishing correspondences between 3D and 2D point clouds using geometric means alone. A novel framework for incorporating purely geometric constraints into a higher-order graph matching framework is presented with specific formulations for the three-point calibrated absolute camera pose problem (P3P), two-point upright camera pose problem (Up2p) and the three-plus-one relative camera pose problem

    Potential use of drone ultra-high-definition videos for detailed 3D city modeling

    Get PDF
    Ongoing developments in video resolution either using consumer-grade or professional cameras has opened opportunities for different applications such as in sports events broadcasting and digital cinematography. In the field of geoinformation science and photogrammetry, image-based 3D city modeling is expected to benefit from this technology development. Highly detailed 3D point clouds with low noise are expected to be produced when using ultra high definition UHD videos (e.g., 4K, 8K). Furthermore, a greater benefit is expected when the UHD videos are captured from the air by consumer-grade or professional drones. To the best of our knowledge, no studies have been published to quantify the expected outputs when using UHD cameras in terms of 3D modeling and point cloud density. In this paper, a quantification is shown about the expected point clouds and orthophotos qualities when using UHD videos from consumer-grade drones and a review of which applications they can be applied in. The results show that an improvement in 3D models of ≅65% relative accuracy and ≅90% in point density can be attained when using 8K video frames compared with HD video frames which will open a wide range of applications and business cases in the near future
    • …
    corecore