18 research outputs found

    UAV-Aided MIMO communications for 5G Internet of Things

    Get PDF
    The unmanned aerial vehicle (UAV) is a promising enabler of the Internet of Things (IoT) vision, due to its agile maneuverability. In this paper, we explore the potential gain of UAV-aided data collection in a generalized IoT scenario. Particularly, a composite channel model including both large-scale and small-scale fading is used to depict typical propagation environments. Moreover, rigorous energy constraints are considered to characterize IoT devices as practically as possible. A multi-antenna UAV is employed, which can communicate with a cluster of single-antenna IoT devices to form a virtual MIMO link. We formulate a whole-trajectory-oriented optimization problem, where the transmission duration and the transmit power of all devices are jointly designed to maximize the data collection efficiency for the whole flight. Different from previous studies, only the slowly-varying large-scale channel state information (CSI) is assumed available, to coincide with the fact that practically it is quite difficult to predictively acquire the random small-scale channel fading prior to the UAV flight. We propose an iterative scheme to overcome the non-convexity of the formulated problem. The presented scheme can provide a significant performance gain over traditional schemes and converges quickly

    Enabling 5G on the Ocean: A Hybrid Satellite-UAV-Terrestrial Network Solution

    Get PDF
    Current fifth generation (5G) cellular networks mainly focus on the terrestrial scenario. Due to the difficulty of deploying communications infrastructure on the ocean, the performance of existing maritime communication networks (MCNs) is far behind 5G. This problem can be solved by using unmanned aerial vehicles (UAVs) as agile aerial platforms to enable on-demand maritime coverage, as a supplement to marine satellites and shore-based terrestrial based stations (TBSs). In this paper, we study the integration of UAVs with existing MCNs, and investigate the potential gains of hybrid satellite-UAV-terrestrial networks for maritime coverage. Unlike the terrestrial scenario, vessels on the ocean keep to sea lanes and are sparsely distributed. This provides new opportunities to ease the scheduling of UAVs. Also, new challenges arise due to the more complicated maritime prorogation environment, as well as the mutual interference between UAVs and existing satellites/TBSs. We discuss these issues and show possible solutions considering practical constraints

    UAV Swarm-Enabled Aerial CoMP: A Physical Layer Security Perspective

    Get PDF
    Unlike aerial base station enabled by a single unmanned aerial vehicle (UAV), aerial coordinated multiple points (CoMP) can be enabled by a UAV swarm. In this case, the management of multiple UAVs is important. This paper considers the power allocation strategy for a UAV swarm-enabled aerial network to enhance the physical layer security of the downlink transmission, where an eavesdropper moves following the trajectory of the swarm for better eavesdropping. Unlike existing works, we use only the large-scale channel state information (CSI) and maximize the secrecy throughput in a whole-trajectory-oriented manner. The overall transmission energy constraint on each UAV and the total transmission duration for all the legitimate users are considered. The non-convexity of the formulated problem is solved by using max-min optimization with iteration. Both the transmission power of desired signals and artificial noise (AN) are derived iteratively. Simulation results are presented to validate the effectiveness of our proposed power allocation algorithm and to show the advantage of aerial CoMP by using only the large-scale CSI

    MIMO relaying UAVs operating in public safety scenarios

    Get PDF
    Methods to implement communication in natural and humanmade disasters have been widely discussed in the scientific community. Scientists believe that unmanned aerial vehicles (UAVs) relays will play a critical role in 5G public safety communications (PSC) due to their technical superiority. They have several significant advantages: a high degree of mobility, flexibility, exceptional line of sight, and real-time adaptative planning. For instance, cell edge coverage could be extended using relay UAVs. This paper summarizes the sidelink evolution in the 3GPP standardization associated with the usage of the device to device (D2D) techniques that use long term evolution (LTE) communication systems, potential extensions for 5G, and a study on the impact of circular mobility on relay UAVs using the software network simulator 3 (NS3). In this simulation, the transmitted packet percentage was evaluated where the speed of the UAV for users was changed. This paper also examines the multi-input multi-output (MIMO) communication applied to drones and proposes a new trajectory to assist users experiencing unfortunate circumstances. The overall communication is highly dependent on the drone speed and the use of MIMO and suitable antennas may influence overall transmission between users and the UAVs relay. When the UAVs relaying speed was configured at 108 km/h the total transmission rate was reduced to 55% in the group with 6 users allocated to each drone.info:eu-repo/semantics/publishedVersio

    Optimum deployment of multiple UAVs for coverage area maximization in the presence of co-channel interference

    Get PDF
    The use of unmanned aerial vehicle (UAV) as aerial base stations can provide wireless communication services in the form of UAV-based small cells (USCs). Thus, the major design challenge that needs to be addressed is the coverage maximization of such USCs in the presence of co-channel interference generated by multiple UAVs operating within a specific target area. Consequently, the efficient deployment strategy is imperative for USCs while optimizing the coverage area performance to compensate the impact of interference. To this end, this paper presents a coordinated multi-UAV strategy in two scenarios. In the first scenario, symmetric placement of UAVs is assumed at a common optimal altitude and transmit power. In the second scenario, asymmetric deployment of UAVs with different altitudes and transmit powers is assumed. Then, the coverage area performance is investigated as a function of separation distance between UAVs which are deployed in a certain geographical area to satisfy a target signal-to-interference-plus-noise ratio (SINR) at the cell boundary. Finally, the system-level performance of a boundary user is studied in terms of the coverage probability. Numerical results unveils that the SINR threshold, the separation distance, and the number of UAVs and their formations should be carefully selected to achieve the maximum coverage area inside and to reduce the unnecessary expansion outside the target area. Thus, this paper provides important design guidelines for the deployment of multiple UAVs in presence of co-channel interference

    Cell free satellite-UAV networks for 6G wide-area Internet of Things

    Get PDF
    In fifth generation (5G) and beyond Internet of Things (IoT), it becomes increasingly important to serve a massive number of IoT devices outside the coverage of terrestrial cellular networks. Due to their own limitations, unmanned aerial vehicles (UAVs) and satellites need to coordinate with each other in the coverage holes of 5G, leading to a cognitive satellite-UAV network (CSUN). In this paper, we investigate multi-domain resource allocation for CSUNs consisting of a satellite and a swarm of UAVs, so as to improve the efficiency of massive access in wide areas. Particularly, the cell-free on-demand coverage is established to overcome the cost-ineffectiveness of conventional cellular architecture. Opportunistic spectrum sharing is also implemented to cope with the spectrum scarcity problem. To this end, a process-oriented optimization framework is proposed for jointly allocating subchannels, transmit power and hovering times, which considers the whole flight process of UAVs and uses only the slowly-varying large-scale channel state information (CSI). Under the on-board energy constraints of UAVs and interference temperature constraints from UAV swarm to satellite users, we present iterative multi-domain resource allocation algorithms to improve network efficiency with guaranteed user fairness. Simulation results demonstrate the superiority of the proposed algorithms. Moreover, the adaptive cell-free coverage pattern is observed, which implies a promising way to efficiently serve wide-area IoT devices in the upcoming sixth generation (6G) era
    corecore