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UAV-Aided MIMO Communications for
5G Internet of Things

Wei Feng, Member, IEEE, Jingchao Wang, Yunfei Chen, Senior Member, IEEE, Xuanxuan Wang,
Ning Ge, Member, IEEE, Jianhua Lu, Fellow, IEEE

Abstract—The unmanned aerial vehicle (UAV) is a promising
enabler of the Internet of Things (IoT) vision, due to its agile
maneuverability. In this paper, we explore the potential gain
of UAV-aided data collection in a generalized IoT scenario.
Particularly, a composite channel model including both the large-
scale and the small-scale channel fading is used to depict typical
propagation environments. Besides, not only the peak transmit
power constraint but also the budget power and the total energy
constraints are considered to characterize practical IoT devices. A
multi-antenna UAV is employed, which follows a circular trajec-
tory and visits the IoT devices in a sequential manner. For each
transmission, the UAV communicates with a cluster of single-
antenna IoT devices to form a virtual MIMO link. On these basis,
we formulate a whole-trajectory-oriented optimization problem,
where the transmission duration time and the transmit power
of all devices are jointly designed for the whole flight. Different
from previous studies, only the slowly-varying large-scale channel
state information (CSI) is assumed available, to coincide with the
fact that practically it is quite difficult to predictively acquire
the random small-scale channel fading prior to the UAV flight.
We propose an iterative scheme by leveraging the maxmin
optimization and convex optimization tools, to overcome the non-
convexity of the problem. The presented scheme adapts well to
the rigorous energy constraints as well as the large-scale CSI
condition, thus, it can provide a significant performance gain
over traditional schemes and converges quickly.

Index Terms—Internet of Things (IoT), unmanned aerial ve-
hicle (UAV), energy constraint, MIMO, large-scale channel state
information (CSI).

I. INTRODUCTION

Nowadays, the unmanned aerial vehicle (UAV) has been
widely investigated in conjunction with wireless communi-
cation networks [1], [2], [3], [4], as it can provide an on-
demand flexible platform for deploying aerial base stations,
or mounting mobile access points (APs) [5]. Particularly, the
UAV has been recognized as one of the main key enablers
of the Internet of Things (IoT) vision, thanks to its agile
usability [6].

Different from the other applications of the ongoing Fifth
Generation (5G) system, IoT devices are usually energy-
limited [7], and they may be randomly scattered over a wide
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area for environmental monitoring or other targets. These
issues will inevitably aggravate the coverage problem for IoT
communications. By leveraging the UAV’s agile mobility and
maneuverability [8], it is a promising way to sequentially visit
the IoT devices and move sufficiently close to the devices to
collect the sensing data from them. Thus, the UAV-aided IoT
communications may solve the coverage problem and signifi-
cantly reduce the overhead of IoT communication networks. In
addition, UAVs are cost-effective, which makes them suitable
for emergency on-demand missions in IoT applications [9].

A. Related Work

Basically, the UAV can be either static at a fix location
or mobile along a predefined/dynamically adjusted trajectory,
providing static and mobile aerial APs, respectively. In the
literature, many studies focused on the placement optimization
problem of UAVs, which is an important issue for IoT applica-
tions. Particularly in [10], the authors presented an efficient an-
alytical approach to optimize the altitude of UAV, which may
improve the wireless coverage of aerial APs. Extending to the
three-dimensional scenario, the authors of [11] formulated a
UAV placement problem to maximize the revenue of the whole
network, and proposed a computationally efficient numerical
solution. In [12], the optimum placement of a relaying UAV for
maximum reliability was studied, where the total power loss,
the overall outage and the overall bit error rate were derived,
and the optimum altitude was investigated for both static and
mobile UAVs. The authors of [13] considered the problem
of minimizing the number of UAVs while guaranteeing the
wireless coverage performance, so as to further reduce the
system cost.

These results have shown insightful results with respect to
UAV’s placement. However, the transmission strategies they
assumed are all simple, which can not be directly applied to
some severe IoT scenarios. Generally for IoT applications, the
transmission strategy should be rigorously designed, so as to
efficiently exploit the potential ability of energy-limited and
randomly-scattered IoT devices.

Some researchers have also identified the difference in
terms of transmission strategy optimization between UAV
communications and traditional terrestrial communications.
In [14], the authors studied a mobile relaying technique with
high-mobility UAV relays. The end-to-end throughput was
maximized via optimizing both the relay’s trajectory as well as
the source/relay’s power allocation. Furthermore, the authors
of [15] investigated the energy-efficient UAV communications
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via trajectory optimization, where the propulsion energy con-
sumption of UAVs was particularly considered. Therein, a
theoretical model on the UAV’s propulsion energy consump-
tion was derived, based on which the energy efficiency of
UAV communications was defined and then optimized. In [16],
the authors maximized the approximate ergodic sum rate via
dynamically adjusting the UAV heading. In [17], the minimum
throughput over all ground users in the downlink UAV com-
munication was maximized to achieve fair performance among
users. These studies have uncovered useful researching points
for the optimization of UAV communication strategies.

B. Main Contribution
Despite of the aforementioned fruitful results, utilizing UAV

in an IoT scenario still faces some open challenges with
respect to energy constraints of IoT devices as well as the
channel model and the priori knowledge of channel state.

For IoT devices, not only the peak transmit power con-
straint, as considered in the previous studies, but also the total
energy constraint, should be taken into account when opti-
mizing the communication strategy, because for most cases,
it is difficult to recharge the battery equipped at IoT devices.
Besides, in IoT applications, the sensing data volume may
dynamically change. Accordingly, the communication strategy
should adapt to the data sensing status. In practice, a budget
power constraint (more sensing data more budget power)
can be introduced to simply link the communication strategy
optimization and data sensing condition, which however is still
untouched in the literature.

In order to depict a typical propagation environment for
IoT applications, a practical channel model should be con-
sidered. In general, both the large-scale and the small-scale
channel fading should be taken into account [18], [19]. As a
contrast, quite a number of previous studies have assumed the
free-space path-loss model to simplify mathematical analysis.
Under the composite channel model, the priori knowledge
for optimizing communication strategy should be carefully
considered. Different from the free-space model, it becomes
not feasible to assume perfect channel state information (CSI)
in this case, because practically it is quite difficult to pre-
dictively acquire the random small-scale channel fading prior
to the UAV flight. Towards this end, we can optimize the
communication strategy in a whole-trajectory-oriented manner
on the basis of only the slowly-varying large-scale CSI.
However, to the best of the authors’ knowledge, it is still an
open issue to consider the composite channel model for UAV
communications and perform optimization using the large-
scale CSI only.

In this paper, we optimize the data collection efficiency of a
UAV-aided IoT communication system, subject to a series of
practical energy constraints as well as practical channel model
and the large-scale CSI condition. The main contribution of
this paper is summarized as follows.

• We consider a multi-antenna UAV, which follows a cir-
cular trajectory and visits the IoT devices in a sequential
manner. For each transmission, the UAV communicates
with a cluster of IoT devices. Thus, a virtual MIMO trans-
mission link is formed, to adapt to the low transmit power

of IoT devices and enable multiple access within a time-
frequency resource block. Both analysis and simulation
results show that this operation is promising to improve
the efficiency of sensing data collection.

• We consider a practical channel model consisting of
both the large-scale and the small-scale channel fading,
to characterize various propagation environments of IoT
applications. In this case, the full CSI assumption, as
used in most previous studies, becomes not applicable,
as the fast-varying small-scale channel fading is difficult
to obtain perfectly prior to the UAV flight. To this end,
we assume that only the large-scale CSI is known. This
is viable because the large-scale channel fading highly
depends on the relative position of UAV and IoT devices,
which can be calculated according to the historical chan-
nel sounding data together with the positional information
of both UAV and IoT devices.

• We consider the peak transmit power, the budget power
and the total energy constraints for IoT devices. Fur-
ther based on the large-scale CSI condition, a whole-
trajectory-oriented optimization problem is formulated to
maximize the data collection efficiency by optimizing
the transmission duration time of all devices, as well
as their transmit power. Notably, in this work all the
communication parameters are designed in a predefined
manner, i.e., prior to the UAV flight. By adopting the
random matrix theory, the maxmin optimization theory,
as well as the convex optimization tools, we propose
an efficient algorithm to solve the problem. Based on
that, we also discuss the impact of UAV’s deploying
parameters on system performance.

C. Organization and Notation

The rest of the paper is organized as follows. Section II
introduces the system model. The data collection efficiency of
UAV-aided MIMO communications is analyzed and optimized
in Section III. Section IV shows the simulation results and
discussions, and finally, concluding remarks are given in
Section V.

Throughout this paper, lower case and upper case boldface
symbols denote vectors and matrices, respectively. IN repre-
sents an N × N identity matrix, and CM×N represents the
collection of all M × N complex matrices, and CN (0, σ2)
denotes the complex Gaussian distribution with zero mean
and σ2 variance. (·)H and (·)T represent the transpose conju-
gate and the transpose, respectively. Ex(·) is the expectation
operator with respect to x. det(·) represents the determinant
operator.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a UAV-aided IoT communi-
cation system consisting of K IoT devices and an on-demand
dispatched UAV. Due to the limited size of sensing devices,
at each only a single antenna is equipped. The UAV, acting
as an on-demand aerial AP, is equipped with M antennas, so
as to promote the efficiency of data collection. Without loss
of generality, we consider a circular coverage area centered at
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Fig. 1. Illustration of a UAV-aided IoT communication scenario, where the
multi-antenna UAV servers as an on-demand aerial AP to communicate in
a MIMO fashion with a cluster of IoT devices, and all the sensing data is
collected, and forward to the cloud for further use.

(0, 0, 0), with a radius of rc. All the devices are randomly
deployed. The UAV flies right above the coverage area, at an
altitude of hU , following a circular trajectory of radius rU
centered at (0, 0, hU ), with a duration time of T . In practice
these parameters, i.e., hU , rU , T , are coupled with each other,
influencing the total system performance, which should be
carefully designed.

During the UAV flight, all the IoT devices will connect to
the aerial AP when scheduled for data reporting1. We divide
all the devices into orthogonal N clusters, each containing M
adjacent devices, as shown in Fig. 1. In practice, these device
clusters could be predefined for ease of management. At the
cost of extra overhead, they can also be adjusted adaptively to
fit with the UAV’s dynamic position. For simplicity, we assume
K = MN . Denote the polar coordinates of device i in cluster
n as (rin, θin). The corresponding rectangular coordinates
would be (rincos(θin), rinsin(θin), 0). In this work, these N
device clusters are scheduling in a round robin way under a
time-division multiple access (TDMA) regime for fair access2.
Particularly, if cluster n is scheduled, the corresponding M
devices will simultaneously transmit data to the UAV, forming
an M × M MIMO communication link. To be agile, the
transmission duration time τn for cluster n is adjustable3,
while satisfying

N∑
i=n

τn ≤ T. (1)

As the total energy for data transmission for each device
is quite limited, we assume both the peak transmit power

1The scheduling issue is also quite important, which however is out of
the scope of this paper.

2In practice, when the number of IoT devices is much larger than UAV,
non-orthogonal multiple access can be used [20], [21], which however would
increase the processing complexity at the UAV.

3This is feasible in practice, where the velocity of the UAV can be
dynamically controlled to fit this requirement.

constraint and the total energy constraint as

0 ≤ pin ≤ Pmax, ∀i, n, (2)
pinτn ≤ Emax, ∀i, n, (3)

where pin is the transmit power of device i in cluster n. Note
that the transmission duration time is usually short in practice
due to the energy constraint. Therefore, we assume that pin
maintains a constant during τi.

As discussed above, in IoT applications, the sensing data
volume may dynamically change. Therefore, we introduce the
budget power constraint Pbudget to simply represent the current
data sensing status. If there is only a little data to be reported,
Pbudget is set small for a longer life. Otherwise, Pbudget should
be set large enough for faster data reporting. We set

M∑
i=1

pin ≤ Pbudget, ∀n. (4)

Different from previous studies, we consider a more prac-
tical channel model for all device-UAV links, by taking into
account both the large-scale channel fading and the small-
scale channel fading. As τi is short, we assume the opening
angle of UAV with respect to the coordinate axis x is φn for
cluster n when it is scheduled. Then the coordinates of UAV
would be (rUcos(φn), rUsin(φn), hU ). Accordingly, we have
the distance between device i in cluster n and the mobile UAV
as

din =

√
h2
U + r2in + r2U − 2rinrU cos

(
φn − θin

)
. (5)

We consider both the line-of-sight (LOS) and non-line-of-sight
(NLOS) channel elements, the large-scale path loss between
device i in cluster n and the mobile UAV can be modeled
as [10], [12]

LdB
in =

A

1 + ae−b(ρin−a)
+Bin, (6)

where

A = ηLOS − ηNLOS , (7)

Bin = 20log10(din) + 20log10(
4πf

c
) + ηNLOS , (8)

ρin =
180

π
arcsin(

hU

din
), (9)

and f is the carrier frequency, c is the speed of light. ηLOS ,
ηNLOS , a and b are constants related to the propagation
environments [10], [12]. Consequently, the large-scale channel
fading between device i in cluster n and the mobile UAV is
derived as

Lin = 10−
LdB
in
10 . (10)

Taking the Rayleigh small-scale channel fading into account,
one may obtain the channel coefficient between device i in
cluster n and the mobile UAV as

hin = L
1/2
in sin, (11)

where sin ∈ CM×1, the entries of which are independent and
identically distributed (i.i.d.) variables according to CN (0, 1).
Here, we use the Rayleigh fading to present the severe
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propagation environment of IoT applications. For a more
comprehensive study, the Rician fading [22], [23], as well as
the Nakagami fading model [12] can be adopted.

Denoting the transmit signal of device i in cluster n by xin,
we have

E{|xin|2} = pin. (12)

Based on the previous definitions, the received signal vector
at the UAV from the device cluster n can be expressed as

yn = Hnxn + nn, (13)

where

Hn = [h1n,h2n, ...,hMn], (14)
xn = [x1n, x2n, ..., xMn]

T , (15)

and nn represents the additive white Gaussian noise with
independent entries distributed according to CN (0, σ2).

For brevity, we set

Hn = SnLn, (16)

where Sn and Ln represent the small-scale and the large-scale
channel coefficients, respectively, and

Sn = [s1n, s2n, ..., sMn], (17)

Ln =


L
1/2
1n

. . .
L
1/2
Mn

 . (18)

As Sn varies fast and is difficult to obtain in practice,
we maximize the data collection efficiency of the considered
system using only the slowly-varying large-scale CSI. In the
following, both the transmission duration time and the transmit
power of all devices for the whole flight will be optimized
under realistic constraints of IoT applications.

III. OPTIMIZED UAV-AIDED MIMO COMMUNICATIONS

In this part, we first formulate a whole-trajectory-oriented
optimization problem to maximize the data collection effi-
ciency of UAV-aided MIMO communications. Then, we solve
the non-convex problem in an iterative way, leading to an
efficient resource allocation algorithm. The convergence of the
algorithm is theoretically proved.

A. Problem Formulation

We maximize the data collection efficiency of the con-
sidered IoT model, subject to the UAV flying duration time
constraint, the peak transmit power constraint and the total
energy constraint of each device, as well as the budget power
constraint of each device cluster. The problem is formulated

as

max
{τn},{pin}

N∑
n=1

τnRn (19a)

s.t.
N∑

n=1

τn ≤ T, (19b)

τn ≥ 0, ∀i, (19c)
0 ≤ pin ≤ Pmax, ∀i,∀n, (19d)
pinτn ≤ Emax, ∀i,∀n, (19e)
M∑
i=1

pin ≤ Pbudget,∀n, (19f)

where Rn denotes the achievable rate of device cluster n when
it is scheduled. Since the small-scale CSI is unknown, Rn is
calculated by taking expectation with respect to Sn as

Rn =

E{Sn}

[
log2 det(IM +

1

σ2
(SnLn)Pn(SnLn)

H
)

]
, (20)

where

Pn =

 p1n
. . .

pMn

 . (21)

This problem is difficult to solve. On one hand, the objective
function is implicit due to the expectation operator. On the
other hand, the transmission duration time and transmit power
are coupled with each other, rendering the problem non-
convex, due to the constraints in (19e) [24].

B. Iterative Solution

The key difficulty of solving the problem in (19) lies in the
coupling relationship between {τn} and {pin}. Accordingly,
we solve the problem in an iterative way, inspired by the idea
of divider and conquer.

Let s ≥ 1 denote the iterative step number. If {τs−1
n } is a

feasible point of the problem, given {τs−1
n }, we can simplify

the problem as N subproblems as

max
{pin}

Rn (22a)

0 ≤ pin ≤ Pmax, ∀i, (22b)

pinτ
s−1
n ≤ Emax, ∀i, (22c)

M∑
i=1

pin ≤ Pbudget, ∀n, (22d)

n = 1, 2, ...N. (22e)

Each subproblem is much simplified. However, it is still
challenging due to the complicated objective function.

By adopting the random matrix theory [25], we derive an
approximation for Rn as

Rn ≈ R̄n =
M∑
i=1

log2(1 +
1

σ2
Linpinϖ

−1M)

+M log2(ϖn)−M log2 e
[
1−ϖ−1

n

]
, (23)
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where ϖn is the unique solution to the following fix-point
equation [25]

ϖn = 1 +

M∑
i=1

Linpin

σ2 + Linpinϖ
−1
n M

. (24)

It has been identified that this approximation is quite accurate
in the literature [26]. The performance gap is negligible in
most cases. Thus by substituting R̄n as the objective function,
we can recast each subproblem as

max
{pin}

R̄n (25a)

0 ≤ pin ≤ Pmax, ∀i, (25b)

pinτ
s−1
n ≤ Emax, ∀i, (25c)

M∑
i=1

pin ≤ Pbudget, ∀n, (25d)

ϖn = 1 +
M∑
i=1

Linpin

σ2 + Linpinϖ
−1
n M

, (25e)

which however is still difficult to solve due to the constraint
(25e). Basically, the constraint (25e) is a fixed-point equation,
and we can leverage an iterative method to derive ϖn, as that
in [26]. However, ϖn is coupled with the optimization vari-
ables {pin}, making it an intractable obstacle for optimization.

To explore the relationship between R̄n and ϖn, we obtain

dR̄n

dϖn
= −M log2 e

ϖ2
n

M∑
i=1

Linpin

σ2 + Linpinϖ
−1
n M

+
M log2 e

ϖn
− M log2 e

ϖ2
n

. (26)

Comparing (24) and (26), we get that dR̄n

dϖn
is a monotonically

increasing function of ϖn, and when the constraint (25e)
holds,

dR̄n

dϖn
= 0. (27)

These observations imply that R̄n achieves its minimum with
respect to ϖn for a given {pin}. Thus, we further equivalently
recast the problem in (25) as

max
{pin}

min
ϖn

R̄n (28a)

0 ≤ pin ≤ Pmax, ∀i, (28b)

pinτ
s−1
n ≤ Emax, ∀i, (28c)

M∑
i=1

pin ≤ Pbudget, ∀n, (28d)

ϖn ≥ 1. (28e)

Due to the convexity of log [24], [26], R̄n is concave with
respect to pin. However, it is not a convex function of ϖn,
which can be seen by deriving the second derivative of R̄n

with respect to ϖn (omitted here for brevity). This point
makes it difficult to solve the problem in (28) using maxmin
optimization tools [27].

We define a one-one mapping from ϖn to υn as

ϖn = eυn . (29)

Then, from (23) (24), and (29), we have

R̄n =
M∑
i=1

log2(1 +
1

σ2
Linpine

−υnM)

+M log2 eυn −M log2 e
[
1− e−υn

]
, (30)

υn ≥ 0. (31)

Fortunately, we have

dR̄n

dυn
= −M log2 e

eυn

M∑
i=1

Linpin
σ2 + Linpine−υnM

+M log2 e−
M log2 e

eυn
, (32)

and

d2R̄n

dυ2
n

= M log2 ee
−υn

+M log2 e

M∑
i=1

Linpinσ
2eυn

(σ2eυn + LinpinM)
2 . (33)

It is easy to see that

d2R̄n

dυ2
n

> 0. (34)

Consequently, R̄n is convex with respect to υn. On this basis,
we recast the problem in (28) as

max
{pin}

min
υn

R̄n (35a)

0 ≤ pin ≤ Pmax, ∀i, (35b)

pinτ
s−1
n ≤ Emax, ∀i, (35c)

M∑
i=1

pin ≤ Pbudget, ∀n, (35d)

υn ≥ 0, (35e)

which becomes a typical maxmin optimization problem [27].
Because the objective function is concave with respect to
the variable for maximization, and is convex with respect
to the variable for minimization, the problem in (35) can be
efficiently solved by classical maxmin optimization tools.

Then, we consider the optimization of {τn}. If {ps−1
in } is a

feasible point of the problem, given {ps−1
in }, we can simplify

the original problem in (19) as

max
{τn}

N∑
n=1

τnR̄n (36a)

s.t.
N∑

n=1

τn ≤ T, (36b)

τn ≥ 0, ∀i, (36c)

ps−1
in τn ≤ Emax, ∀i,∀n, (36d)

which fortunately is a convex optimization problem, thanks to
the convexity of both objective function and constraints [24].

To solve the problem in (36) more efficiently, we re-order
all the device clusters by

R̄1 ≥ R̄2 ≥ ... ≥ R̄N . (37)
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Then, if

T ≤ min

{
Emax

ps−1
11

,
Emax

ps−1
21

, ...,
Emax

ps−1
M1

}
, (38)

the optimal solution to (36) should be

τ1 = T,

τn = 0, n > 1. (39)

Otherwise, if

T ≤ min

{
Emax

ps−1
11

,
Emax

ps−1
21

, ...,
Emax

ps−1
M1

}
+min

{
Emax

ps−1
12

,
Emax

ps−1
22

, ...,
Emax

ps−1
M2

}
, (40)

the optimal solution to (36) should be

τ1 = min

{
Emax

ps−1
11

,
Emax

ps−1
21

, ...,
Emax

ps−1
M1

}
,

τ2 = T −min

{
Emax

ps−1
11

,
Emax

ps−1
21

, ...,
Emax

ps−1
M1

}
,

τn = 0, n > 2. (41)

In a similar fashion, if there exists 2 ≤ N̄ ≤ N that satisfies

T ≤
N̄∑

n=1

min

{
Emax

ps−1
1n

,
Emax

ps−1
2n

, ...,
Emax

ps−1
Mn

}
,

T ≥
N̄−1∑
n=1

min

{
Emax

ps−1
1n

,
Emax

ps−1
2n

, ...,
Emax

ps−1
Mn

}
, (42)

the optimal solution to (36) should be

τn = min

{
Emax

ps−1
1n

,
Emax

ps−1
2n

, ...,
Emax

ps−1
Mn

}
, n = 1 ∼ N̄ − 1,

τN̄ = T −
N̄−1∑
n=1

min

{
Emax

ps−1
1n

,
Emax

ps−1
2n

, ...,
Emax

ps−1
Mn

}
,

τn = 0, n > N̄ − 1. (43)

Beyond that, i.e.,

T >
N∑

n=1

min

{
Emax

ps−1
1n

,
Emax

ps−1
2n

, ...,
Emax

ps−1
Mn

}
, (44)

the optimal solution to (36) should be

τn = min

{
Emax

ps−1
1n

,
Emax

ps−1
2n

, ...,
Emax

ps−1
Mn

}
, ∀n. (45)

Based on the above analysis, we propose an iterative algo-
rithm to solve the original problem in (19). In the presented
algorithm, as shown in Algorithm 1, the transmission duration
time {τn} and the transmit power {pin} are updated in an
alternate fashion, until the achievable data collection efficiency
of the system stops increasing. The achievable data collection
efficiency of device cluster n calculated according to {psin} is
denoted by R̄s

n.
It is clear that the achievable data collection efficiency is

monotonically increasing in the iteration, i.e.,
N∑

n=1

τsnR̄
s
n ≥

N∑
n=1

τs−1
n R̄s−1

n . (46)

Algorithm 1 Solving (19) in an iterative way.

1: Initialization: τ0n = T
N , ∀n, ϵ = 1.0× 10−3, s = 1, R̄0

n =
0, ∀n;

2: for n = 1 ∼ N do
3: Solve the maxmin subproblem as shown in (35), and

set the optimal result as {p1in};
4: end for
5: if T ≤ min

{
Emax
p1
11

, Emax
p1
21

, ..., Emax
p1
M1

}
then

6: τ s1 = T , τsn = 0, n > 1;
7: else
8: if T >

∑N
n=1 min

{
Emax
p1
1n

, Emax
p1
2n

, ..., Emax
p1
Mn

}
then

9: τ sn = min
{

Emax
p1
1n

, Emax
p1
2n

, ..., Emax
p1
Mn

}
,∀n;

10: else
11: Find N̄ ≥ 2 that satisfies

T ≤
∑N̄

n=1 min
{

Emax
p1
1n

, Emax
p1
2n

, ..., Emax
p1
Mn

}
and T ≥

∑N̄−1
n=1 min

{
Emax
p1
1n

, Emax
p1
2n

, ..., Emax
p1
Mn

}
;

Set τ sn = min
{

Emax
p1
1n

, Emax
p1
2n

, ..., Emax
p1
Mn

}
,

n = 1 ∼ N̄ − 1,
τ s
N̄

= T −
∑N̄−1

n=1 min
{

Emax
p1
1n

, Emax
p1
2n

, ..., Emax
p1
Mn

}
,

τ sn = 0, n > N̄ − 1;
12: end if
13: end if
14: while |

∑N
n=1 τ

s
nR̄

s
n −

∑N
n=1 τ

s−1
n R̄s−1

n | > ϵ do
15: s = s+ 1;
16: for n = 1 ∼ N do
17: Solve the maxmin subproblem as shown in (35), and

denote the optimal result as {psin};
18: end for
19: if T ≤ min

{
Emax

ps−1
11

, Emax

ps−1
21

, ..., Emax

ps−1
M1

}
then

20: τ s1 = T , τ sn = 0, n > 1;
21: else
22: if T >

∑N
n=1 min

{
Emax

ps−1
1n

, Emax

ps−1
2n

, ..., Emax

ps−1
Mn

}
then

23: τsn = min
{

Emax

ps−1
1n

, Emax

ps−1
2n

, ..., Emax

ps−1
Mn

}
,∀n;

24: else
25: Find N̄ ≥ 2 that satisfies

T ≤
∑N̄

n=1 min
{

Emax

ps−1
1n

, Emax

ps−1
2n

, ..., Emax

ps−1
Mn

}
and T ≥

∑N̄−1
n=1 min

{
Emax

ps−1
1n

, Emax

ps−1
2n

, ..., Emax

ps−1
Mn

}
;

Set τsn = min
{

Emax

ps−1
1n

, Emax

ps−1
2n

, ..., Emax

ps−1
Mn

}
,

n = 1 ∼ N̄ − 1,
τs
N̄

= T −
∑N̄−1

n=1 min
{

Emax

ps−1
1n

, Emax

ps−1
2n

, ..., Emax

ps−1
Mn

}
,

τsn = 0, n > N̄ − 1;
26: end if
27: end if
28: end while
29: Output: {τ sn} and {psin}.

Thus the proposed algorithm is guaranteed to converge, since
the achievable data collection efficiency is upper bounded with
given resources. In the following part, we will show that this
algorithm may significantly increase the system performance,
and it converges quickly.
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Fig. 2. Normalized data collection efficiency achieved by different schemes.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this part, we evaluate the performance of the proposed
algorithm by simulations and discus the influence of UAV
deploying parameters on the system performance. We consider
a circular coverage area. K = 40 single-antenna IoT devices
are randomly deployed within the coverage area with Unin-
form Distribution. All the devices are divided into N = 10
independent clusters, each consisting of 4 devices. The UAV
files right above the coverage area, at an altitude of hU = 800
m, following a circular trajectory of radius rU = 1000 m, with
a duration time of T = 1500 s. The number of antennas at the
UAV is M = 4. Thus, a 4× 4 MIMO link is formed between
an arbitrary device cluster and the UAV-mounted aerial AP.

As for the channel parameters, we set f = 2 GHz,
c = 3 × 108 m/s, a = 5.0188, b = 0.3511 [10]. Without
loss of generality, we consider four typical urban environments
using the following (ηLoS , ηNLoS) pairs (0.1, 21), (1.0, 20),
(1.6, 23), (2.3, 34), corresponding to suburban, urban, dense
urban, and highrise urban, respectively. For each IoT device,
the peak transmit power is set as Pmax = 300 mw, i.e., 20
dBm. For each device cluster, we set Pbudget = 500 mw. The
noise power is set as σ2 = -107 dBm [26].

W first evaluate the performance of the proposed scheme
with (ηLoS , ηNLoS) = (0.1, 21). The averaged result of
ten randomly-selected system topologies is shown in Fig. 2.
In the traditional scheme, τn = T

N , ∀n, and pin =
min{Pmax, Emax/τn, Pbudget/M}. This strategy is widely used
in the literature when the large-scale CSI has not been taken
into account. Note that the original problem shown in (19) is a
non-convex optimization problem with an intractable objective
function, therefore, it is too time-consuming to exhaustive-
ly search the optimal result. In the figure, the normalized
data collection efficiency indicates

∑N
n=1 τnR̄n/K. One can

observe from the figure that the proposed scheme offers
a significant performance gain over the traditional scheme.
About 50% improvement is achieved when the total energy
constraint equals to 4 J. Also, we can see that when the energy

1 2 4 6 8 10
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Fig. 3. Convergence performance of the propose scheme.
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Fig. 4. Normalized data collection efficiency with different flight duration
time.

constraint is larger than 8 J, the data collection efficiency will
stop increasing. This is resulted by the peak transmit power
constraint and the budget power constraint according to the
volume of the sensing data.

In Fig. 3, we evaluate the convergence performance of the
proposed scheme. When Emax = 4 J, we show the number
of iterations of ten randomly-selected system topologies. One
may find from the figure that 10 iterations are enough to
converge, and the average number of iterations is about 6.
Recalling the previous mathematical work, we have decoupled
the original problem into two parts, as shown in (35) and (36),
respectively, both of which can be optimally solved. Moreover,
the achievable data collection efficiency is monotonically
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increasing in the iteration of the two subproblems. These facts
largely lead to a good convergence performance. It implies
that the proposed scheme can be used in practical applications
where the computational resources is crucially limited for IoT,
and the processing delay should be rigorously controlled.

As pointed out in section II that the flight duration time
T is a quite important parameter influencing the system
performance. In Fig. 4, we illustrate the normalized achievable
data collection efficiency with different T . It is observed that
given the total energy constraint, the achievable data collection
efficiency will remarkably increase along with the increasing
of T , especially when the total energy constraint is large. This
is reasonable as a larger T means a larger optimization space
for scheduling the transmit power, and the energy efficiency is
accordingly improved. However, it makes no sense to continue
to increase T when it is large enough, because the IoT
system is essentially energy-limited. This is the reason for
the performance ceiling in the figure, for both Emax = 4 J and
Emax = 8 J.

In Fig. 5, we depict the achievable performance of the
proposed scheme in different urban environments, i.e., with
different (ηLoS , ηNLoS) values. It is seen from the figure
that the performance gap is quite large between different
environments. This fact indicates that it is quite necessary
and meaningful to consider a practical channel model. This
work investigates the composite channel model including both
the large-scale and the small-scale channel fading, which is
relevant to promote the application of UAV in IoT scenarios.

In Fig. 6 and Fig. 7, we further compare the achievable data
collection efficiency of the proposed scheme under different
altitude and under different radius of circular trajectory of
the UAV, respectively. It can be seen from the figures that
different deployment of UAV, i.e., different rU and hU , may
lead to totally different system performance. In practice,
these parameters should be carefully designed in a systematic
way. Due to limited space, we do not further discuss these
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Fig. 6. Normalized data collection efficiency under different altitude of UAV.
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Fig. 7. Normalized data collection efficiency under different radius of circular
trajectory of UAV.

parameters theoretically. However, we believe that the optimal
placement of the UAV under the considered framework is an
interesting issue for future studies.

V. CONCLUDING REMARKS

In this paper, we focused on the application of UAV in IoT
environments, where the UAV provides an agile on-demand
platform for aerial APs to collect sensing data from the
IoT devices. In particular, we have considered a composite
channel model including both the large-scale and the small-
scale channel fading, to depict practical propagation envi-
ronments. We have also assumed the peak transmit power
constraint, the budget power and the total energy constraints
for realistic IoT devices. On these basis, a multi-antenna UAV
was employed, which follows a circular trajectory and visits
the IoT devices in a sequential manner. For each transmission,



9

the UAV communicates with a cluster of single-antenna IoT
devices to form a virtual MIMO link. We have formulated
a whole-trajectory-oriented optimization problem, where the
transmission duration time and the transmit power of all
devices are jointly designed for the whole flight. Different
from previous studies, only the slowly-varying large-scale CSI
was assumed available, to coincide with the practical difficulty
in predictively acquiring the small-scale channel fading prior
to the UAV flight. The problem is non-convex. To solve it, we
have proposed an iterative scheme by leveraging the maxmin
optimization and convex optimization tools. Simulation results
have shown that the presented scheme adapts well to the
rigorous energy constraints as well as the large-scale CSI
condition, thus, it can provide a significant performance gain
over traditional schemes and converges quickly.
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