635 research outputs found

    Pneumatic Hyperelastic Robotic End-Effector for Grasping Soft Curved Organic Objects

    Get PDF
    Pneumatically-driven soft robotic grippers can elastically deform to grasp delicate, curved organic objects with minimal surface damage. However, common actuators have complex geometries and are fabricated with ultra-soft hyperelastic elastomers not originally intended for scientific applications. The complexity of the actuator geometry and extreme nonlinearity of their material’s stress-strain behaviour make it difficult to predict the actuator’s deformation prior to experimentation. In this work, a compact soft pneumatic gripper made with polydimethylsiloxane (PDMS) is developed for grasping delicate organic objects, analyzed through computational modelling and experimentally validated. COMSOL Multiphysics is used to simulate the impact of geometrical parameters on the actuator’s behaviour, allowing for the refinement of the proposed geometry prior to fabrication. Optimal parameters are selected for fabrication, with experimental tests matching simulations within ± 1 mm. Gripper performance is evaluated for three actuator wall thicknesses in terms of contact area with target, contact force, and maximum payload before slippage. The comparative assessment between simulations and experiments demonstrate that the proposed soft actuators can be used in robotic grippers tailored for grasping delicate objects without damaging their surface. Furthermore, analysis of the actuators provides additional insight on how to design simple but effective soft systems

    Latest Hydroforming Technology of Metallic Tubes and Sheets

    Get PDF
    This Special Issue and Book, ‘Latest Hydroforming Technology of Metallic Tubes and Sheets’, includes 16 papers, which cover the state of the art of forming technologies in the relevant topics in the field. The technologies and methodologies presented in these papers will be very helpful for scientists, engineers, and technicians in product development or forming technology innovation related to tube hydroforming processes

    Dynamics and Controls of Fluidic Pressure-Fed Mechanism (FPFM) of Nanopositioning System

    Get PDF
    Flexure or compliant mechanisms are employed in many precisions engineered devices due to their compactness, linearity, resolution, etc. Yet, critical issues remain in motion errors, thermal instability, limited bandwidth, and vibration of dynamic systems. Those issues cannot be negligible to maintain high precision and accuracy for precision engineering applications. In this thesis, a novel fluidic pressure-fed mechanism (FPFM) is proposed and investigated. The proposed method is designing internal fluidic channels inside the spring structure of the flexure mechanism using the additive manufacturing (AM) process to overcome addressed challenges. By applying pneumatic/hydraulic pressure and filling media into fluidic channels, dynamic characteristics of each spring structure of the flexure mechanism can be altered or adjusted to correct motion errors, increase operating speed, and suppress vibration. Additionally, FPFM can enhance thermal stability by flowing fluids without affecting the motion quality of the dynamic system. Lastly, the motion of the nanopositioning system driven by FPFM can provide sub-nanometer resolution motion, and this enables the nanopositioning system to have two linear motion in a monolithic structure. The main objective of this thesis is to propose and validate the feasibility of FPFM that can ultimately be used for a monolithic FPFM dual-mode stage for providing high positioning performance without motion errors while reducing vibration and increasing thermal stability and bandwidth

    Cumulative Index to NASA Tech Briefs, 1963 - 1966

    Get PDF
    Cumulative index of NASA Tech Briefs dealing with electrical and electronic, physical science and energy sources, materials and chemistry, life science, and mechanical innovation

    Scanning Tunneling Microscopy at milliKelvin Temperatures: Design and Construction

    Get PDF
    This dissertation reports on work toward the realization of a state-of-the-art scanning tunneling microscopy and spectroscopy facility operating at milliKelvin temperatures in a dilution refrigerator. Difficulties that have been experienced in prior efforts in this area are identified. Relevant issues in heat transport and in the thermalization and electrical filtering of wiring are examined, and results are applied to the design of the system. The design, installation and characterization of the pumps, plumbing and mechanical vibration isolation, and the design and installation of wiring and fabrication and characterization of electrical filters are described

    Bicycle Wheel Test Machine

    Get PDF
    In recent years, the cycling industry has witnessed huge advancements in bicycle components and materials. The age old goals of speed and low weight are still present today, but the pursuit of these goals may be reducing the structural stability of various components integral to wheel performance, including the wheel hub bearings. These bearings are invaluable to bicycles but little is known about how the forces and loads applied to a bicycle affect the performance of these bearings. Broken axles and hubs are indicators of significant stresses within the hub, but little is known about how the resulting deformation affects the performance of the bearings. Specialized Bicycle Components asked the team to produce a custom test machine to help them study this problem. The team’s goal was to design a machine able to simulate rider and chain loading conditions and measure the corresponding power loss within the hub bearings. Through the implementation of this machine, Specialized hopes to gain vital information about the efficiencies of various hub, axle, and bearing combinations The team consists of three mechanical engineering seniors, Kevin Hom, Dylan Harper, and Ross Williams. Dr. Joseph Mello will be advising the team, and all contact to Specialized will be through the project sponsor Sam Pickman

    Cumulative index to NASA Tech Briefs, 1963-1967

    Get PDF
    Cumulative index to NASA survey on technology utilization of aerospace research outpu

    Servo-control of a pneumatic motion platform for use as a low cost simulator

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1997.Includes bibliographical references (leaf 55).by Keith J. Breinlinger.M.S

    Endoscopic and magnetic actuation for miniature lifesaving devices

    Get PDF
    • …
    corecore