563,517 research outputs found

    The ultimate efficiency of photosensitive systems

    Get PDF
    These systems have in common two important but not independent features: they can produce a storable fuel, and they are sensitive only to radiant energy with a characteristic absorption spectrum. General analyses of the conversion efficiencies were made using the operational characteristics of each particular system. An efficiency analysis of a generalized system consisting of a blackbody source, a radiant energy converter having a threshold energy and operating temperature, and a reservoir is reported. This analysis is based upon the first and second laws of thermodynamics, and leads to a determination of the limiting or ultimate efficiency for an energy conversion system having a characteristic threshold

    Two-dimensional GaAs/AlGaAs superlattice structures for solar cell applications: ultimate efficiency estimation

    Full text link
    We calculate the band structure of a two-dimensional GaAs/AlGaAs superlattice and estimate the ultimate efficiency of solar cells using this type of structure for solar energy conversion. The superlattice under consideration consists of gallium arsenide rods forming a square lattice and embedded in aluminium gallium arsenide. The ultimate efficiency is determined versus structural parameters including the filling fraction, the superlattice constant, the rod geometry and the concentration of Al in the matrix material. The calculated efficiency of the superlattice proves to exceed the efficiency of each component material in the monolithic state in a wide range of parameter values.Comment: 11 pages, 7 figure

    Fundamental efficiency bound for coherent energy transfer in nanophotonics

    Full text link
    We derive a unified quantum theory of coherent and incoherent energy transfer between two atoms (donor and acceptor) valid in arbitrary Markovian nanophotonic environments. Our theory predicts a fundamental bound ηmax=γaγd+γa\eta_{max} = \frac{\gamma_a}{\gamma_d + \gamma_a} for energy transfer efficiency arising from the spontaneous emission rates γd\gamma_{d} and γa\gamma_a of the donor and acceptor. We propose the control of the acceptor spontaneous emission rate as a new design principle for enhancing energy transfer efficiency. We predict an experiment using mirrors to enhance the efficiency bound by exploiting the dipole orientations of the donor and acceptor. Of fundamental interest, we show that while quantum coherence implies the ultimate efficiency bound has been reached, reaching the ultimate efficiency does not require quantum coherence. Our work paves the way towards nanophotonic analogues of efficiency enhancing environments known in quantum biological systems.Comment: 5 pages, 4 figure

    Electron bombardment improves vacuum chamber efficiency

    Get PDF
    Bombardment of vacuum chamber walls by an electron gun within the chamber achieves greater efficiency with less cost. The ultimate vacuum reached using the gun is greater than the system design level

    Optimum Asymptotic Multiuser Efficiency of Pseudo-Orthogonal Randomly Spread CDMA

    Full text link
    A KK-user pseudo-orthogonal (PO) randomly spread CDMA system, equivalent to transmission over a subset of K′≤KK'\leq K single-user Gaussian channels, is introduced. The high signal-to-noise ratio performance of the PO-CDMA is analyzed by rigorously deriving its asymptotic multiuser efficiency (AME) in the large system limit. Interestingly, the K′K'-optimized PO-CDMA transceiver scheme yields an AME which is practically equal to 1 for system loads smaller than 0.1 and lower bounded by 1/4 for increasing loads. As opposed to the vanishing efficiency of linear multiuser detectors, the derived efficiency is comparable to the ultimate CDMA efficiency achieved for the intractable optimal multiuser detector.Comment: WIC 27th Symposium on Information Theory in the Benelux, 200

    Detector Efficiency Limits on Quantum Improvement

    Full text link
    Although the National Institute of Standards and Technology has measured the intrinsic quantum efficiency of Si and InGaAs APD materials to be above 98 % by building an efficient compound detector, commercially available devices have efficiencies ranging between 15 % and 75 %. This means bandwidth, dark current, cost, and other factors are more important than quantum efficiency for existing applications. This paper systematically examines the generic detection process, lays out the considerations needed for designing detectors for non-classical applications, and identifies the ultimate physical limits on quantum efficiency.Comment: LaTeX, 7 pages, 3 figure

    Random distributed feedback fiber laser of ultimate efficiency

    Get PDF
    We demonstrate a random fiber laser of ultimate efficiency. More than 2 Watts are generated from 0.5W of pump excess over the generation threshold. At higher power, an optical efficiency corresponds to the quantum limit
    • …
    corecore