9 research outputs found

    Efficient radio resource management for future 6G mobile networks: A Cell-Less Approach

    Get PDF
    Existing mobile communication systems are unable to support ultra high system capacity and high reliability for the edge users of future 6G systems, which are envisioned to guarantee the desired quality of experience. Recently, cell-less radio access networks (RAN) are exploited to boost the system capacity. Therefore, in this letter we propose a cell-less networking approach with an efficient radio resource optimization mechanism to improve the system capacity of the future 6G networks. The simulation results illustrate that the proposed cell-less NG-RAN design provides significant system capacity improvement over the legacy cellular solutions.This work was supported by the European Union H2020 Research and Innovation Programme funded Marie Skłodowska-Curie ITN TeamUp5G Project under Grant 813391

    GPON and V-band mmWave in green backhaul solution for 5G ultra-dense network

    Get PDF
    Ultra-dense network (UDN) is characterized by massive deployment of small cells which resulted into complex backhauling of the cells. This implies that for 5G UDN to be energy efficient, appropriate backhauling solutions must be provided. In this paper, we have evaluated the performance of giga passive optical network (GPON) and V-band millimetre wave (mmWave) in serving as green backhaul solution for 5G UDN. The approach was to first reproduce existing backhaul solutions in Very Dense Network (VDN) scenario which served as benchmark for the performance evaluation for the UDN scenario. The best two solutions, GPON and V-band solutions from the VDN were then deployed in 5G UDN scenario. The research was done by simulation in MATLAB. The performance metrics used were power consumption and energy efficiency against the normalized hourly traffic profile. The result revealed that GPON and V-band mmWave outperformed other solutions in VDN scenario. However, this performance significantly dropped in the UDN scenariodue to higher data traffic requirement of UDN compared to VDN. Thus, it can be concluded that GPON and V-band mmWave are not best suited to serve as green backhaul solution for 5G UDN necessitating further investigation of other available backhaul technologies

    Cost-Optimal Deployment of a C-RAN with Hybrid Fiber/FSO Fronthaul

    Get PDF
    Centralized radio access network (C-RAN) has been considered as an architectural solution able to reduce capital and operational expenditure in dense 5G cellular networks while allowing better network performance. The C-RAN approach decouples baseband units from antenna sites and places them in selected locations, connected by the so-called fronthaul links. These links require expensive high-capacity connections, thus calling for cost-efficient deployment. This paper presents a hybrid fronthaul solution for C-RAN based on both optical fibers and free-space optics (FSO) to enhance fronthaul flexibility and minimize deployment costs. Two design strategies based on integer linear programming are proposed for both greenfield and brownfield deployments. The first strategy is referred to as joint planning (JP) and is based on the joint minimization of the number of deployed remote radio heads (RRHs) and the cost of the hybrid fiber/FSO fronthaul. The second strategy is based on two-step disjoint planning (DP) that first identifies a cost-optimal RRH placement and then finds the corresponding minimum cost deployment for the fronthaul links. Results obtained with JP and DP are compared in dense urban area scenarios (i.e., with characteristics similar to festivals or concerts), highlighting the advantage of the JP approach compared to DP, both in terms of costs and an enhanced flexibility during the network design process

    Service-based network dimensioning for 5G networks assisted by real data

    Get PDF
    The fifth-generation (5G) of cellular communications is expected to be deployed in the next years to support a wide range of services with different demands of peak data rates, latency and quality of experience (QoE). In this work, we propose a novel approach for radio network dimensioning (RND), named as Heuristic RND (HRND), which uses real open data in the network dimensioning process. This procedure, named as NetDataDrilling, provides the dimensioning target area by means of network data selection and visualization from the existing infrastructure. Moreover, the proposed NetDimensioning heuristic considers the necessary parameters of numerology and bandwidth parts (BWP) supported by New Radio (NR) to provide a balanced network design mediating among the requirements of coverage, capacity, QoE and cost. The proposed HRND is based on the novel quality of experience (QoE) parameter ζ by probabilistically characterizing the 5G radio resource control (rrc) states to ensure the availability of peak data rates for the MNO's required percentage of the time. The simulation results show the fulfilment of QoE and load balancing parameters with significant cost savings compared to the conventional RND methodology.This work was supported by the Spanish National Project TERESA-ADA (MINECO/AEI/R, UE), under Grant TEC2017-90093-C3-2-R
    corecore